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Enabling Minimal Dominating Set in

Highly Dynamic Distributed Systems

Swan Dubois∗ Mohamed-Hamza Kaaouachi∗ Franck Petit∗

Abstract

We address the problem of computing a Minimal Dominating Set in highly dynamic distributed
systems. We assume weak connectivity, i.e., the network may be disconnected at each time instant and
topological changes are unpredictable. We make only weak assumptions on the communication: every
process is infinitely often able to communicate with other processes (not necessarily directly).

Our contribution is threefold. First, we propose a new definition of minimal dominating set suitable
for the context of time-varying graphs that seems more relevant than existing ones. Next, we provide a
necessary and sufficient topological condition for the existence of a deterministic algorithm for minimal
dominating set construction in our settings. Finally, we propose a new measure of time complexity in
time-varying graph in order to to allow fair comparison between algorithms. Indeed, this measure takes
account of communication delays attributable to dynamicity of the graph and not to the algorithms.

1 Introduction

The availability of wireless communications has drastically increased in recent years and established new
applications. Humans, agents, devices, robots, and applications interact together through more and more
heterogeneous infrastructures, such as mobile ad hoc networks (MANET), vehicular networks (VANET),
(mobile) sensor and actuator networks (SAN), body area networks (BAN), as well as always evolving network
infrastructures on the Internet. In such networks, items (users, links, equipments, etc.) may join, leave,
or move inside the network at unforeseeable times. A common feature of these networks is their high
dynamic, meaning that their topology keeps continuously changing over time. Dynamic, heterogeneity of
devices, usages, and participants, and often the unprecedented scale to consider, make the design of such
infrastructures extremely challenging. For a vast majority of them, the dynamics are also unpredictable.
Classically, distributed systems are modeled by a static undirected connected graph where vertices are
processes (nodes, servers, processors, etc.) and edges represent bidirectional communication links. Clearly,
such modeling is not suitable for high dynamic networks.

Numerous models taking in account topological changes over time have have been proposed since several
decades, e.g., [1, 3, 6, 13, 14, 15, 19]. Some works aim at unifying most of the above approaches. For
instance, in [22], the authors introduced the evolving graphs. They proposed modeling the time as a sequence
of discrete time instants and the system dynamic by a sequence of static graphs, one for each time instant.
More recently, another graph formalism, called Time-Varying Graphs (TVG), has been provided in [11].
In contrast with evolving graphs, TVGs allow systems evolving within continuous time. Also in [11] and
in companion papers [8, 10], TVGs are gathered and ordered into classes depending mainly on two main
features: the quality of connectivity among the participating nodes and the possibility/impossibility to
perform tasks.

In this paper, we focus on the Minimal Dominating Set (MDS) problem. A dominating set is a subset
of vertices of a graph such as each vertex of this graph is either in the dominating set or neighbor of a
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vertex in the dominating set. A minimal dominating set is such that none of its proper subsets is also a
dominating set of the graph. Like many distributed covering structure (such as trees, coloring, matching,
etc.), Minimal Dominating Set is a key building block for numerous network protocols, e.g., hierarchical
routing and clustering, unicast, multicast, topology control, media access coordination, to name only a few.

Minimal Dominating Set and some of related problems (such as Maximal Independent Set and Connected
Dominating Set) receive some attention in the context of dynamic networks, e.g., [4, 21, 20, 12]. The difficulty
to define covering structures in dynamic networks (including MDS) is pointed out in [7]. Indeed, the authors
show that the definition of such structures may become ambiguous, incorrect, or even irrelevant when applied
in dynamic systems. As an example, if the dynamicity of the graph is modeled as a sequence of static graphs
and a new MDS is computed at each topological change as in [21], the stability of the MDS fully depends
on the dynamic rate of the network (i.e., the relative speed of appearance/disappearance of edges). This
natural definition may hence lead to an high instability (or even impossibility of use) of the MDS. We discuss
more precisely this issue in Section 4.

