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Patrick Ciarlet, Jr. ∗ Haijun Wu † Jun Zou ‡

March 20, 2014

Abstract

In this paper we propose and investigate some edge element approximations for three Maxwell

systems in three dimensions: the stationary Maxwell equations, the time-harmonic Maxwell equations

and the time-dependent Maxwell equations. These approximations have three novel features. First,

the resulting discrete edge element systems can be solved by some existing preconditioned solvers

with optimal convergence rate independent of finite element meshes, including the stationary Maxwell

equations. Second, they ensure the optimal strong convergence of the Gauss’ laws in some appropriate

norm, in addition to the standard optimal convergence in energy-norm, under the general weak

regularity assumptions that hold for both convex and non-convex polyhedral domains and for the

discontinuous coefficients that may have large jumps across the interfaces between different media.

Finally, no saddle-point discrete systems are needed to solve for the stationary Maxwell equations,

unlike most existing edge element schemes.

Key Words. Maxwell’s equations, edge elements, Gauss’ laws, error estimates.

1 Introduction

The Nédélec’s edge element methods are popular and efficient for the discretization of the Maxwell’s
equations, and have been extensively studied numerically and theoretically [3, 10, 16, 21, 29, 30]. But
there is an interesting and important issue about the convergence of edge element methods, which has not
been investigated much in the literature: how well can the Gauss’ laws be satisfied by the edge element
solutions? The Gauss’ laws are important in many applications [5, 14, 27, 28] and should be obeyed by
the finite element solutions at the discrete level. For most existing edge element methods, we know only
that the Gauss’ laws are satisfied in some weak sense or elementwise (e.g., the edge element solutions
of first family with lowest order are divergence-free in each element), but not much is known about if
the discrete Gauss’ laws converge globally or to what accuracy the Gauss’ laws are satisfied globally. In
this work we shall fill in the gap, and propose some efficient edge element approximations which lead
to strong convergence of the divergence of the edge element solution in an appropriately selected norm,
under the general weak regularity assumptions that hold for both convex and non-convex polyhedral
domains and for the discontinuous coefficients that may have large jumps across the interfaces between
different media. Unlike the classical schemes, no saddle-point discrete systems are needed to solve for the
stationary Maxwell equations. This brings in some important advantage in numerical simulations as it is
much more difficult to construct efficient preconditioning-type iterative methods for saddle-point systems
than for relevant positive definite systems [23, 24].

Next we shall describe three different Maxwell systems that will be investigated in this work. Let
Ω ⊂ R

3 be a (polyhedral) domain, that is an open, connected subset of R
3 with (polyhedral) connected
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Lipschitz boundary ∂Ω. The domain Ω may not necessarily be convex, nor topologically trivial. We
denote by n the unit outward normal vector to the boundary. Then the three Maxwell systems of our
interest can be stated as follows (formulated with the electric field E as the only unknown, the magnetic
field H appearing only in the initial condition [16, 29]), where ε(x) and µ(x) are the dielectric constant
and the magnetic permeability respectively:

Stationary Maxwell equations:

curl (µ−1 curlE) = f in Ω, (1.1)

div (εE) = ρ in Ω . (1.2)

According to (1.1), we should have div f = 0 in the stationary case.

Time-harmonic Maxwell equations:

curl (µ−1curl E) − k2εE = f in Ω , (1.3)

div (εE) = ρ in Ω (1.4)

where k > 0 is the wave number, and k2 is assumed not to be an eigenvalue of the operator curl (µ−1curl )
in H0(curl ; Ω) with ε-weighted L2 scalar product, and it holds that k2ρ+ div f = 0.

Time-dependent Maxwell equations:

εEtt + curl (µ−1 curlE) = f in (0, T ) × Ω, (1.5)

div (εE) = ρ in (0, T ) × Ω, (1.6)

E(0,x) = E0(x), Et(0,x) = F0(x) in Ω (1.7)

where T > 0 is the terminal time, ρ is the charge density, f := −Jt and J is the applied current density.
The initial data is F0(x) := ε−1(−J(0,x) + curlH0(x)). Note that ρ is allowed to be time-dependent.
But it is assumed that ε and µ are time independent, hence we have div (εF0) = ρt(0,x) and the charge
conservation equation ρtt − div f = 0.

Boundary condition and assumptions on ε and µ. We shall complement the above three systems
by the perfect conductor boundary condition

E× n = 0 on ∂Ω , (1.8)

and assume that

0 < ε0 ≤ ε(x) ≤ ε1 <∞ , 0 < µ0 ≤ µ(x) ≤ µ1 <∞ a.e. in Ω . (1.9)

In this paper, we shall first propose and analyse some edge element approximation for the stationary
Maxwell system (1.1)-(1.2), which allows us to achieve a strong convergence for the Gauss’ law. For
this system, most existing finite element methods use the saddle-point formulations in order to enforce
the divergence law (1.2). As it is well known, saddle-point systems are themselves much more technical
and expensive to solve than their corresponding self-adjoint coercive systems, and their effective precon-
ditioners are also more challenging to construct [23, 24, 25]. In fact the convergence behavior of the
preconditioning iterative methods can be rather complicated for saddle-point systems [4, 32]. This is one
of the important motivations that have led us to consider the possibility to construct some edge element
methods that do not involve any saddle-point systems. Indeed, as we shall see, the new method needs
only to solve a symmetric and positive definite system, which is much easier to solve than the saddle-point
system. In fact, optimal preconditioned solvers are available for these edge element systems, such as the
Hiptmair-Xu preconditioner [22] and non-overlapping domain decomposition preconditioner [23].

Then the edge element method will be extended for both the time-harmonic Maxwell problem (1.3)-
(1.4) and the time-dependent Maxwell system (1.5)-(1.7) to achieve a strong convergence for the Gauss’
law for the edge element solutions. This provides some new understandings to the mathematical theory
of edge element methods.
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Generic notation. Throughout the paper, C is used to denote a generic positive constant which is
independent of the meshsize, the triangulation, (possibly) the time stepsize and the quantities/fields
of interest. We also use the shorthand notation A . B for the inequality A ≤ CB, where A and B
are two scalar quantities, and C is a generic constant. We often write vector unknowns and fields in
boldface. Finally, we denote by (·, ·) the usual inner product of either L2(Ω) or L2(Ω) := (L2(Ω))3,
whereas ‖·‖s (respectively |·|s) denotes the norm (resp. semi-norm) of the Sobolev spaces Hs(Ω) and
Hs(Ω) := (Hs(Ω))3 for s ∈ R.

2 Edge and nodal element spaces and their interpolations

In this section we present some finite element spaces and preliminary results for the subsequent analyses.
Let Th be a shape regular triangulation of Ω made up of tetrahedra, Fh the set of interior faces in Th,
and hK the diameter of element K. The meshsize h is defined by h := maxK hK . Let Xh be the lowest
order edge element space of first family associated with Th, conforming in H0(curl ; Ω) (cf. [30]):

Xh := {vh ∈ H0(curl ; Ω); vh|K(x) = aK + bK × x, aK ,bK ∈ R
3, ∀K ∈ Th}. (2.1)

Note that the functions in Xh are piecewise divergence-free, that is, for any vh ∈ Xh we have

div (vh|K) = 0, ∀K ∈ Th.

However, a piecewise divergence-free function may have a globally large weak divergence, due to the
jumps of its normal component at the interior faces between elements.

Now we introduce the linear H1-conforming finite element space in H1
0 (Ω):

Uh :=
{
ϕh ∈ H1

0 (Ω); ϕh|K ∈ P1(K), ∀K ∈ Th

}
. (2.2)

A function v ∈ L2(Ω) is called discrete ε-divergence-free if (εv,∇ϕh) = 0 for all ϕh ∈ Uh. We define Xε
0,h

to be the edge element space consisting of all discrete ε-divergence-free functions:

Xε
0,h := {vh ∈ Xh; (εvh,∇ϕh) = 0, ∀ϕh ∈ Uh} .

Next we present a few important results. The first result is on a local trace inequality, whose proof
follows from the trace inequality on the reference element and the scaling argument (cf. [11]). Given an
element K ∈ Th, ‖·‖s,K (resp. |·|s,K) denotes the norm (resp. semi-norm) of the Sobolev spaces Hs(K)

and Hs(K) := (Hs(K))3 for s ∈ R.

Lemma 2.1. For 1/2 < s ≤ 1, we have

‖ϕ‖L2(∂K) . h
−1/2
K ‖ϕ‖0,K + h

s−1/2
K |ϕ|s,K , ∀K ∈ Th, ϕ ∈ Hs(K) . (2.3)

Let Πh : L2(Ω) 7→ Uh be the Scott-Zhang interpolation operator [33]. This interpolation is frequently
used in a posteriori error analysis for finite element methods. It will be applied here to estimate a priori
approximation errors for the divergence of εE. We have the following estimates for Πh, which generalize
the classical results for functions with low regularities.

Lemma 2.2. For 1/2 < s ≤ 1 and 0 ≤ t ≤ s, the following estimates hold:

‖ϕ− Πhϕ‖t . hs−t ‖ϕ‖s , ∀ϕ ∈ Hs(Ω)
∑

f∈Fh

‖ϕ− Πhϕ‖
2
L2(f) . h2s−1 ‖ϕ‖2

s , ∀ϕ ∈ Hs(Ω). (2.4)

Proof. The first estimate in (2.4) can be established by following the proof given in [33] and extending
it to functions with low regularities. The idea is first to bound ‖Πhϕ‖0,K and ‖Πhϕ‖s,K with respect to
‖ϕ‖s,K , which yields

‖Πhϕ‖0,K . ‖ϕ‖0,K + hs
K |ϕ|s,SK

, ‖Πhϕ‖s,K . h−s
K ‖ϕ‖0,K + |ϕ|s,SK

,
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where SK := int(∪Ki:Ki∩K 6=∅Ki). Using the triangle inequality, one finds

‖ϕ− Πhϕ‖0,K . hs
K |ϕ|s,SK

, ‖ϕ− Πhϕ‖s,K . |ϕ|s,SK
.

Then one concludes by interpolation; see the details in [13].
The second estimate in (2.4) follows from the first one and (2.3).

Finally, we recall the classical approximation results for the interpolation operator rh onto the edge
element space Xh (cf. [16] or [29, Theorem 5.41]). We define, for r ≥ 0,

Hr(curl ; Ω) := {u ∈ Hr(Ω); curl u ∈ Hr(Ω)} ,

equipped with norm ‖u‖
Hr(curl ; Ω) :=

(
‖u‖r + ‖curl u‖r

)1/2
. Clearly, ‖u‖

H(curl ; Ω) = ‖u‖
H0(curl ; Ω).

Lemma 2.3. We have the following estimates for 1/2 < r ≤ 1:

1. For any K ∈ Th, if u ∈ Hr(K) and curl u|K ∈ D1 := {a + bx,a ∈ R
3, b ∈ R}, then

‖u− rhu‖0,K . hr
K ‖u‖r,K + hK ‖curl u‖0,K .

