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Abstract. Implicit Computational Complexity (ICC) makes two aspects
implicit, by manipulating programming languages rather than models of com-
putation, and by internalizing the bounds rather than using external measure.
We survey how automata theory contributed to complexity with a machine-
dependant with implicit bounds model.

Introduction

This survey justifies a fine-grained view on the definition of what Implicit Com-
putational Complexity (ICC) wants to keep implicit:

Machine-dependant Machine-independant

Explicit bounds
Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation [9],
Bounded arithmetic [6],
Bounded linear logic [13], . . .

Implicit bounds
Automaton,
Auxiliary pushdown machine [10],
Boolean circuit, . . .

Descriptive complexity [11],
Recursion on notation [5],
Tiered recurrence [19], . . .

It is common to refer to the top-left as the classical, or explicit, approach to
complexity. The three others techniques keep something implicit. The bottom-right
way is considered as the true implicit complexity, the one that produces all the
motivating perspectives: quasi-interpretations, non-size-increasing computation, soft
lambda-calculus and linear logics, to name a few. But there might be hesitations
when defining ICC, for neither the “machine-independent” neither the “without
explicit bounds” slogans are precise enough.

The machine-dependant with implicit bounds variant will be our subject. It
characterizes complexity classes by bounding the quality of the resources of a machine
rather than its quantity. To our knowledge, automata are the most canonical model
of this enterprise, which dates back to the 70’s: “we have attempted to characterize
several tape and time complexity classes of Turing machines in terms of devices whose
definitions involve only ways in which their infinite memory may be manipulated
and no restrictions are imposed on the amount of memory that they use.” ([16,
p. 88])
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Automata, characterizations and separation results

Definition 1. For k > 1, l > 0, a 2-way non-deterministicfinite automaton with
k-heads and l pushdown stacks (2NFA(k, l)) is a tuple M = {S, i,F,A,B,B,C,�,σ}
where:

• S is the finite set of states, with i ∈ S the initial state and F⊆ S the set of
accepting states;

• A is the input alphabet, B is the stack alphabet;
• B and C are the left and right endmarkers, B,C/∈A;
• � is the bottom symbol of the stack, � /∈B;

From now on, we let A./ (resp. B�) be A∪{B,C} (resp. B∪{�}).
• σ ⊆ (S× (A./)k× (B�)l)× (S×{−1,0,+1}k×{pop,peek,push(b)}l) is the

transition relation, where −1 means to move the head one cell to the left, 0
means to keep the head on the current cell and +1 means to move it one
cell to the right. Regarding the pushdown stacks, pop means “erase the top
symbol”, peek “do nothing”, and, for all b ∈B, push(b) is “write b on top
of the stack”.

Given an input n ∈A∗, the automata is initiated in state i, with B nC written on
its only tape, all its heads at B and all its stacks containing �. It makes (non-
deterministic) transitions according to σ and halt accepting as soon as it reaches a
state belonging to F. We impose that the heads cannot move beyond the endmarkers
and that the bottom stack symbol � cannot be erased (“popped”).

Finally, we denote with 2NFA(k, l) the class of languages recognized by the
2NFA(k, l) automaton. Moreover, we let 2NFA(∗, l) = ∪k>12NFA(k, l).

Theorem 1. The following table gives the correspondence between automata and
languages (or predicates):

Automata Language
a) 2NFA(1,2) Computable
b) 2NFA(∗,1) Polynomial time
c) 2NFA(∗,0) Logarithmic space
d) 2NFA(1,1) Context-free
e) 2NFA(1,0) Regular

Proof. We just sketch them, and provide references for the most difficult one. We
always suppose that n is the input and |n| its size.

a) ⊆: Given a computable language, by the Church–Turing thesis, there exists
a Turing machine T that decides it. Using some classical theorem, we can always
assume that T has a single reading head and a single read-write tape. A 2NFA(1,2)
can simulate T by simulating the movement of the read-only head with its head,
and the content of the read-write tape with its two pushdown stacks. The first (resp.
second) pushdown stack store the content on the left (resp. right) of the read-write
head.

a) ⊇: As 2NFA(1,2) are restrictions of Turing Machines, their simulation is
obvious.

b) ⊆: This part amounts to designing an equivalent Turing machine whose
movements of heads follow a regular pattern. That permits to seamlessly simulate
the content of the read-write tape with a pushdown stack. A complete proof [10,
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pp. 9–11] as well as a precise algorithm [27, pp. 238–240] can be found in the
literature.