This paper aims at proposing a new approach suitable for Minimal Dominating Set construction in
time-varying graph with weak connectivity, i.e., the graph may be disconnected at each time instant and
topological changes are unpredictable. The only assumption on communications is that every process is
infinitely often able to communicate with other processes (not necessarily directly). In this context, our
contribution is threefold. First, we propose a new definition of MDS for time-varying graphs that increases
stability of this structure. More precisely, we require that each dominated node is infinitely often neighbor
of at least one dominating node. Next, we provide a necessary and sufficient topological condition for the
existence of a deterministic algorithm for MDS construction in our settings. Finally, we propose a new
measure of time complexity in time-varying graph. This measure takes account of communication delays
attributable to the dynamicity of the graph and not to the algorithm in order to allow fair comparison
between algorithms.

The paper is organized as follows. Section 2 presents formally the time-varying graph model and our new
measure of time complexity. We devote the Section 3 to some preliminaries necessary to our main results on
MDS presented in Section 4. Finally, Section 5 concludes the paper.

2 Time-Varying Graph: Model and Complexity

This section aims to present formally the framework of our study of dynamic systems. In a first time, we
recall in Section 2.1 the model of time-varying graphs (TVGs) introduced by [11]. We present only definitions
needed for the comprehension of our work and we refer the reader to [11] for more details and an interesting
taxonomy of TVGs.

Then, Section 2.2 focuses in complexity measures in this model. We think that a computational model
without correct time complexity measure(s) is not complete. We are unable to find in previous works any
such measure that is suitable for all TVGs. In consequence, we propose in this paper a new time complexity
measure that captures the cost of the algorithm independently of delays introduced by topology changes and
asynchronous communications.

2.1 Model

Let us first borrow the formalism introduced in [11] in order to describe the distributed systems prone to high
dynamic. We consider distributed systems made of n computing entities, henceforth indifferently referred
to as nodes, vertices, or processes. A process has a local memory, a local sequential and deterministic
algorithm, and input/output capabilities. We assume that each entity has a unique identifier. Moreover,
given two distinct entities p and q identified respectively by idp and idq, either idp < idq or idq < idp. All
these entities are gathered in a set V . Let E be a set of edges (or relations) between pairwise entities, that
describes interactions between processes, namely communication exchange. The presence of an edge between
two vertices p and q at a given time t means that each vertex among {p, q} is able to send a message to the
other at t.
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The interactions between processes are assumed to take place over a time span T ⊆ T called the lifetime
of the system. The temporal domain T is generally assumed to be either N (discrete-time systems) or R+

(continuous-time systems).

Definition 1 (Time-varying graph [11]) A time-varying graph (TVG for short) g is a tuple (V,E, T , ρ,
ζ, φ) where V is a (static) set of vertices {v1, . . . , vn}, E a (static) set of edges between these vertices
E ⊆ V × V , ρ : E × T → {0, 1} (called presence function) that indicates whether a given edge is available
( i.e. present) at a given time, ζ : E × T → T (called edge latency function) indicates the time it takes to
cross a given edge if starting at a given date, and φ : V × T → T (called process latency function) indicates
the time an internal action of a process takes at a given date.

Given a TVG g, let Tg be the subset of T for which a topological event (appearance/disappearance of
an edge) occurs in g. The evolution of g during its lifetime T can be described as the sequence of graphs
Sg = g1, g2, . . ., where gi = (V,Ei) corresponds to the static snapshot of g at time ti ∈ Tg, i.e. e ∈ Ei if and
only if ∀t ∈ [ti, ti+1[, ρ(e, t) = 1. Note that, by definition, gi 6= gi+1 for any i.

We consider asynchronous distributed systems, i.e. no pair of processes has access to any kind of shared
device that could allow to synchronize their execution rate. Furthermore, at any time, no process has access
to the output of ζ, i.e. none of them can (a priori) predict a bound on the message delay. Note that the
ability to send a message to another process at a given time does not mean that this message will be delivered.
Indeed, the dynamicity of the communication graph implies that the edge between the two processes may
disappear before the delivery of this message leading to the lost of messages in transit.