2. If u ∈ Hr(curl ; Ω), then

‖u − rhu‖H(curl ; Ω) . hr ‖u‖
Hr(curl ; Ω) .

3 Some basic results on regularities and error estimates

3.1 Regularities with smooth coefficients and regular decompositions

We first recall some basic results on the a priori regularity of the solution to the Poisson problem with
homogeneous Dirichlet boundary condition. For given f , consider z ∈ H1

0 (Ω) satisfying

∆z = f in Ω (3.1)

Then we have the following shift theorem (cf. [18, 19, 26]).

Lemma 3.1. There exists δD
max > 1/2 depending only on the geometry of Ω such that for 0 ≤ δ <

δD
max, δ 6= 1/2 it holds

‖z‖1+δ . ‖f‖δ−1 (3.2)

where δD
max is called the limit regularity exponent of the Poisson problem with homogeneous Dirichlet

boundary condition.

Remark 3.1. If Ω is convex, we have δD
max > 1, and as a consequence,

‖z‖2 . ‖f‖0 . (3.3)

On the other hand, if Ω is non-convex, we have δD
max < 1.

If we define
ΨD(Ω) :=

{
ψ ∈ H1

0 (Ω); ∆ψ ∈ L2(Ω)
}
,

then it follows from Lemma3.1 that the continuous embedding ΨD(Ω) ⊂ H1+δ(Ω) holds for 0 < δ < δD
max,

δ ≤ 1.
Similar regularity results hold for the Poisson problem with homogeneous Neumann boundary con-

dition. Let δN
max be the corresponding limit regularity exponent for this Neumann problem, then for a

non-convex Ω, we have 1/2 < δN
max < 1, and (3.2) holds for the solution z to (3.1). On the other hand,

for a convex Ω, we have δN
max > 1 and the estimate (3.3). Thus, if we define

ΨN(Ω) :=

{
ψ ∈ H1(Ω); ∆ψ ∈ L2(Ω),

∂ψ

∂n
= 0 on ∂Ω,

∫

Ω

ψ dx = 0

}
,

then the continuous embedding ΨN (Ω) ⊂ H1+δ(Ω) holds for 0 < δ < δN
max, δ ≤ 1.
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Remark 3.2. For a three-dimensional polyhedral domain Ω, it may happen that δD
max 6= δN

max. We shall
often write δmax = min(δD

max, δ
N
max) in the rest of the paper.

Next we discuss some close relations between spaces ΨD(Ω) and ΨN(Ω) and the following spaces:

XN (Ω) := H0(curl ; Ω) ∩ H(div ; Ω) and XT (Ω) := H(curl ; Ω) ∩ H0(div ; Ω),

which are endowed with their graph norms (also called the full norms). The following continuous regular-
singular decompositions can be found, e.g., in [17, Theorem 3.5 with constant coefficients].

Lemma 3.2. For any u ∈ XN (Ω) we can split it as

u = ureg + ∇ψD (3.4)

where ureg ∈ XN (Ω) ∩ H1(Ω) and ψD ∈ ΨD(Ω) satisfy

‖ureg‖XN (Ω) + ‖ureg‖H1(Ω) +
∥∥ψD

∥∥
H1(Ω)

+
∥∥∆ψD

∥∥
L2(Ω)

. ‖u‖
XN (Ω) . (3.5)

Similarly, for any u ∈ XT (Ω) we can split it as

u = ureg + ∇ψN (3.6)

where ureg ∈ XT (Ω) ∩ H1(Ω) and ψN ∈ ΨN(Ω) satisfy

‖ureg‖XT (Ω) + ‖ureg‖H1(Ω) +
∥∥ψN

∥∥
H1(Ω)

+
∥∥∆ψN

∥∥
L2(Ω)

. ‖u‖
XT (Ω) . (3.7)

As a consequence of the above lemma, we have the following a priori regularities.

Corollary 3.1. The following continuous embeddings hold

• XN (Ω) ⊂
⋂

0≤δ<δD
max, δ≤1 Hδ(Ω);

• XT (Ω) ⊂
⋂

0≤δ<δN
max, δ≤1 Hδ(Ω).

Moreover, both XN (Ω) and XT (Ω) are compact subsets of L2(Ω).

The above results suggest a useful measure of functions in XN (Ω).

Corollary 3.2. The seminorm

u 7→
(
‖curl u‖2

0 + ‖divu‖2
0

)1/2

(3.8)

is a norm of XN (Ω), which is equivalent to its full norm.

Proof. We prove by contradiction. Assume there exists a sequence (uℓ)ℓ of functions in XN (Ω) such that

‖uℓ‖0 = 1 ∀ℓ and lim
ℓ→∞

(‖curl uℓ‖0 + ‖div uℓ‖0) = 0.

The sequence (uℓ)ℓ is bounded in XN (Ω): thanks to the compact embedding of XN (Ω) into L2(Ω),
there exists a subsequence, still denoted by (uℓ)ℓ, and u ∈ L2(Ω) such that limℓ→∞ ‖uℓ − u‖0 = 0. In
particular, ‖u‖0 = 1. Due to limℓ→∞ ‖curl uℓ‖0 = 0, one obtains that curl u = 0 (weakly). Similarly,
we have div u = 0 (weakly).
If the domain Ω is topologically trivial, then the curl-free condition curl u = 0 implies the existence of
a scalar potential φ ∈ H1(Ω): u = ∇φ; see [3, §3.3]. In addition, u × n = 0 on the connected boundary
∂Ω ensures that φ is constant on ∂Ω. As a consequence, one can choose φ ∈ H1

0 (Ω). On the other hand,
div u = 0 leads to ∆φ = 0, so one concludes that φ = 0, hence u = 0. This contradicts the fact that
‖u‖0 = 1.
If the domain is topologically non-trivial, we shall follow [3, §3.3] again. Assume that there exist I non-

intersecting manifolds, Σ1, . . . ,ΣI , with boundaries ∂Σi ⊂ ∂Ω such that Ω̇ ≡ Ω \
⋃I

i=1 Σi is topologically

trivial. We shall write the continuation operator from L2(Ω̇) to L2(Ω) or from L2(Ω̇) to L2(Ω) by ,̃ and
the jump across Σi by [·]Σi

for i = 1, · · · , I. Noting that u is curl-free, there exists a scalar potential

φ ∈ H1(Ω̇), with [φ]Σi
= Ci for 1 ≤ i ≤ I such that u = ∇̃φ in Ω. As we did before, u × n = 0 on the

connected boundary ∂Ω yields φ = C on ∂Ω. Because the boundaries ∂Σi are all included in ∂Ω, the
jumps [φ]Σi

all vanish. To see this, one can take their trace on the boundary ∂Ω to obtain Ci = C−C = 0

for i = 1, · · · , I. Therefore we see that u = ∇φ̃ in Ω, where φ̃ is a scalar potential that belongs to H1(Ω).
Now we can conclude as we did for the topologically trivial case.
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3.2 Regularities with discontinuous coefficients and regular decompositions

In this section we revisit the results in Section 3.1 for the case with discontinuous coefficients ε and µ.
For the aim we incorporate coefficients ε and µ explicitly into the spaces XN (Ω) and XT (Ω), and define

XN (Ω, ε) := {u ∈ H0(curl ; Ω); div (εu) ∈ L2(Ω)}

XT (Ω, µ) := {u ∈ H(curl ; Ω); div (µu) ∈ L2(Ω), µu · n = 0 on ∂Ω} .

Because of the jumps of the coefficient ε, the fact that div (εu) belongs to L2(Ω) does not ensure that
div u ∈ L2(Ω) any more, and we do not have the embedding XN (Ω, ε) ⊂ XN (Ω).

Following [17], we assume that ε and µ are piecewise constant over Ω, namely there exists a partition
P := {Ωj}J

j=1 of Ω into J polyhedral subdomains such that εj := ε|Ωj
and µj := µ|Ωj

are constants for
j = 1, · · · , J . Then for r > 0 we define

PHr(Ω) :=
{
u ∈ L2(Ω); u|Ωj

∈ Hr(Ωj), j = 1, · · · , J
}

and PHr(Ω) := (PHr(Ω))3,
PHr(curl ; Ω) := {u ∈ PHr(Ω); curl u ∈ PHr(Ω)} .

First, we consider the regularity of the solution z ∈ H1
0 (Ω) to the Poisson problem

div (ε∇z) = f in Ω (3.9)

with Dirichlet boundary condition and given f .We have the following general a priori estimate for the
solution z; see, e.g., [31].

Lemma 3.3. There exists a constant δD
max > 0 such that it holds

‖z‖1+δ . ‖f‖δ−1 (3.10)

for 0 ≤ δ < δD
max, δ 6= 1/2. And the limit regularity exponent δD

max depends only on the geometry of Ω,
the partition P and the values {εj}J

j=1.

Depending on the maximal number of adjacent subdomains and the values {εj}J
j=1, constant δD

max

may be arbitrarily small. We will now focus on the domain Ω of special geometries, for which one always
has δD

max > 1/2. In this case, we are still able to extend the analyses developed in Section 3.1. To this
end, we assume the domain Ω (with its partition P) has a geometry of one of the following two types
(see, e.g., [31] and [17]):

(G1) Domain Ω is convex, and the maximal number of adjacent subdomains is equal to two ;

(G2) There exists some j such that ∂Ω ⊂ ∂Ωj, and the maximal number of adjacent subdomains is equal
to two.

Remark 3.3. The second type (G2) above includes the important case of isolated inclusions of media in
the domain Ω, which has wide applications, e.g., in inverse problems [1, 2].

Now we define
ΨD(Ω, ε) :=

{
ψ ∈ H1

0 (Ω); div (ε∇ψ) ∈ L2(Ω)
}
,

and we know the continuous embedding ΨD(Ω, ε) ⊂ PH1+δ(Ω) for 0 < δ < δD
max.

Similar results hold also for the problem with Neumann boundary condition. We define

ΨN (Ω, µ) :=

{
ψ ∈ H1(Ω); div (µ∇ψ) ∈ L2(Ω), µ

∂ψ

∂n
= 0 on ∂Ω,

∫

Ω

ψ dx = 0

}
,

then the continuous embedding ΨN(Ω, µ) ⊂ PH1+δ(Ω) holds for 0 < δ < δN
max, where δN

max > 0 is the
limit regularity exponent for the Poisson problem with operator div (µ∇·) and homogeneous Neumann
boundary condition. For the domain Ω with geometry of type (G1) or (G2), it is always true that
δN
max > 1/2 (cf. [31, 17]).

