Internal friction and absence of dilatancy of packings of frictionless polygons

Abstract : By means of numerical simulations, we show that assemblies of frictionless rigid pentagons in slow shear flow possess an internal friction coefficient (equalto0.183±0.008 with our choice of moderately polydisperse grains) but no macroscopic dilatancy. In other words, despite side-side contacts tending to hinder relative particle rotations, the solidfraction under quasistatic shear coincides with that of isotropic random close packings of pentagonal particles. Properties of polygonal grains are thus similar to those of disks in that respect. We argue that continuous reshuffling of the force-bearing network leads to frequent collapsing events at the microscale, thereby causing the macroscopic dilatancy to vanish. Despite such rearrangements, the shear flow favors an anisotropic structure that is at the origin of the ability of the system to sustain shear stress.
Liste complète des métadonnées

Cited literature [30 references]  Display  Hide  Download
Contributor : François Gibier <>
Submitted on : Monday, February 2, 2015 - 11:34:13 AM
Last modification on : Wednesday, April 10, 2019 - 11:00:02 AM
Document(s) archivé(s) le : Saturday, September 12, 2015 - 7:25:50 AM


Publisher files allowed on an open archive



Émilien Azéma, Farhang Radjai, Jean-Noël Roux. Internal friction and absence of dilatancy of packings of frictionless polygons. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2015, pp.032206. ⟨10.1103/PhysRevE.91.010202⟩. ⟨hal-01112086⟩



Record views


Files downloads