The presences and absences of an edge are instantly detected by its two adjacent nodes. We assume
that our system provides to each process a non-blocking communication primitive named Send retry that
ensures the following property. When a process p invokes Send retry(m, q) (where m is an arbitrary message
and q another process of V ) at time t, this primitive delivers m to q in a finite time provided that there
exists a time t′ ≥ t such that the edge {p, q} is present at time t′ during at least ζ({p, q}, t′) units of time.
In other words, the delivery of the message is ensured if there is, after the invocation of the primitive, an
availability of the edge that is sufficient to overcome the communication delay of the edge at this time. Note
that this primitive may never deliver a message (e.g. if the considered edge never appears after invocation).
Details of the implementation of this primitive are not considered here but it typically consists in resending
m at each apparition of the edge {p, q} until its reception by q. This primitive allows us to abstract from
topology changes and asynchronous communication and to write high-level algorithms.

Configurations and executions The state of a process is defined by the values of its variables. Given a
TGV g, a configuration of g is a vector of n + 2 components (gi,Mi, p1, p2, . . . , pn) such that gi is a static
snapshot of g (i.e. gi ∈ Sg), Mi is the set of multi-sets of messages carried over Ei, and p1 to pn represent
the state of the n processes in V . We say that a process p outputs a value v in a configuration γ if one of its
variable (called an output variable) has the value v in γ.

An execution of the distributed system modeled by g is a sequence of configurations e = γ0, . . . , γk,
γk+1, . . ., such that for each k ≥ 0, during an execution step (γk, γk+1), one of the following event occurs: (i)
gk 6= gk+1, or (ii) at least one process receives a message, sends a message, or executes some internal actions
changing its state. The algorithm executed by g describes the set of all allowed internal actions of processes
(in function of their current state or external events as message receptions or time-out expirations) during
an execution of g. We assume that during any configuration step (γk, γk+1) of an execution, if gk 6= gk+1,
then for each edge e such that e ∈ Ek and e /∈ Ek+1 (i.e. e disappears during the step (γk, γk+1), none of
the messages carried by e belongs to Mk+1. Also, for each edge e such that e ∈ Ek+1 and e /∈ Ek (i.e. e
appears during the step (γk, γk+1)), e contains no message in configuration γk+1.

Connected over time TVGs A key concept of time-varying graphs has been identified in [11]. The au-
thors shows that the classical notion of path in static graphs in meaningless in TVGs. Indeed, some processes
may communicate even if there is no (static) path between them at each time. To perform communication
between two processes, the existence of a temporal path (a.k.a. journey) between them is sufficient. They
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define such a temporal path as follows: a sequence of ordered pairs J = {(e1, t1), (e2, t2), ..., (ek, tk)} such
that {e1, e2, ..., ek} is a path1 if for every i ∈ [1, k], ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti). In other words,
a journey from process p to process q is a sequence of adjacent edges from p to q such that availability
and latency of edges allow the sending of a message from p to q using the Send retry primitive at each
intermediate process (refer to [11] for a formal definition). Note that a journey is a non symmetric relation
between two processes.

Based on various assumptions made about journeys (e.g. recurrence, periodicity, symmetry, and so on),
the authors propose in [11] proposes a relevant hierarchy of TVG classes. In this paper, we choose to make
minimal assumptions on the dynamicity of our system since we restrict ourselves on connected-over-time
TVGs defined as follows:

Definition 2 (Connected-over-time TVG [11]) A TVG (V,E, T , ρ, ζ, φ) is connected-over-time if, for
any time t ∈ T and for any pair of processes p and q of V , there exists a journey from p to q after time t.
The class of connected-over-time TVGs is denoted by COT 2.

Note that the lifetime of a connected-over-time TVG is necessarily infinite by definition. The class COT
allows us to capture highly dynamic systems since we only require that any process will be always able
to communicate with any other one without any extra assumption on this communication (such as delay,
periodicity, or used route). In particular, note that a connected-over-time TVG may be disconnected at each
time and that the presence of an edge at a given time does not preclude that this edge will appear again
after this time. Define an eventual missing edge as en edge that appears only a finite number of time during
the lifetime of the TVG. The main difficulty encountered in the design of distributed algorithms in COT is
to deal with such eventual missing edges because no process is able to predict if a given adjacent edge is
an eventual missing edge or not. Note that the time of the last presence of such an eventual missing edge
cannot be even bounded.