Now we recall some continuous regular-singular splittings of functions in XN (Ω, ε) and XT (Ω, µ) (cf.
[17, Theorem 3.5]).
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Lemma 3.4. For any u ∈ XN (Ω, ε), we can decompose it as

u = ureg + ∇ψD (3.11)

where ureg ∈ XN (Ω, ε) ∩ PH1(Ω) and ψD ∈ ΨD(Ω, ε) satisfy

‖ureg‖XN (Ω,ε) + ‖ureg‖PH1(Ω) +
∥∥ψD

∥∥
H1(Ω)

+
∥∥div (ε∇ψD)

∥∥
L2(Ω)

. ‖u‖
XN (Ω,ε) . (3.12)

Similarly, for any u ∈ XT (Ω, µ), we can decompose it as

u = ureg + ∇ψN (3.13)

where ureg ∈ XT (Ω, µ) ∩ PH1(Ω) and ψN ∈ ΨN (Ω, µ) satisfy

‖ureg‖XT (Ω,µ) + ‖ureg‖PH1(Ω) +
∥∥ψN

∥∥
H1(Ω)

+
∥∥div (µ∇ψN )

∥∥
L2(Ω)

. ‖u‖
XT (Ω,µ) . (3.14)

As a consequence of the above lemma, we have the following continuous embeddings.

Corollary 3.3. It holds that

• XN (Ω, ε) ⊂
⋂

0≤δ<δD
max, δ≤1 PHδ(Ω);

• XT (Ω, µ) ⊂
⋂

0≤δ<δN
max, δ≤1 PHδ(Ω).

In particular, both XN (Ω, ε) and XT (Ω, µ) are compact subsets of L2(Ω).

As in Corollary3.2, using the result in Corollary3.3 we can show the following result.

Corollary 3.4. The seminorm

u 7→
(
‖curl u‖2

0 + ‖div (εu)‖2
0

)1/2

(3.15)

is a norm of XN (Ω, ε), which is equivalent to its full norm.

3.3 Some classical error estimates

For simplicity, we assume from now on that the charge ρ belongs to L2(Ω). For our subsequent edge
element approximation of the Gauss’ law, we introduce a discrete function χh ∈ Uh such that

(ε∇χh,∇ϕh) = −(ρ, ϕh), ∀ϕh ∈ Uh. (3.16)

This is the piecewise linear finite element discretization of the Poisson problem with Dirichlet boundary
condition: Find χ ∈ H1

0 (Ω) such that:

(ε∇χ,∇ϕ) = −(ρ, ϕ), ∀ϕ ∈ H1
0 (Ω). (3.17)

The following lemma states the a priori estimate of the solution χ to (3.17) and the error estimate of
the finite element solution χh to (3.16) (cf. [8]).

Lemma 3.5. Suppose that ε ∈ W 1,∞(Ω) and that 0 < δ < δD
max, δ ≤ 1. Then it hold that

‖χ‖1+δ . ‖ρ‖δ−1 if further, δ 6= 1/2; ‖χ− χh‖1 . hδ |χ|1+δ . (3.18)

Proof. By taking ϕ = χ in (3.17), we know that ‖χ‖1 . ‖ρ‖−1.
On the other hand, because of the regularity assumption on the permitivity ε, one can write

div ε∇χ = ∇ε · ∇χ+ ε∆χ in L2(Ω).

Hence ∆χ = ε−1(ρ−∇ε · ∇χ), so it follows from (3.2)-(3.3) that

‖χ‖1+δ .
∥∥ε−1(ρ−∇ε · ∇χ)

∥∥
δ−1

.
∥∥ε−1

∥∥
L∞(Ω)

(
‖ρ‖δ−1 + ‖ε‖W 1,∞(Ω) ‖χ‖1

)

. ‖ρ‖δ−1 .

This gives the first estimate in (3.18). The second estimate can be derived from the interpolation prop-
erties of Πh and Céa’s Lemma [8].
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3.4 Interpolation properties of electric-like fields

Given j ∈ L2(Ω) and g ∈ L2(Ω), we introduce z ∈ H0(curl ; Ω) to be the weak solution to

curl (µ−1curl z) = j in Ω, (3.19)

div z = g in Ω . (3.20)

Noting that z belongs to XN (Ω), we have ‖z‖0 . ‖curl z‖0 + ‖g‖0 by using the equivalence of norms
(see the definition (3.8)). Using this estimate, it follows from (3.19) that

‖curl z‖2
0 ≤ ‖µ‖L∞(Ω) (µ−1curl z, curl z) ≤ ‖µ‖L∞(Ω) ‖j‖0 (‖curl z‖0 + ‖g‖0).

This enables us to derive that ‖curl z‖0 . ‖j‖0+‖g‖0 by using the Young’s inequality. Hence we conclude
that the solution to (3.19)-(3.20) satisfies

‖z‖0 + ‖curl z‖0 + ‖div z‖0 . ‖j‖0 + ‖g‖0 . (3.21)

Lemma 3.6. Suppose µ−1 ∈ W 1,∞(Ω), then the solution z of (3.19)-(3.20) has the following error
estimates for 1/2 < δ′ < δmax, δ

′ ≤ 1:

‖z‖
Hδ′ (curl ; Ω) . ‖j‖0 + ‖g‖0 and ‖z − rhz‖H(curl ;Ω) . hδ′

(‖j‖0 + ‖g‖0). (3.22)

Proof. Recall that XN (Ω) is continuously embedded into Hδ′

(Ω) (cf. Corollary 3.1). So we know from
(3.21) that

‖z‖δ′ . ‖j‖0 + ‖g‖0 .

Now considering w = curl z, we have clearly w ∈ H0(div ; Ω) with div w = 0. In addition,

j = curl (µ−1w) = ∇µ−1 × w + µ−1curlw,

hence curlw = µ(j −∇µ−1 × w) ∈ L2(Ω). So we know that w belongs to XT (Ω), and derive by direct
estimates and using (3.21) that

‖w‖0 + ‖curlw‖0 + ‖div w‖0 . ‖j‖0 + ‖g‖0 .

Recall that XT (Ω) is also continuously embedded into Hδ′

(Ω) (cf. Corollary 3.1), so we have

‖curl z‖δ′ = ‖w‖δ′ . ‖j‖0 + ‖g‖0 .

Now the error estimate (3.22) follows directly from Lemma 2.3 with r = δ′.

3.5 Some properties on discrete ε-divergence-free functions

The following lemma says that a discrete ε-divergence-free function can be well approximated by a
continuous ε-divergence-free function. The results for ε = 1 are well-known (cf. [29, Lemma 7.6]).

Lemma 3.7. Suppose ε ∈ W 1,∞(Ω). For any wh ∈ Xε
0,h there exists a function wh ∈ H0(curl ; Ω)

satisfying
curlwh = curlwh, div (εwh) = 0 in Ω. (3.23)

Moreover, the following estimates hold for 1/2 < δ < δD
max, δ ≤ 1:

∥∥wh
∥∥

δ
. ‖curlwh‖0 ;

∥∥wh − wh

∥∥
0

. hδ
∥∥wh

∥∥
δ
+ h ‖curlwh‖0 . (3.24)

Proof. As div (εwh) ∈ H−1(Ω), there exists ψ ∈ H1
0 (Ω) such that div (ε∇ψ) = div (εwh). Let wh =

wh −∇ψ, then wh belongs to XN (Ω, ε) and fulfills (3.23).
Next, for any w ∈ XN (Ω, ε) we can write εdivw+∇ε·w = div (εw). Hence div w = ε−1(div (εw)−∇ε·

w) ∈ L2(Ω) because of the regularity of ε. This implies the embedding XN (Ω, ε) ⊂ XN (Ω). Therefore,
the first estimate in (3.24) follows from Corollary 3.1 and the equivalence of norms in XN (Ω, ε) (cf.
Corollary 3.4).
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On the other hand, we have by following the proof of Lemma 7.6 in [29] that
(
ε (wh − wh),wh − wh

)
=

(
ε (wh − wh),wh − rhw

h
)
,

which implies
∥∥wh − wh

∥∥
0

.
∥∥wh − rhw

h
∥∥

0
. Then the second estimate (3.24) follows from Lemma 2.3

(with r = δ) and (3.23). This completes the proof of Lemma 3.7.

The next lemma shows that the divergence of a discrete ε-divergence-free edge element function is
small in H−s(Ω)-norm for 1/2 < s ≤ 1.

Lemma 3.8. Suppose ε ∈ W 1,∞(Ω) and {Th} is quasi-uniform. Then for any wh ∈ Xε
0,h, the following

estimate holds for 1/2 < s ≤ 1 and 1/2 < δ < δD
max, δ ≤ 1:

‖div (εwh)‖−s . hs+δ−1 ‖curlwh‖0 .

Proof. By the definition of (weak) divergence and integration by parts on each element we have for any
ϕ ∈ C∞

0 (Ω) and ϕh ∈ Uh that

〈div (εwh), ϕ〉 = −(εwh,∇ϕ) = −(εwh,∇(ϕ− ϕh)) = −
∑

K∈Th

∫

K

εwh · ∇(ϕ− ϕh)

=
∑

K∈Th

( ∫

K

div (εwh) (ϕ− ϕh) −

∫

∂K

εwh · n (ϕ− ϕh)
)

=
∑

K∈Th

( ∫

K

∇ε · wh (ϕ− ϕh) −

∫

∂K

εwh · n(ϕ− ϕh)
)

=
∑

K∈Th

∫

K

∇ε ·wh (ϕ− ϕh) −
∑

f∈Fh

∫

f

[[εwh · n]](ϕ − ϕh)

. max
K∈Th

‖ε‖W 1,∞(K) ‖wh‖0 ‖ϕ− ϕh‖0

+

( ∑

f∈Fh

‖[[εwh · n]]‖2
L2(f)

)1/2( ∑

f∈Fh

‖ϕ− ϕh‖
2
L2(f)

)1/2

where [[εwh · n]] denotes the jump of the normal component of εwh across the face f shared by two
elements K1 and K2:

[[εwh · n]] = (εwh)|K1
· n1 + (εwh)|K2

· n2, (3.25)

where nj is the unit outward normal to ∂Kj for j = 1, 2. Choosing ϕh = Πhϕ to be the Scott-Zhang
interpolant of ϕ and applying (2.4), we further derive

|〈div (εwh), ϕ〉| . hs ‖wh‖0 ‖ϕ‖s +

( ∑

f∈Fh

‖[[εwh · n]]‖2
L2(f)

)1/2

hs−1/2 ‖ϕ‖s ,

which implies that

‖div (εwh)‖−s . hs ‖wh‖0 + hs−1/2

( ∑

f∈Fh

‖[[εwh · n]]‖2
L2(f)

)1/2

. (3.26)

Let wh be the function from Lemma 3.7, then

‖wh‖0 ≤
∥∥wh

∥∥
0

+
∥∥wh − wh

∥∥
0

. ‖curlwh‖0 . (3.27)

On the other hand, we obtain from the local trace inequality (2.3) with s = δ that
∑

f∈Fh

‖[[εwh · n]]‖2
L2(f) =

∑

f∈Fh

∥∥[[ε
(
wh − wh

)
· n]]

∥∥2

L2(f)

.
∑

K∈Th

(
h−1

K

∥∥wh − wh
∥∥2

0,K
+ h2δ−1

K

∣∣wh − wh
∣∣2
δ,K

)

.
∑

K∈Th

(
h−1

∥∥wh − wh
∥∥2

0,K
+ h2δ−1

K |wh|
2
δ,K + h2δ−1

K

∣∣wh
∣∣2
δ,K

)
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where we used the fact that {Th} is quasi-uniform for the last inequality. As wh is piecewise divergence-
free, it is easy to verify the local estimate |wh|δ,K . |wh|1,K . ‖curlwh‖0,K on each element K, so we
can derive from Lemma 3.7 (recall that 2δ − 1 ≤ 1) that

∑

f∈Fh

‖[[εwh · n]]‖2
L2(f) . h2δ−1 ‖curlwh‖

2
0 . (3.28)

Now the desired estimate of the lemma follows from (3.26) by using (3.27) and (3.28).