b) ⊇: This way gave birth to memoization. In a nutshell, simulating a 2NFA(∗,1)
with a polynomial-time Turing machine cannot amount to simulate step-by-step the
automaton. The reason is that for any automaton, one can design an automaton
that recognizes the same language but runs exponentially slower [1, p. 197]. The
technique invented by Alfred V. Aho et. al [1] and made popular by Stephen A. Cook
consists in building a “memoization table” that allows the Turing machine to create
shortcuts in the simulation of the automaton, decreasing drastically its computation
time. It is a “clever evaluation strategy, applicable whenever the results of certain
computations are needed more than once” [2, p. 348]. A nice explanation in the
case of single head automata is in a recent and short article by R. Glück [14].

c) ⊆: Let T be a Turing machine deciding the predicate with m× log(|n|) space.
Remark that an integer represented by a binary string of length p is no greater than
2p, which takes 2p bits in unary. Then, a binary string of length log(|n|) cannot be
greater than |n|. So the content of the read-write tape and the position of its head
is encoded as distances between B and the read-only heads of the automata. That
needs to compute simple operations (modulo, multiplication and remaining of a
division) thanks to an extra head, but m+3 heads [25, pp. 191–192] are sufficient to
perform this simulation. Simplest and the fastest simulations exists [27, pp. 223–225],
but the overhead in terms of heads is more important.

c) ⊇: The addresses of the heads on the input n takes log(|n|) to we written,
hence a log-space Turing machine can easily simulate a 2NFA(∗,0).

d) and e): The proofs of those two fundamentals results are beyond the scope
of this small survey. Their original proofs are respectively due to Chomsky [7,
Theorem 1, p. 188] and Kleene [18, Theorem 6].

�

In the c) case, taking a deterministic automata 2DFA(∗,0) yields a characteri-
zation of deterministic log-space predicate L (whereas we characterized here the
non-deterministic case NL). In the b) case, both deterministic and non-deterministic
automata characterize deterministic polynomial time.

Automata can also be restricted to be 1-way (simply remove the −1 instruction
from the transition relation). In the e) case of regular language (which are equal to lin-
ear space), we get in fact 1DFA(1,0) = 2DFA(1,0) = 1NFA(1,0) = 2DFA(1,0).

Theorem 2 (Other results of interest).

1DFA(k,0) ( 2DFA(k,0)
([15, p. 95])

1NFA(k,0) ( 2NFA(k,0)
([15, p. 95])

1DFA(k,0) ( 1NFA(2,0)
([28, p. 339])

1DFA(k,1) ( 1NFA(k,1)([8])

1NFA(k,0)⊆ 2DFA(k,0)
([25, p. 190])

2NFA(k,1)⊆ 2DFA(4×k,1)
([24, p. 214])

2NFA(k,0)⊆ 2NFA(2×k,1)
([25, p. 189])

1DFA(k,1) ( 1NFA(k,1)([8])

NL = L
([23, pp. 75–76])

iff
1NFA(2,0)⊆ 2DFA(k,0)



4 C. AUBERT

Theorem 3. For l < 2, k+1 heads are strictly stronger than k heads.

This results holds in all situations, whenever automata are 1- or 2-way, determin-
istic or not, with or without pushdown stacks.1 Even if some notes on the techniques
and historic of those results exist [26, Chap. 4, Sect. 5.3, 22, pp. 67–68], no extensive
survey was found, so the reader has to go for the original research papers [28, p. 338,
20, p. 106, 21, p. 383, 8, p. 179, 17, p. 35].

Conclusion

Automata theory is a major subject of computer science, very active and providing
all kind of extensions and restrictions to automata. It contributed to “implicit”
complexity in the sense that no external bound or measure is needed to tame their
computational power: by specifying their number of ways, heads and stacks, one
knows in advance the computational power of the device.

Those “implicit characterizations” provided decisive hints and tools to design two
(truly implicit) bounded programming languages [3, 4]. Numerous other inspiring
results remains to be explored and should benefit to ICC.

We did not mentioned finite state transducer, which are functional finite automata,
but they also provide nice characterizations of functional complexity and beautiful
results (even recently [12], where the main theorem fits in the title). The status
of the input is also of interest: automata can bee feeded with 1-way inputs, trees,
etc. That makes the expressive power to be really parametric in the input and the
machine
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