Definition 3 ((Eventual) Underlying Graph) Given a TVG g = (V,E, T , ρ, ζ, φ), the underlying graph
of a g is the (static) graph Ug = (V,E). The eventual underlying graph of g is the (static) subgraph Uωg =
(V,Eωg ) with Eωg = E \Mg, where Mg is the set of eventual missing edges of g.

Intuitively, the underlying graph (sometimes referred to as footprint) of a TVG g gathers all edges that
appear at least once during the lifetime of g, whereas the eventual underlying graph of g gathers all edges
that are infinitely often present during the lifetime of g. Note that, for any TVG of COT , both underlying
graph and eventual underlying graph are connected by definition. Let us define the neighborhood Np of a
process p is the set of processes with which p shares an edge in the underlying graph.

Induced subclasses In the following, we focus on specific subclasses of the class COT to establish our
impossibility result. Informally, we focus on subclasses that gather all TVGs whose underlying graph belongs
to a given set. The intuition behind this restriction is the following. In practice, some technical reasons may
restrict or prevent the communication between some processes, that induces a given underlying graph for
the TVG that models our system. In contrast, we cannot predict in general the availabilities and latencies
of communication edges, that leads us to consider all TVGs sharing this underlying graph. More formally:

Definition 4 (Induced subclass) Given a set of (static) graphs F and a class of TVGs C, the subclass of
C induced by F (denoted by C|F) is the set of all TVGs of C whose underlying graph belongs to F .

Diameter For any given (static) graph g, we denote by diam(g) the diameter of g (that is, the longest
distance between two processes of g).

1 A sequence of edges {v1, v′1}, {v2, v′2}, . . . , {vk, v′k} is a path if ∀i ∈ {1, k − 1}, vi+1 = v′i.
2 Authors of [11] refer to this class as C5 in their hierarchy of TVG classes.
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2.2 Complexity Measures

At the best of our knowledge, there exists currently no time complexity measure that is suitable for any class
of TVGs. Some previous works interested in complexity measure in the TVG model but restrict themselves
to synchronous systems (see e.g. [18, 17]), to message complexity (see e.g. [9]), or to specific class of TVGs
in which an existing notion of complexity naturally makes sense (see e.g. [16, 9]).

The first contribution of this paper is to propose a definition of a time complexity measure suitable for our
model. We need a definition that captures the “quality” of an algorithm independently of delays introduced
by asynchronous communications but also by topological changes. A typical example of such a delay is the
waiting after the next apparition of an incident edge to a disconnected process that may introduce a long
delay that is not imputable to the algorithm but only to the dynamicity of the system. To perform our goal,
we propose to extend the classical notion of time complexity commonly adopted in asynchronous message
passing (static) systems.

The classical way to deal with communication delays in time complexity measure in asynchronous message
passing models is to consider as the unit of time of an execution the worst delay between the sending and
the reception of a message during this execution (see [2] for example). Using this time measure, we can
bound the termination time of any execution of an algorithm independently of communication delays in this
execution. This leads to a time complexity measure (the worst termination time over all possible executions
of the algorithm) that induces a fair comparison between algorithms. Our proposal is to extend this idea to
dynamic environments by including delays introduced by the dynamicity in this definition. In other words,
we will consider as the unit of time of an execution the worst delay between the invocation of the Send retry
primitive and the delivery of the message by this primitive during this execution.

This natural extension of the definition of time complexity measure of asynchronous message passing
systems is not sufficient. Indeed, the dynamicity of the system may introduce another possibly arbitrarily
long delay that we call initial delay. As an example, consider a problem that requires each process to
propagate an initial value (think about consensus-like problems). An easy way to delay the termination of
any algorithm for this problem is to disconnect one process for an arbitrary long (but bounded) time that
leads all other processes to wait after its first apparition. Intuitively, this delay is not due to the algorithm
but to the dynamicity of the system. Consequently, our complexity measure have to ignore such initial delay.