Let χ and χh be the solutions to (3.17) and (3.16), respectively. Then we know div (ε∇χ) = ρ, and
∇χ−∇χh is discrete ε-divergence-free since

(
ε(∇χ−∇χh),∇ϕh

)
= 0 ∀ϕh ∈ Uh.

The following lemma says that div (ε∇χh) is a good approximation to the charge density ρ.

Lemma 3.9. Suppose ε ∈ W 1,∞(Ω), ρ ∈ L2(Ω) and {Th} is quasi-uniform. Let χh ∈ Uh be the solution
to (3.16), then the following estimate holds for 1/2 < s ≤ 1 and 1/2 < δ < δD

max, δ ≤ 1:

‖ρ− div (ε∇χh)‖−s . hs+δ−1 ‖ρ‖δ−1 . (3.29)

Proof. By the definition (3.16) we can write for any ϕ ∈ C∞
0 (Ω) and ϕh ∈ Uh that

〈ρ− div (ε∇χh), ϕ〉 = (ρ, ϕ) + (ε∇χh,∇ϕ) = (ρ, ϕ− ϕh) + (ε∇χh,∇(ϕ− ϕh))

= (ρ, ϕ− ϕh) +
∑

K∈Th

∫

K

ε∇χh · ∇(ϕ− ϕh)

= (ρ, ϕ− ϕh) +
∑

K∈Th

(
−

∫

K

div (ε∇χh)(ϕ− ϕh) +

∫

∂K

ε∇χh · n(ϕ− ϕh)
)

= (ρ, ϕ− ϕh) −
∑

K∈Th

∫

K

∇ε · ∇χh(ϕ− ϕh) +
∑

f∈Fh

∫

f

[[ε∇χh · n]](ϕ − ϕh).

Let ϕh = Πhϕ be the Scott-Zhang interpolant of ϕ. Then it follows from the first (with t = 1 − δ) and
second estimates of (2.4) that

|〈ρ− div (ε∇χh), ϕ〉| .hs+δ−1 ‖ρ‖δ−1 ‖ϕ‖s + hs max
K∈Th

‖ε‖W 1,∞(K) ‖∇χh‖0 ‖ϕ‖s

+ hs−1/2

( ∑

f∈Fh

‖[[ε∇χh · n]]‖2
L2(f)

)1/2

‖ϕ‖s . (3.30)

It is clear that (ε∇χh,∇χh) = −(ρ, χh) ≤ ‖ρ‖−1 ‖χh‖1. Therefore, it follows from the Poincaré’s inequal-
ity that ‖∇χh‖0 . ‖ρ‖−1.

On the other hand, we obtain from the local trace inequality (2.3) with s = δ and Lemma 3.5

∑

f∈Fh

‖[[ε∇χh · n]]‖2
L2(f) =

∑

f∈Fh

‖[[ε∇(χh − χ) · n]]‖2
L2(f)

.
∑

K∈Th

(
h−1

K ‖∇(χ− χh)‖2
0,K + h2δ−1

K |χ|21+δ,K

)

. h2δ−1 ‖ρ‖2
δ−1 .

Using this we derive from (3.30) that

|〈ρ− div ε∇χh, ϕ〉| . hs+δ−1 ‖ρ‖δ−1 ‖ϕ‖s , ∀ϕ ∈ C∞
0 (Ω),

which implies (3.29).
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4 Stationary problem with smooth coefficients

In this section we consider the stationary system (1.1)-(1.2) and its edge element approximation. In
order to ensure that the edge element solution satisfies the divergence law (1.2), nearly all the existing
edge element schemes for the system (1.1)-(1.2) need to solve a discrete saddle-point system. As it is
well known, saddle-point systems are themselves much more technical and expensive to solve than their
corresponding self-adjoint coercive systems, and their effective preconditioners are also more challenging
to construct [23, 24, 25]. We shall propose a new edge element method that needs only to solve a symmetric
and positive definite system, for which optimal preconditioned solvers are available (see Remark 4.1),
and at the same time the method ensures the optimal strong convergence of the Gauss’ laws in some
appropriate norm.

As we shall see, the treatments are fairly different depending on whether charges are present or not.

4.1 Charge-free case

We first take care of the charge-free case, i.e. ρ = 0 in (1.2), so we have div f = 0 and div (εE) = 0. Our
idea to enforce this divergence law is simple: since E is ε-divergence-free, it is natural to require that
its approximation Eh is discrete ε-divergence-free. We achieve this goal by adding a small perturbation
γ(h)(εE) to equation (1.1). To be more precise, we define the bilinear form ah:

ah(u,v) = (µ−1curl u, curl v) + γ(h)(εu,v), ∀u,v ∈ H0(curl ; Ω), (4.1)

where γ(h) > 0 depends only on h. The parameter γ(h) just needs to be chosen appropriately small in
terms of h so that the newly added perturbation term does not affect our desired convergence order for
the edge element solution Eh. As we shall see (cf. Theorems 4.1 and 4.2), we should take γ(h) in the
range 0 < γ(h) . h2.

With the bilinear form ah in (4.1), we can formulate our discrete scheme to the system (1.1)-(1.2)
and (1.8) as follows: Find Eh ∈ Xh such that

ah(Eh,vh) = (f ,vh), ∀vh ∈ Xh. (4.2)

This formulation indeed ensures that Eh is discrete ε-divergence-free, i.e., Eh ∈ Xε
0,h. One can see this

by taking vh = ∇ϕh for any ϕh ∈ Uh in (4.2) and noting that div f = 0.
On the other hand, for the continuous solution E to (1.1)-(1.2), we can easily see that

ah(E,v) = (f ,v) + γ(h)(εE,v), ∀v ∈ H0(curl ; Ω). (4.3)

The error estimates regarding the edge element solution to (4.2) is given in Section 4.3.

4.2 Non-charge-free case

The treatment of the divergence law in Section 4.1 does not work when the charge is present, namely
div f 6= 0 and div (εE) 6= 0. In order to enforce this divergence law, we propose the edge element
approximation of the stationary problem (1.1)-(1.2) as follows: Find Eh ∈ Xh such that

ah(Eh,vh) = (f ,vh) + γ(h)(ε∇χh,vh), ∀vh ∈ Xh (4.4)

where the bilinear form ah is the same as in (4.1) and χh ∈ Uh is the solution to (3.16).
By taking vh = ∇ϕh for any ϕh ∈ Uh in (4.4), we see that

(
ε(Eh −∇χh),∇ϕh

)
= 0 ∀ϕh ∈ Uh, (4.5)

that is, Eh − ∇χh ∈ Xε
0,h, i.e. Eh − ∇χh is discrete ε-divergence-free. As we will show, div (εEh) −

div (ε∇χh) is small in some sense. We remark that a piecewise non-divergence-free function may have a
good approximation by a piecewise divergence-free function in some appropriate norm (cf. Lemma 3.9).

We shall first develop the error estimates of the edge element schemes (4.2) and (4.4) for smooth
coefficients ε and µ, namely ε, µ−1 ∈ W 1,∞(Ω), in Subsections 4.3–4.4. Then we will handle the discon-
tinuous coefficients ε and µ in Section 5, which will require more specific and delicate regularity results.
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For the purposes, it is natural to consider the following ω-weighted L2-norm for a given positive function
ω ∈ L∞(Ω) and the mesh-dependent energy norm:

‖u‖0,ω :=
∥∥∥ω1/2u

∥∥∥
0

∀u ∈ L2(Ω) , (4.6)

‖v‖ah
:= ah(v,v)1/2 =

{
‖curl v‖2

0,µ−1 + γ(h) ‖v‖2
0,ε

}1/2

. (4.7)

Remark 4.1. There are optimal preconditioned iterative solvers available for the edge element system
(4.2) and (4.4), e.g., the Hiptmair-Xu preconditioner [22] and non-overlapping domain decomposition
preconditioner [23]. In particular, if the discrete system is preconditioned by the preconditioner in [22],
the resulting preconditioned system is well-conditioned, and more importantly, the condition number is
independent of the parameter γ(h); see section 8 for some numerical examples.

4.3 Error estimates for the charge-free case

In this section we consider the charge-free case, namely div (εE) = 0. In this case we proposed the edge
element scheme (4.2) with the solution Eh, and will now derive the estimates for the error E−Eh in the
H(curl )-norm and for div (εEh) in the H−s-norm for 1/2 < s ≤ 1.

We start with the error estimate of e := E− Eh in the discrete energy norm.

Lemma 4.1. Let E and Eh be the solutions to (1.1)–(1.2) and (4.2), respectively. Assume that ρ = 0,
and γ(h) is a parameter such that 0 < γ(h) . 1. Then it holds that

‖E− Eh‖ah
. inf

vh∈Xh

‖E− vh‖ah
+ γ(h)1/2 ‖E‖0 .

Proof. It follows from (4.2) and (4.3) that

ah(E − Eh,vh) = γ(h)(εE,vh), ∀vh ∈ Xh. (4.8)

Then for any vh ∈ Xh we derive by the Cauchy-Schwarz and Young inequalities that

‖e‖2
ah

= ah(e, e) = ah(e,E− vh) + ah(e,vh − Eh) = ah(e,E− vh) + γ(h)(εE,vh − Eh)

≤ ‖e‖ah
‖E− vh‖ah

+ γ(h) ‖E‖0,ε ‖vh − Eh‖0,ε

≤ ‖e‖ah
‖E− vh‖ah

+ γ(h) ‖E‖0,ε

(
‖e‖0,ε + ‖E− vh‖0,ε

)

≤ ‖e‖ah
‖E− vh‖ah

+ γ(h)1/2 ‖E‖0,ε ‖e‖ah
+ γ(h) ‖E‖0,ε ‖E− vh‖0,ε

≤
1

2
‖e‖2

ah
+ ‖E− vh‖

2
ah

+
3

2
γ(h) ‖E‖2

0,ε +
1

2
γ(h) ‖E − vh‖

2
0,ε .