To deal with this issue, we propose to define for each problem a starting time as follows. It is the smallest
time of an execution where the dynamicity of the system “shows” to processes the minimal topological
information to solve the problem. Note that this starting time depends only of the problem (e.g. first
connexion of the last process for consensus-like problems) and that, in a static system, the starting time and
the initial time are identical (since the system cannot delay apparition of any topological information).

Then, we propose to measure the complexity of an algorithm by the worst time (expressed in the time
unit described above) between the starting time and the termination of the algorithm over all its possible
executions. We believe that this time complexity measure allows us to fairly compare algorithms designed in
our model based on TVGs since it exhibits their intrinsic communication costs and does not take in account
delays introducing by asynchronous communications and topological changes.

We now state our complexity measure more formally. In the following, we first restrict to fixed point
computation problems on a TVG class C, i.e. problems that admit a specification of the following form: it is
required that the execution on every TVG of C reaches in a finite time a suffix where each process outputs
constantly a given value. The required value depends of the considered problem and is not necessarily the
same at each process. Using this definition, leader election or spanning structure construction are fixed point
computation problems whereas mutual exclusion or broadcast are not.

We consider now a (deterministic) distributed algorithm A that satisfies the specification of a fixed point
computation problem P on a TVG class C. Let e be the execution of A on a given TVG of class C. For any
message m sent during e, we call delay (of m) the time between the invocation of the Send retry primitive
by the sender of m and the delivery of m to its destination. Now, we call communication step (or simply
step) of e the worst delay over the set of messages that are actually delivered during e (note that we do not
consider messages that are never delivered in e).

We associate to P a function NPSP , called the necessary presence sets function of P, that returns, for
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any TVG (V,E, T , ρ, ζ, φ) of C, a set of subsets of E. Note that the actual definition of this function depends
of the problem itself and not of a TVG nor an execution. Each element of NPSP(g) describes one of the set
of edges whose apparition is necessary and sufficient to start the effective solving the problem (independently
of the used algorithm). We give some examples in the following. For the underlying graph computation
problem UG, we have NPSUG(g) = {E} since each edge of E must appear in the output of any process.
For a broadcast problem B, we have NPSB(g) = {{(p, q)}|q ∈ Np} (where process p is the sender of the
message) since the apparition of any edge adjacent to p is necessary and sufficient to begin the broadcast of
a message by p.

We define the starting time of the execution e of A over a TVG g as the smallest time t ∈ T such that
each edges of at least one element of NPSP(g) are present at least once before t in this execution. Note that,
in a static distributed system, the initial time and the starting time are always identical since all edges of all
elements of NPSP(g) are present in the initial configuration whatever the definition of NPSP is. Finally,
the convergence time of A on g is the time (expressed in communication steps of e) between the starting
time of e and the smallest time in e where the specification of P is satisfied.

Definition 5 (Time complexity on a TVG class) The time complexity of a distributed algorithm A
that satisfies the specification of a fixed point computation problem P on a TVG class C is the worst conver-
gence time of A on all TVGs of C.

Note that this definition may be naturally extended to so-called service problems in the following way.
First, we consider as starting time the maximum between the starting time defined above and the time of
request of a service (e.g. the sending of a message for a broadcast algorithm, the request of critical section
for a mutual exclusion algorithm). Second, we substitute the convergence time of the algorithm by the time
of achievement of the required service by the algorithm (e.g. the delivery of a message to its destinations for
a broadcast algorithm, the starting of critical section for a mutual exclusion algorithm).

3 Underlying Graph Computation

In this section, we present an underlying graph computation algorithm (see Section 3.1) and proves its time
optimality with respect to our new measure (see Section 3.2). This algorithm is used as a building block in
the next section for our minimal dominating set construction algorithm. Before presenting our algorithm,
we need to specify the underlying graph computation problem.

Specification 1 (Underlying graph) An algorithm A satisfies the underlying graph specification for a
class of TVGs C if the execution e = γ0, γ1, . . . of A on every TVG g of C has a suffix ei = γi, γi+1, . . . for a
given i ∈ N such that each process outputs the underlying graph of g in any configuration of ei.

3.1 Algorithm

Our underlying graph computation algorithm is presented in Algorithm 1. The intuition behind this algo-
rithm is simple. Each process stores locally a graph, initially empty, that eventually gathers all edges of
the underlying graph. At the first appearance of an edge, the two adjacent processes add this edge to their
graph. Then, they try to propagate the last version of their graph to all processes that they have as neighbor
at least once since the beginning of the execution. When a process receives such a message (that contains
the current underlying graph of another process), it add to its own underlying graph every edge it does not
already know. If its underlying graph grows during this operation, then the process propagates again its
underlying graph to all processes that it has as neighbor at least once since the beginning of the execution.

This algorithm ensures that, upon the first apparition of the last edge of the underlying graph, this edge
is added to the output of adjacent processes and then propagated (at least) to their neighbors in the eventual
underlying graph in one step, and so on (note that we have no guarantees for neighbors in the underlying
graph in general since it may exist some eventual missing edges). Hence, in any execution, after at most
diam(Uωg ) steps, this edge (and all others) appears in the output graph of any process. In other words, we
have the following result:
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Algorithm 1 Underlying graph computation for process p.

Variables:
gp = (Vp, Ep): underlying graph built by p
Np: neighborhood of p

Initialization:
gp := ({x}, ∅)
Np := ∅

Upon appearance of an edge {p, q}:

if {p, q} /∈ Ep then
Np := Np ∪ {q}
gp := (Vp ∪ {q}, Ep ∪ {{p, q}})
foreach r ∈ Np do

Send retry(add(gp), r)

On reception of add(gq) from q:

if Eq \ Ep 6= ∅ then
gp := (Vp ∪ Vq, Ep ∪ Eq)
foreach r ∈ Np \ {q} do

Send retry(add(gp), r)

Theorem 1 Algorithm 1 satisfies the underlying graph specification for COT . Moreover, its convergence
time on any TVG g of COT is diam(Uωg ) steps.

3.2 Time Optimality

In this section, we interest in a lower bound result on the time complexity of underlying graph computation.
We restrict ourselves to greedy algorithms that are the most natural ones for this problem. We define a
greedy algorithm for the underlying graph computation as an algorithm that satisfies the following property.
The initial output of any process is an empty graph and the graph outputted by a process can only grow
(in the sense of inclusion) over time. In other words, such an algorithm ensures that, once a process start
to output a given edge or process, this latter always appears in the output of this process afterwards. Note
that Algorithm 1 falls in this category.

In the following, we prove that no greedy algorithm for underlying graph computation on COT can exhibit
a better time complexity than our algorithm. Indeed, we prove that there exists, for any greedy algorithm,
a TVG g in COT such that this algorithm needs diam(Uωg ) steps to compute the underlying graph of g.
Note that the complexity of the underlying graph computation depends surprisingly of a parameter of the
eventual underlying graph.

We need a technical lemma for the proof of this optimality result.

Lemma 1 For any greedy algorithm A that satisfies the underlying computation graph, for any TVG g =
(V,E, T , ρ, ζ, φ) in COT , for any edge e ∈ E that is not a cut-edge of Uωg , for any process p ∈ V , for any
t ∈ T , e cannot belong to the graph outputted by p in the execution of A on g at time t if there exists no
temporal path from one extremity of e to p that starts after the first appearance of e in g and ends before t.

Proof. By contradiction, assume that there exists a greedy algorithm A that satisfies the underlying
computation graph, a TVG g = (V,E, T , ρ, ζ, φ) in COT , an edge ê ∈ E that is not a cut-edge of Uωg , a
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Figure 1: An illustration of the TVGs family in the proof of Theorem 2.

process p̂ ∈ V , and a time t̂ ∈ T such that ê appears in the graph outputted by p̂ in the execution of A on
g at time t̂ and that there exists no temporal path from one extremity of ê to p̂ that starts after the first
appearance of ê in g and ends before t̂.