Remark 4.2. Provided γ(h) is bounded, it follows from the approximation property of edge element
functions that

lim
h→0

(
inf

vh∈Xh

‖v − vh‖ah

)
= 0 ∀v ∈ H(curl ; Ω).

Therefore, if γ(h) is chosen such that limh→0 γ(h) = 0 then we know from Lemma 4.1 that

lim
h→0

‖curl (E− Eh)‖0 = 0.

Although the discrete energy-norm contains a weighted L2-norm (cf. (4.7)), Lemma 4.1 does not imply
the convergence in L2-norm. We are now going to establish the L2-norm error estimate by making use
of the well-known Helmholtz decomposition and the adjoint technique.

By the Helmholtz decomposition, we can decompose e as e = E−Eh = e0 +∇ξ with e0 ∈ L2(Ω) and
ξ ∈ H1

0 (Ω) such that
curl e0 = curl e, div e0 = 0, ∆ξ = div e,
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and ‖e0‖
2
0 + ‖∇ξ‖2

0 = ‖e‖2
0. Using this decomposition we can deduce

‖e‖2
0,ε = (εe, e0 + ∇ξ) = (εe, e0) − 〈div (εe), ξ〉

. ‖e‖0,ε ‖e0‖0,ε + ‖div (εe)‖−1 ‖∇ξ‖0 ,

which implies
‖e‖0,ε . ‖e0‖0,ε + ‖div (εe)‖−1 . (4.9)

In order to estimate ‖e0‖0,ε, we introduce z ∈ H0(curl ; Ω) to be the weak solution to the adjoint

problem (3.19)-(3.20) with j = e0 and g = 0. It follows from Lemma 3.6 that, if µ−1 ∈ W 1,∞(Ω), one
has z ∈ Hδ′

(curl ; Ω) for 1/2 < δ′ < δmax, δ
′ ≤ 1 , with the bound ‖z‖

Hδ′ (curl ; Ω) . ‖e0‖0.

Using (4.8) we can write

‖e0‖
2
0 = (µ−1curl e0, curl z) = (µ−1curl e, curl z) = ah(e, z) − γ(h)(εe, z)

= ah(e, z − rhz) + γ(h)(εE, rhz) − γ(h)(εe, z). (4.10)

Then it follows from Lemma 2.3 that

‖e0‖
2
0 ≤‖e‖ah

‖z − rhz‖ah
+ γ(h) ‖E‖0,ε ‖rhz‖0,ε + γ(h) ‖e‖0,ε ‖z‖0,ε

.
(
hδ′

‖e‖ah
+ γ(h) ‖E‖0,ε

)
‖z‖

Hδ′ (curl ; Ω) + γ(h)1/2 ‖e‖ah
‖z‖0

.
(
hδ′

‖e‖ah
+ γ(h) ‖E‖0,ε

)
‖e0‖0 + γ(h)1/2 ‖e‖ah

‖e0‖0 ,

which implies
‖e0‖0 .

(
hδ′

+ γ(h)1/2
)
‖e‖ah

+ γ(h) ‖E‖0 . (4.11)

Now combining (4.9) with (4.11) leads to the following L2-norm error estimate for the edge element
scheme (4.2).

Lemma 4.2. Assume that div (εE) = 0 and that µ−1 ∈W 1,∞(Ω). Then the following estimate holds for
1/2 < δ′ < δmax, δ

′ ≤ 1:

‖E− Eh‖0 .
(
hδ′

+ γ(h)1/2
)
‖E− Eh‖ah

+ γ(h) ‖E‖0 + ‖div (εEh)‖−1 .

Finally, the estimate for div (εEh) follows directly from Lemma 3.8 since Eh is discrete ε-divergence-
free. To see this, we suppose ε ∈ W 1,∞(Ω) and {Th} is quasi-uniform. Then for 1/2 < s ≤ 1 and
1/2 < δ < δD

max, δ ≤ 1, we have

‖div (εEh)‖−s . hs+δ−1 ‖curlEh‖0 . (4.12)

Here ‖curlEh‖0 can be further estimated as follows: From (4.2) and (4.3),

(µ−1curlEh, curl Eh) + γ(h)(εEh,Eh) = (µ−1curlE, curlEh)

≤ ‖curlE‖0,µ−1 ‖curl Eh‖0,µ−1 ,

hence
‖curlEh‖0 . ‖curlEh‖0,µ−1 ≤ ‖Eh‖ah

. ‖curl E‖0 . (4.13)

Summarizing the above results, we have the following theorem on the convergence of the edge element
solution to (4.2), provided γ(h) is suitably chosen.

Theorem 4.1. Suppose ε ∈ W 1,∞(Ω), f ∈ L2(Ω), and {Th} is quasi-uniform, and E and Eh are the
solutions to the system (1.1)–(1.2) (with ρ = 0) and the edge element scheme (4.2), respectively. Then it
holds for 1/2 < s ≤ 1 and 1/2 < δ < δD

max, δ ≤ 1 that

‖div (εEh)‖−s . hs+δ−1 ‖curlE‖0 . (4.14)

If in addition we have µ−1 ∈ W 1,∞(Ω), and γ(h) is a parameter such that 0 < γ(h) . h2, then it holds
for 1/2 < δ′ < δmax, δ

′ ≤ 1 that

‖E− Eh‖H(curl ;Ω) . hδ′

‖E‖
Hδ′ (curl ;Ω) . (4.15)

Proof. (4.14) is a direct consequence of (4.12) and (4.13). On the other hand, from Lemma 3.6, we have
E ∈ Hδ′

(curl ; Ω). Then (4.15) follows from Lemmas 2.3, 4.1–4.2, (4.14) with s = 1 and δ = δ′, and the
fact that γ(h)1/2 . h. The proof of the theorem is completed.
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4.4 Error estimates for the case with charge

In this section we establish the error estimates of the edge element scheme (4.4) for the case when charge
is present, namely ρ = div (εE) 6= 0. Most analyses are similar to those for the ε-divergence-free case in
Section 4.3, so we shall illustrate only those major differences.

We first estimate the error e := E− Eh in the discrete energy norm. It follows from (4.3)-(4.4) that

ah(E − Eh,vh) = γ(h)(εE− ε∇χh,vh), ∀vh ∈ Xh. (4.16)

The following lemma can be proved in a similar manner to the proof of Lemma 4.1, along with the
estimate that ‖∇χh‖0,ε ≤ ‖∇χ‖0,ε . ‖ρ‖−1 (cf. (3.16)-(3.17)).

Lemma 4.3. Assume that ρ 6= 0, and γ(h) is a parameter such that 0 < γ(h) . 1. Then the following
estimate holds for the solutions E and Eh respectively to the system (1.1)–(1.2) and the edge element
scheme (4.4):

‖E− Eh‖ah
. inf

vh∈Xh

‖E− vh‖ah
+ γ(h)1/2

(
‖E‖0 + ‖ρ‖−1

)
.

Next, we turn to the L2-norm error estimate. As done in Section 4.3, it is easy to check that (4.9)
remains the same while (4.10) becomes

‖e0‖
2
0 = ah(e, z) − γ(h)(εe, z)

= ah(e, z − rhz) + γ(h)(εE − ε∇χh, rhz) − γ(h)(εe, z).

Then the estimate (4.11) in Section 4.3 changes now to

‖e0‖0 .
(
hδ′

+ γ(h)1/2
)
‖e‖ah

+ γ(h)
(
‖E‖0 + ‖ρ‖−1

)
(4.17)

for 1/2 < δ′ < δmax, δ
′ ≤ 1. Hence we obtain the following counterpart of Lemma 4.2.

Lemma 4.4. Suppose µ−1 ∈ W 1,∞(Ω) and {Th} is quasi-uniform. Then it holds for 1/2 < δ′ < δmax,
δ′ ≤ 1 that

‖E− Eh‖0 .
(
hδ′

+ γ(h)1/2
)
‖E− Eh‖ah

+ γ(h)
(
‖E‖0 + ‖ρ‖−1

)
+ ‖div (εE − εEh)‖−1 .

It remains to estimate the error of the divergence div (εEh). It is clear that

div (εE) − div (εEh) = ρ− div εEh = ρ− div (ε∇χh) + div (ε∇χh) − div (εEh). (4.18)

Since Eh−∇χh ∈ Xε
0,h is discrete ε-divergence-free (see Subsection 4.2), we can use Lemma 3.8. Suppose

ε ∈W 1,∞(Ω) and {Th} is quasi-uniform, then it holds for 1/2 < s ≤ 1 and 1/2 < δ < δD
max, δ ≤ 1 that

‖div (εEh) − div (ε∇χh)‖−s . hs+δ−1 ‖curlEh‖0 (4.19)

where we have used the fact that curl∇χh = 0. By combining (4.18), (4.19) and Lemma 3.9,

‖div (εE) − div (εEh)‖−s . hs+δ−1
(
‖curlEh‖0 + ‖ρ‖δ−1

)
. (4.20)

To further estimate ‖curlEh‖0, we obtain from (4.4) and (4.3) that

(µ−1curlEh, curlEh) + γ(h)(εEh,Eh) = (µ−1curl E, curlEh) + γ(h)(ε∇χh,Eh)

≤
(
‖curlE‖0,µ−1 + γ(h)1/2 ‖∇χh‖0,ε

)
‖Eh‖ah

,

which implies
‖curl Eh‖0 . ‖Eh‖ah

. ‖curl E‖0 + γ(h)1/2 ‖ρ‖−1 . (4.21)

Now following the proof of Theorem 4.1 we come to the conclusion of the next theorem by using
Lemmas 4.3–4.4, the estimates (4.20)–(4.21), and the fact that ‖ρ‖δ′−1 = ‖div (εE)‖δ′−1 . ‖E‖δ′ .
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Theorem 4.2. Suppose ε ∈ W 1,∞(Ω), f ∈ L2(Ω), ρ ∈ L2(Ω) and {Th} is quasi-uniform. Let E and Eh

be the solutions to the system (1.1)–(1.2), and the edge element scheme (4.4) respectively, then it holds
for 1/2 < s ≤ 1 and 1/2 < δ < δD

max, δ ≤ 1 that

‖div (εE) − div (εEh)‖−s . hs+δ−1
(
‖curlE‖0 + ‖ρ‖δ−1

)
. (4.22)

If in addition we have µ−1 ∈ W 1,∞(Ω), and choose γ(h) such that 0 < γ(h) . h2, then the following
error estimates are satisfied for 1/2 < δ′ < δmax, δ

′ ≤ 1:

‖E− Eh‖H(curl ;Ω) . hδ′

‖E‖
Hδ′ (curl ;Ω) . (4.23)

Remark 4.3. Two important remarks about the major results of this paper are in order.
(a) All the error estimates in Theorems 4.1 and 4.2, as well as in the subsequent Theorems 5.1 and

7.1, are uniform with respect to the parameter γ(h) in the range 0 < γ(h) . h2.
(b) The analysis of this paper focuses only on the lowest order edge elements. It is interesting to see if

the analysis can be generalized to higher order edge elements, which are expected for solving problems in
smooth domains with smooth data. For such a generalization, it is natural to require parameter γ(h) to
be selected in the range 0 < γ(h) . hα with α > 2. But a major technical issue for such a generalization
relies on if a discrete ε-divergence-free function can be approximated by a continuous ε-divergence-free
function with a desired higher order accuracy (cf. Lemma 3.7).

4.5 Relation with the standard saddle-point system

As it was mentioned at the beginning of Section 4, one usually solves the stationary problem (1.1)-(1.2)

with the help of the saddle-point system: Find (E†
h, p

†
h) ∈ Xh × Uh such that

(µ−1curl E
†
h, curl vh) + (εvh,∇p

†
h) = (f ,vh), ∀vh ∈ Xh

(εE†
h,∇qh) = −(ρ, qh), ∀qh ∈ Uh ,

(4.24)

where the divergence law (1.2) is enforced explicitly through the second variational equation above. In

this subsection we shall discuss some interesting relationship between the solution E
†
h to the standard

saddle-point system (4.24) and the solution Eh to the newly proposed edge element scheme (4.4).
The saddle-point system (4.24) is well-posed, and using the Babuska-Brezzi theory [20, 9], one finds

that the convergence of its solution in H(curl )-norm is the same as (4.23) (cf. [15]). In other words,
under the same assumptions as those in Theorem 4.2, it holds for 1/2 < δ′ < δmax and δ′ ≤ 1 that

∥∥∥E− E
†
h

∥∥∥
H(curl ;Ω)

. hδ′

‖E‖
Hδ′ (curl ;Ω) . (4.25)

Also, we can see that ∇p†h = 0 by taking vh = ∇p†h in the first equation of (4.24) and then integrating

by parts, hence the Lagrange multiplier p†h in (4.24) is actually identical to zero.

Clearly, convergence of Eh − E
†
h to zero in H(curl )-norm is an obvious consequence of (4.23) and

(4.25). Next we study the convergence of Eh − E
†
h in the divergence form. By the definitions of Eh and

E
†
h, we can easily check that

(µ−1curl (Eh − E
†
h), curl vh) = γ(h)(ε(∇χh − Eh),vh), ∀vh ∈ Xh, (4.26)

where χh ∈ Uh is the solution to (3.16). We know from (3.16), (4.5) and (4.24) that the difference Eh−E
†
h

is discrete ε-divergence-free, namely Eh −E
†
h ∈ Xε

0,h. Using this fact and taking vh = Eh −E
†
h in (4.26),

we obtain
‖µ−1/2curl (Eh − E

†
h)‖2 = −γ(h)(εEh,Eh − E

†
h) . (4.27)

But we know readily from (4.23) that ‖Eh‖0 . ‖E‖
Hδ′ (curl ;Ω) , and from (4.23) and (4.25) that

‖Eh − E
†
h‖0 ≤ ‖Eh − E‖0 + ‖E− E

†
h‖0 . hδ′

‖E‖
Hδ′ (curl ;Ω) .
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Combining these two estimates with (4.27) gives

∥∥∥µ−1/2curl (Eh − E
†
h)

∥∥∥
0

. hδ′/2(γ(h))1/2 ‖E‖
Hδ′ (curl ;Ω) (4.28)

for 1/2 < δ′ < δmax and δ′ ≤ 1. On the other hand, it follows from (4.28) and Lemma 3.8 that for
1/2 < δ < δD

max, δ ≤ 1 and 1/2 < s ≤ 1,

∥∥∥div (εEh) − div (εE†
h)

∥∥∥
−s

. hs+δ+δ′/2−1(γ(h))1/2 ‖E‖
Hδ′ (curl ;Ω) . (4.29)

This proves the convergence of Eh − E
†
h to zero in both H(curl )-norm and the ε-divergence form. As

a by-product, the combination of the last estimate above with (4.22) leads to an error estimate of the

divergence of the edge element solution E
†
h to the standard saddle-point system (4.24).

Finally, we consider the convergence of Eh to E
†
h when the mesh size h is fixed but γ := γ(h) tends to

zero. We first know from (4.28) and (4.29) that both
∥∥∥curlEh − curlE

†
h

∥∥∥
0
and

∥∥∥div (εEh) − div (εE†
h)

∥∥∥
−s

converges to zero in the rate γ1/2. We end this section with the convergence of the L2-norm ‖Eh −E
†
h‖0,

by using a continuous embedding result that generalizes the one of Corollary 3.1. To do so, we introduce

XN,−s(Ω, ε) := {u ∈ H0(curl ; Ω); div (εu) ∈ H−s(Ω)}

for 1/2 < s < 1 . By the definition of the sedge elements, one has Eh − E
†
h ∈ XN,−s(Ω, ε) for all

1/2 < s < 1. Adapting the proof of Lemma 3.1 in [7], one finds that

Corollary 4.1. Suppose ε ∈W 1,∞(Ω). For 1/2 < s < 1, it holds that

XN,−s(Ω, ε) ⊂
⋂

0≤δ≤1−s

Hδ(Ω).

In particular, XN,−s(Ω, ε) are compact subsets of L2(Ω), and we can show the following result in the
same argument as in the proof of Corollary 3.2.

Corollary 4.2. For 1/2 < s < 1, the seminorm

u 7→
(
‖curl u‖2

0 + ‖div (εu)‖2
−s

)1/2

is a norm of XN,−s(Ω, ε), which is equivalent to its full norm.

Using this Corollary and (4.28)-(4.29), we know that ‖Eh − E
†
h‖0 converges to zero also in the rate

γ1/2 when h is fixed but γ tends to zero.

5 Stationary problem with discontinuous coefficients

In this section we extend the convergence analyses in Sections 4.3-4.4 on the edge element approximations
(4.2) and (4.4) for the stationary problem (1.1)-(1.2) to the case with discontinuous coefficients ε and µ.

We assume that the triangulations {Th} are consistent with respect to the partition P = {Ωj}J
j=1 of

Ω based on the distribution of coefficients ε and µ (see Section 3.1), namely, for each K ∈ Th there exists
a single index j such that int(K)∩Ωj 6= ∅. Then for functions in the space H(curl ; Ω)∩PHr(curl ; Ω),
we have similar interpolation error estimates to the ones in Lemma 2.3 by extending the analyses in [16]
or [29, Theorem 5.41].

Lemma 5.1. For any u ∈ H(curl ; Ω) ∩ PHr(curl ; Ω) with 1/2 < r ≤ 1 it holds that

‖u− rhu‖H(curl ;Ω) . hr ‖u‖
PHr(curl ; Ω) .
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It is crucial for us to observe from Section 3.1 that for a geometry of type (G1) or (G2), the ε-
divergence of functions in XN (Ω, ε) is “sufficiently regular” to suit our convergence analysis. Indeed,
for a u ∈ XN (Ω, ε), we know εu ∈ Hη(Ω) for all η ∈ [0, 1/2), hence div (εu) belongs to H−s(Ω) for
1/2 < s ≤ 1.

Now by simply replacing the appropriate norms by their broken counterparts for piecewise smooth
functions, we can basically follow the analyses in Section 4, especially the proof of Theorem 4.2, to derive
the error estimates of the solution to the edge element scheme (4.4) for the stationary problem (1.1)-(1.2)
with discontinuous coefficients.

Theorem 5.1. Suppose ε and µ are piecewise constant over the domain Ω with geometry of type (G1)
or (G2), f ∈ L2(Ω), ρ ∈ L2(Ω) and {Th} is quasi-uniform. Let E and Eh be the solutions to the system
(1.1)–(1.2) and the edge element scheme (4.4) respectively. Then the following error estimate holds for
1/2 < s ≤ 1 and 1/2 < δ < δD

max, δ ≤ 1 that

‖div (εE) − div (εEh)‖−s . hs+δ−1
(
‖curlE‖0 + ‖ρ‖δ−1

)
. (5.1)

If γ(h) is chosen such that 0 < γ(h) . h2, then it holds for 1/2 < δ′ < δmax, δ
′ ≤ 1 that

‖E− Eh‖H(curl ;Ω) . hδ′

‖E‖
PHδ′ (curl ;Ω) . (5.2)

Remark 5.1. The same convergence orders still hold true as in (5.1) and (5.2) under the conditions

χ ∈ PH1+δ(Ω) and E ∈ PHδ′

(curl ; Ω), where χ is the solution to (3.17) (see the proof of Lemma 3.9).
In other words, one may use these conditions on χ and E to replace the assumption on the geometry of
the domain and its partition.

6 Time-harmonic Maxwell system

In this section we shall extend the convergence results in the previous Sections 4-5 for the stationary
system (1.1)–(1.2) to the time-harmonic Maxwell system (1.3)-(1.4). All the notations below will be kept
to be the same as in the previous sections. Then we can readily have the following weak formulation for
(1.3)-(1.4) and its edge element approximation:

Find E ∈ H0(curl ; Ω) such that

(µ−1curlE, curl v) − k2(εE,v) = (f ,v) ∀v ∈ H0(curl ; Ω); (6.1)

Find Eh ∈ Xh such that

(µ−1curlEh, curl vh) − k2(εEh,vh) = (f ,vh) ∀vh ∈ Xh. (6.2)

The first estimate below in H(curl )-norm is standard (cf. [29, Theorem 7.1] [12]). Then following the
convergence analysis in Sections 4-5, we can further achieve more specific error estimates as stated in the
following lemma.

Lemma 6.1. There is a threshold value h0 > 0 such that it holds for 0 < h ≤ h0 that

‖E− Eh‖H(curl ; Ω) . inf
vh∈Xh

‖E− vh‖H(curl ; Ω) .

Suppose that f ∈ L2(Ω), ρ ∈ L2(Ω), and

• either ε, µ−1 ∈W 1,∞(Ω);

• or ε, µ are piecewise constant over the domain Ω with geometry of type (G1) or (G2).

Then one has the following error estimate for 1/2 < δ′ < δmax, δ
′ ≤ 1:

‖E− Eh‖H(curl ; Ω) . hδ′

‖E‖
PHδ′ (curl ;Ω) .

Next we establish the error estimate for the divergence of εEh.
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Theorem 6.1. Suppose {Th} is quasi-uniform. Then under the same assumptions as in Lemma 6.1, it
holds for 0 < h ≤ h0, 1/2 < s ≤ 1 and 1/2 < δ < δD

max, δ ≤ 1 that

‖div (εE) − div (εEh)‖−s . hs+δ−1
(
‖curlE‖0 + ‖ρ‖δ−1

)
.

Proof. For any ϕh ∈ Uh it follows from (6.1)-(6.2) that

(εE,∇ϕh) = (εEh,∇ϕh), (6.3)

that is, E − Eh is discrete ε-divergence-free. On the other hand, we know from (1.4), the relation (6.3)
and the definition of χh in (3.16) that E−∇χh is also discrete ε-divergence-free, so is ∇χh −Eh. Noting
that ∇χh − Eh ∈ Xε

0,h and curl∇χh = 0, we obtain from Lemma 3.8 that for 1/2 < s ≤ 1,

‖div (ε∇χh) − div (εEh)‖−s . hs+δ−1 ‖curl (∇χh − Eh)‖0 = hs+δ−1 ‖curlEh‖0 .

Furthermore, we can derive from Lemma 3.9 that

‖div (εE) − div (ε∇χh)‖−s . hs+δ−1 ‖ρ‖δ−1 .

The above two estimates imply

‖div (εE) − div (εEh)‖−s . hs+δ−1
(
‖curlEh‖0 + ‖ρ‖δ−1

)
.

Now the desired estimate follows from the estimate ‖curlEh‖0 . ‖E‖
H(curl ; Ω), which is a direct conse-

quence of Lemma 6.1 with vh = 0 for 0 < h ≤ h0.

7 Time-dependent Maxwell system

In this section we consider a fully discrete edge element approximation to the time-dependent Maxwell
system (1.5)–(1.7) and its error estimates. Let us first introduce our fully discrete edge element approxi-
mation. To do so, we divide the time interval (0, T ) into M equally spaced subintervals using the nodal
points 0 = t0 < t1 < · · · < tM = T , with tn = nτ and τ = T/M . From now on, for any function u(t,x)
we may write u(tn,x) as un. Then for a given sequence {un}M

n=0 in L2(Ω) or L2(Ω), we define its first
and second order backward differences by

∂τu
n =

un − un−1

τ
, ∂2

τu
n =

∂τu
n − ∂τu

n−1

τ

As in [16], we consider the following edge element approximation of the time-dependent problem (1.5)–
(1.7): Find Em

h ∈ Xh for m = 1, 2, · · · ,M such that

(ε∂2
τE

m
h ,vh) + (µ−1curlEm

h , curl vh) = (fm,vh), ∀vh ∈ Xh. (7.1)

We recall that the initial values E0
h ∈ Xh and E−1

h ∈ Xh are usually given by the natural edge element
interpolations of the exact initial values E0 and F0 in most existing methods. But these approximations
will not ensure a strong convergence of the divergence law in appropriate norm, as we did in the previous
sections for the stationary system (1.1)–(1.2) and the time-harmonic system (1.3)-(1.4). Instead, we
define the initial value E0

h ∈ Xh by

ah(E0
h,vh) = (µ−1curlE0, curl vh) + γ(h)(ε∇χ0

h,vh), ∀vh ∈ Xh (7.2)

and the initial value E−1
h ∈ Xh by E0

h − E−1
h = τF0

h, where F0
h ∈ Xh solves the discrete system:

ah(F0
h,vh) = (µ−1curl F0, curl vh) + γ(h)(ε∇θ0h,vh), ∀vh ∈ Xh. (7.3)

Here the bilinear form ah is defined by (4.1) and χ0
h, θ

0
h ∈ Uh are defined respectively by

(ε∇χ0
h,∇ϕh) = −(ρ0, ϕh), (ε∇θ0h,∇ϕh) = −(ρ0

t , ϕh), ∀ϕh ∈ Uh. (7.4)
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Remark 7.1. Instead of the first order backward difference in time used in the fully discrete scheme (7.1)–
(7.4), one can also use some second order difference approximations in time, e.g., the Crank-Nicolson
scheme [16].

We first present an analogue of Lemma 3.8, providing an estimate of the divergence of an edge element
function in H−s(Ω)-norm for 1/2 < s ≤ 1.

Lemma 7.1. Suppose ε and µ satisfy the same assumptions as in Lemma 6.1 and {Th} is quasi-uniform.
Assume that wh ∈ Xh satisfies

(εwh,∇ϕh) = −〈r, ϕh〉 , ∀ϕh ∈ Uh,

where r ∈ H−s(Ω) for some 1/2 < s ≤ 1 and 〈·, ·〉 denotes the dual pairing between H−s(Ω) and Hs
0 (Ω).

Then for 1/2 < δ < δD
max, δ ≤ 1:

‖div (εwh)‖−s . hs+δ−1 ‖curlwh‖0 + ‖r‖−s .

Proof. By following the proof of Lemma 3.8 we may show that

‖div (εwh)‖−s . hs+δ−1 ‖curlwh‖0 + sup
06=ϕ∈Hs

0
(Ω)

|〈εwh,∇Πhϕ〉|

‖ϕ‖s

. hs+δ−1 ‖curlwh‖0 + sup
06=ϕ∈Hs

0
(Ω)

|〈r,Πhϕ〉|

‖ϕ‖s

.

Then the desired estimate follows by noting that |〈r,Πhϕ〉| ≤ ‖r‖−s ‖Πhϕ‖s . ‖r‖−s ‖ϕ‖s. This com-
pletes the proof of the lemma.

Now we are ready to establish the error estimates for the fully discrete scheme (7.1)-(7.3).

Theorem 7.1. Suppose {Th} is quasi-uniform. Let E and Eh be the solutions to the Maxwell system
(1.5)–(1.7) and its edge element scheme (7.1)–(7.4) respectively, where γ(h) is chosen such that 0 <
γ(h) . h2, and let χ be the solution to (3.17). Assume the following regularities hold for E and χ for
some 1/2 < δ ≤ 1:





E ∈ H2(0, T ;H0(curl ; Ω) ∩PHδ(curl ; Ω) ) ∩H3(0, T ;L2(Ω) ) ;

χ ∈ L2(0, T ; PH1+δ(Ω)), χ0, χ0
t ∈ PH1+δ(Ω) ;

ρ ∈W 3,1(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)), ρ0, ρ0
t ∈ L2(Ω) .

Then we have the following error estimates

max
1≤m≤M

(
‖∂τE

m
h − Em

t ‖2
0 + ‖curl (Em

h − Em)‖2
0

)
. (τ2 + τ2h2(δ−1) + h2δ) . (7.5)

In addition, the following error estimates hold for 1/2 < s ≤ 1 and 0 ≤ m ≤M that

‖div (εEm) − div (εEm
h )‖−s . τ

( ∥∥ρ0
tt

∥∥
−s

+

∫ tm

0

‖ρttt‖−s

)

+ hs+δ−1
( ∥∥F0

∥∥
H(curl ;Ω)

+
∥∥curlE0

∥∥
0

+
∥∥ρ0

∥∥
−1

+
∥∥ρ0

t

∥∥
−1

+ ‖ρm‖δ−1 +
( m∑

j=1

τ
∥∥f j

∥∥2

0

)1/2)
. (7.6)

Proof. Note that div (εE0) = ρ0 and div (εF0) = ρ0
t . So we may directly apply Theorem 4.2 or 5.1

respectively to the edge element scheme (7.2) for approximating E0 and the edge element scheme (7.3)
for approximating F0 to obtain

∥∥E0 − E0
h

∥∥
H(curl ;Ω)

. hδ(
∥∥E0

∥∥
PHδ(curl ;Ω)

+
∥∥χ0

∥∥
PH1+δ(Ω)

) , (7.7)
∥∥F0 − F0

h

∥∥
H(curl ;Ω)

. hδ(
∥∥E0

t

∥∥
PHδ(curl ;Ω)

+
∥∥χ0

t

∥∥
PH1+δ(Ω)

). (7.8)
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Moreover, we have the following error estimates for the divergence for 1/2 < s ≤ 1:

∥∥div (εE0) − div (εE0
h)

∥∥
−s

. hs+δ−1
( ∥∥curlE0

∥∥
0

+
∥∥ρ0

∥∥
δ−1

)
, (7.9)

∥∥div (εF0) − div (εF0
h)

∥∥
−s

. hs+δ−1
( ∥∥curl F0

∥∥
0

+
∥∥ρ0

t

∥∥
δ−1

)
. (7.10)

Now the H(curl ) error estimate (7.5) can be derived by following the arguments in [16] using (7.7).
It remains to establish the error estimate (7.6). For this we define χm

h ∈ Uh for m = 0, 1, 2, · · · ,M by

(ε∇χm
h ,∇ϕh) = −(ρm, ϕh), ∀ϕh ∈ Uh,

and define χ−1
h := χ0

h − τθ0h, where θ0h is given by (7.4). We shall write ρ−1 := ρ0 − τρ0
t .

Using the fact that div f = ρtt and the definitions (7.1)-(7.3) we can directly verify that

(∂2
τ (εEm

h − ε∇χm
h ),∇ϕh) =

〈
∂2

τρ
m − ρm

tt , ϕh

〉
, ∀ϕh ∈ Uh (7.11)

for m = 1, 2, · · · ,M , which implies that

(∂τ (εEm
h − ε∇χm

h ),∇ϕh) = τ

m∑

j=1

(∂2
τ (εEj

h − ε∇χj
h),∇ϕh) + (∂τ (εE0

h − ε∇χ0
h),∇ϕh)

= τ

m∑

j=1

〈
∂2

τρ
j − ρj

tt, ϕh

〉
+ (εF0

h − ε∇θ0h,∇ϕh),

hence

(εEm
h − ε∇χm

h ,∇ϕh) = τ

m∑

i=1

(∂τ (εEi
h − ε∇χi

h),∇ϕh) + (εE0
h − ε∇χ0

h,∇ϕh)

= τ2
m∑

i=1

i∑

j=1

〈
∂2

τρ
j − ρj

tt, ϕh

〉
+mτ(εF0

h − ε∇θ0h,∇ϕh) + (εE0
h − ε∇χ0

h,∇ϕh).

That is,

(
εEm

h − ε∇χm
h − (εE0

h − ε∇χ0
h) −mτ(εF0

h − ε∇θ0h),∇ϕh

)
= τ2

m∑

i=1

i∑

j=1

〈
∂2

τρ
j − ρj

tt, ϕh

〉
.

Then we can apply Lemma 7.1 for 1/2 < s ≤ 1 to obtain

‖div (εEm
h ) − div (ε∇χm

h )‖−s

.
∥∥div (εE0

h) − div (ε∇χ0
h)

∥∥
−s

+mτ
∥∥div (εF0

h) − div (ε∇θ0h)
∥∥
−s

+ hs+δ−1
∥∥curl (Em

h − E0
h −mτF0

h)
∥∥

0
+ τ2

m∑

i=1

i∑

j=1

∥∥∥∂2
τρ

j − ρj
tt

∥∥∥
−s
. (7.12)

We are now going to estimate the four terms on the right hand side of (7.12). Similarly to (4.19) and
(4.21), we can derive from (7.2)-(7.4) that

∥∥div (εE0
h) − div (ε∇χ0

h)
∥∥
−s

. hs+δ−1
∥∥curlE0

h

∥∥
0

. hs+δ−1
( ∥∥curlE0

∥∥
0

+
∥∥ρ0

∥∥
−1

)
, (7.13)

∥∥div (εF0
h) − div (ε∇θ0h)

∥∥
−s

. hs+δ−1
∥∥curl F0

h

∥∥
0

. hs+δ−1
( ∥∥curl F0

∥∥
0
+

∥∥ρ0
t

∥∥
−1

)
. (7.14)

Next we estimate ‖curlEm
h ‖0. Taking vh = τ∂τE

m
h in (7.1) we come to

(
ε(∂τE

m
h − ∂τE

m−1
h ), ∂τE

m
h

)
+

(
µ−1curl Em

h , curl (Em
h − Em−1

h )
)

= τ(fm, ∂τE
m
h )
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for m = 1, 2, · · · ,M . This implies readily that

‖∂τE
m
h ‖2

0,ε + ‖curlEm
h ‖2

0,µ−1 ≤τ ‖fm‖0,ε−1 ‖∂τE
m
h ‖0,ε + ‖∂τE

m
h ‖0,ε

∥∥∂τE
m−1
h

∥∥
0,ε

+ ‖curl Em
h ‖0,µ−1

∥∥curlEm−1
h

∥∥
0,µ−1

≤
τ

2(1 + τ)
‖∂τE

m
h ‖2

0,ε +
τ(1 + τ)

2
‖fm‖2

0,ε−1

+
1

2(1 + τ)
‖∂τE

m
h ‖2

0,ε +
1 + τ

2

∥∥∂τE
m−1
h

∥∥2

0,ε

+
1

2
‖curlEm

h ‖2
0,µ−1 +

1

2

∥∥curlEm−1
h

∥∥2

0,µ−1 .

Therefore,

‖∂τE
m
h ‖2

0,ε + ‖curl Em
h ‖2

0,µ−1 ≤(1 + τ)
( ∥∥∂τE

m−1
h

∥∥2

0,ε
+

∥∥curlEm−1
h

∥∥2

0,µ−1

)
+ τ(1 + τ) ‖fm‖2

0,ε−1 .

Using the above estimate recursively we obtain

‖∂τE
m
h ‖2

0,ε + ‖curlEm
h ‖2

0,µ−1 .
∥∥∂τE

0
h

∥∥2

0,ε
+

∥∥curl E0
h

∥∥2

0,µ−1 + τ

m∑

j=1

∥∥f j
∥∥2

0,ε−1

.
∥∥F0

h

∥∥2

0
+

∥∥curlE0
h

∥∥2

0
+ τ

m∑

j=1

∥∥f j
∥∥2

0
.

On the other hand, it follows from (7.3), (7.4) and (7.14), and the argument for the L2-error estimates
(cf. Lemma 4.4-(4.21) for small h) that

∥∥F0
h

∥∥
0

.
∥∥F0

∥∥
0

+
∥∥F0

h − F0
∥∥

0
.

∥∥F0
∥∥
H(curl ;Ω)

+
∥∥ρ0

t

∥∥
−1

+
∥∥div (εF0 − εF0

h)
∥∥
−1

.
∥∥F0

∥∥
H(curl ;Ω)

+
∥∥ρ0

t

∥∥
−1

+
∥∥div (εF0 − ε∇θ0h)

∥∥
−1

+
∥∥div (ε∇θ0h − εF0

h)
∥∥
−1

.
∥∥F0

∥∥
H(curl ;Ω)

+
∥∥ρ0

t

∥∥
−1
.

Hence we obtain from the previous two estimates

‖curlEm
h ‖2

0 .
∥∥F0

∥∥2

H(curl ;Ω)
+

∥∥curl E0
∥∥2

0
+

∥∥ρ0
∥∥2

−1
+

∥∥ρ0
t

∥∥2

−1
+

m∑

j=1

τ
∥∥f j

∥∥2

0
. (7.15)

Finally we come to estimate
∥∥∥∂2

τρ
j − ρj

tt

∥∥∥
−s

. Using the Taylor expansion with integral remainder, we can

easily deduce that

∥∥∥∂2
τρ

j − ρj
tt

∥∥∥
−s

.

∫ tj

tj−2

‖ρttt‖−s , j > 1,

∥∥∂2
τρ

1 − ρ1
tt

∥∥
−s

=

∥∥∥∥
ρ1 − ρ0 − τρ0

t

τ2
− ρ1

tt

∥∥∥∥
−s

.
∥∥ρ0

tt

∥∥
−s

+

∫ τ

0

‖ρttt‖−s .

Therefore

τ2
m∑

i=1

i∑

j=1

∥∥∥∂2
τρ

j − ρj
tt

∥∥∥
−s

. τ
( ∥∥ρ0

tt

∥∥
−s

+

∫ tm

0

‖ρttt‖−s

)
. (7.16)

By combining (7.12)–(7.16), we have

‖div (εEm
h ) − div (ε∇χm

h )‖−s . τ
( ∥∥ρ0

tt

∥∥
−s

+

∫ tm

0

‖ρttt‖−s

)

+ hs+δ−1
( ∥∥F0

∥∥
H(curl ;Ω)

+
∥∥curlE0

∥∥
0

+
∥∥ρ0

∥∥
−1

+
∥∥ρ0

t

∥∥
−1

+
( m∑

j=1

τ
∥∥f j

∥∥2

0

)1/2)
. (7.17)
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On the other hand, we know from Lemma 3.9 that

‖div (εEm) − div (ε∇χm
h )‖−s . hs+δ−1 ‖ρm‖δ−1 . (7.18)

Now the desired error estimate (7.6) for the divergence is a direct consequence of (7.17)-(7.18).

8 Numerical examples

In this section we present a numerical example to confirm the optimal convergence rate of the edge
element scheme (4.4) for solving the stationary Maxwell system (1.1)-(1.2). We take the domain Ω =
(0, 1) × (0, 1) × (0, 1), and the coefficients ε = 1 and µ = 1. Functions f and ρ are chosen such that the
exact solution E to the system (1.1)-(1.2) is given by

E =



x1x2x3(1 − x2)(1 − x3)
x1x2x3(1 − x3)(1 − x1)
x1x2x3(1 − x1)(1 − x2)


 . (8.1)

As the domain Ω is convex, we have the regularity exponents δ = δ′ = 1 in Theorem 4.2. So we have the
following error estimates for 1/2 < s ≤ 1:

‖E− Eh‖0 = ‖curl (E− Eh)‖0 = O(h), ‖div E− div Eh‖−s = O(hs) . (8.2)

We start with a uniform initial triangulation T0 of Ω, consisting of 192 tetrahedra. Then we refine T0

successively and obtain the triangulation Tj at the jth refinement with mesh size hj . The refinements
are done in such a uniform way that each tetrahedron in Tj−1 is divided into eight sub-tetrahedra to
generate the mesh Tj . Clearly we have hj = 2−jh0. We set γ(hj) = h2

j unless otherwise specified. We
use the software COMSOL Multiphysics for our experiments and write our codes in MATLAB.

In our experiments, we solve:

• the system (3.16) for the solution χh (required in the edge element approximation (4.4)) by the
preconditioned CG method with the multigrid preconditioner ;

• the edge element system (4.4) by the preconditioned bi-CG stabilized method (cf. [34]) with the
Hiptmair-Xu preconditioner (cf. [22]).

We first check the L2-norm and curl-norm error estimates in (8.2). The errors
∥∥E− Ehj

∥∥
0

(dashed)

and
∥∥curl (E− Ehj

)
∥∥

0
(solid) are plotted in Figure 1 against 1/hj in log-log scale for j = 0, 1, · · · 5.

Clearly this numerical example has verified very well the predicted error estimates:

∥∥E− Ehj

∥∥
0
≃ hj ,

∥∥curl (E − Ehj
)
∥∥

0
≃ hj .

Secondly we test the convergence rate of ‖div E− div Eh‖−s for 1/2 < s ≤ 1. Although div Eh

vanishes in every K ∈ Th, the “global” (weak) divergence of Eh does not. Theoretically, we know directly
from the proofs of Lemma3.8 and Theorem 4.2 the following error estimate

‖div E − div Eh‖−s . hs ‖ρ‖0 + hs−1/2

( ∑

f∈Fh

‖[[Eh · n]]‖2
L2(f)

)1/2

, (8.3)

for ρ ∈ L2(Ω) and 1/2 < s ≤ 1, where [[Eh · n]] are the jumps over element faces f ∈ Fh as defined
in (3.25). We emphasize that the estimate (8.3) holds without assuming that the triangulations are
quasi-uniform, since only (3.26)–(3.27) are needed. If we introduce the estimator

ηh =

( ∑

f∈Fh

‖[[Eh · n]]‖2
L2(f)

)1/2

,

then it suffices to check that ηh = O(h1/2) in order to verify the convergence rate of the divergence given
by (8.3). Indeed this can be very well confirmed; see Figure 2.
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Figure 1:
∥∥E− Ehj

∥∥
0

(dashed) and
∥∥curl (E − Ehj

)
∥∥

0
(solid) versus the numbers of degrees of freedom

in log-log scale. The dotted lines with dot markers gives the reference line with slope −1. The markers
correspond to j = 0, 1, · · · , 5.

Next, we demonstrate the performance of the Hiptmair-Xu preconditioner for the edge element scheme
(4.4). Table 1 shows the number of iterations of the preconditioned bi-CG stabilized method for solving
(4.4). In our experiments, the tolerance is set to be 10−8 for the relative l2-norm of the residual. We
recall that the condition number of the preconditioned system of (4.4) by the Hiptmair-Xu preconditioner
is independent of the parameter γ(h) and the multilevel j (cf. [22]). Clearly this is very well confirmed in
Table 1. In fact, the preconditioned bi-CG stabilized method converges optimally, namely one iteration
of the method can reduce the norm of the error of the approximate solution by a factor that is bounded
away from 1 and independent of N , the size of the linear system, resulting in a total computational
complexity of order O(N).

j 1 2 3 4 5
N 1,516 13,208 110,128 899,168 7,266,496

γ(hj) 1/16 1/64 1/256 1/1024 1/4096
Iter 4.5 6.25 8.5 10 9

Table 1: Number of refinements, number of degrees of freedom of the linear system, the parameter
γ(hj) = h2

j , and number of iterations of the multigrid preconditioned bi-stabilized method.

Finally, we test the possible influence of round-off errors when γ(h) is very small. Theoretically, the
parameter γ(h) can be chosen arbitrarily small (but positive) without affecting the convergence orders
and the performance of the preconditioned iterative methods, but numerically, the actual effect of the
perturbation terms involving γ(h) may be affected by the round-off errors if γ(h) is too small. We fix
j = 3 and set the tolerance to be 10−10. Table 2 shows that the errors in H(curl)-norm and the number
of iterations of the multigrid preconditioned bi-stabilized method behave well for γ(h3) up to 10−8, while
the errors in L2-norm and the estimator ηh remain steady for γ(h3) up to 10−7.
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References

[1] H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Mathématiques et
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