Then, consider the TVG g′ = (V,E, T , ρ′, ζ, φ) with:

∀e ∈ E,∀t ∈ T , ρ′(e, t) =

{
0 if e = ê

ρ(e, t) otherwise

Note that, according to the assumption that ê is not a cut-edge of Uωg , g′ belongs to COT . Hence, due to
the construction of g and the determinism of A, the process p̂ receives exactly the same messages before time
t̂ in g and g′ (the assumption on temporal paths after the first appearance of ê in g ensures us that the fact
to remove ê in g′ is not detectable by p̂ before time t̂). In other words, p̂ cannot distinguish the executions
of A on g and g′ before t̂. As a consequence, ê appears in the graph outputted by p̂ in the execution of A
on g′ at time t̂. As A is a greedy algorithm, this edge never disappear of the output of p̂ in the execution of
A on g′ after time t̂. This is contradictory with the fact that A satisfies the underlying graph specification
on COT since ê does not belongs to Ug′ and proves the lemma. �

We are now ready to prove the following result.

Theorem 2 For any greedy algorithm A that satisfies the underlying graph specification on COT , there
exists a TVG g of COT such that the convergence time of A is at least diam(Uωg ) steps.

Proof. Let A be a greedy algorithm that satisfies the underlying graph specification on COT . Then,
let us define the following family of TVGs. For any given k ∈ N∗, let gk = (Vk, Ek,R+, ρk, ζk, φk) be the
TVG defined by Vk = {p0, . . . , p3k}, Ek = {{pi, pi+1}|i ∈ {0, . . . , 3k − 1}} ∪ {{p0, p2k}, {p2k, p3k}}, and

∀e ∈ Ek,∀t ∈ R+, ρk(e, t) =


1 if e ∈ {{p0, p2k}, {p2k, p3k}} and t < 1

0 if e /∈ {{p0, p2k}, {p2k, p3k}} and t < 1

0 if e ∈ {{p0, p2k}, {p2k, p3k}} and t ≥ 1

1 if e /∈ {{p0, p2k}, {p2k, p3k}} and t ≥ 1

∀e ∈ Ek,∀t ∈ R+, ζk(e, t) = 1

∀p ∈ Vk,∀t ∈ R+, φk(p, t) = 0

Refer to Figure 1 for an example of such a gk. Note that, for any k ∈ N∗, we have diam(Uωgk) = 2k
(and diam(Ugk) < diam(Uωgk) since diam(Ugk) = k + 1k). As this graph is connected, gk belongs to COT .
By construction of gk, the starting time of the execution of A on gk is 1 for any k ∈ N∗ (recall that
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NPSUG(g) = {E}). Note that, due to the choice of the latency function, any communication step of the
execution of A on gk takes exactly one time unit.

Consider ek the execution of A on gk for any k ∈ N∗. From Lemma 1, we know that the edge {pk−1, pk}
cannot appear in the graph outputted by p3k in ek before there exists at least one temporal path from pk−1
or pk to p3k. Note that the construction of gk implies that such a temporal path (after time 1) needs at
least 2k steps (the length of the path from pk−1 or pk to p3k since gk is static after time 1). As the edge
{pk−1, pk} must eventually appear in the output of any process in ek by assumption on A, we obtain that
the convergence time of A is at least diam(Uωgk) steps, that ends the proof. �

4 Minimal Dominating Set Construction

Minimal dominating set construction is a classical problem in the context of distributed computing since this
spanning structure have interesting properties for a lot of practical problems as clustering. Recall that, in a
static distributed system, a dominating set D is a subset of processes of the system such that each process
that does not belong to D have at least one neighbor in D. Such a dominating set is minimal when it has
is no strict subset that is also a dominating set.

Regarding dynamic distributed systems, two different approaches have been proposed to handle minimal
dominating set problem. We survey them quickly here and show that these definitions seem not relevant in
our context, that motivates the need of our new definition presented in this section.

The most natural way to extend minimal dominating set definition in the context of dynamic systems
is presented in [21]. In this work, the dynamic graph is seen as a sequence of static graphs and a new
minimal dominating set is computed at each topological change. This approach is not suitable in the case
of highly dynamic systems since the system may be always in computation phase (the computation of the
new dominating set at each topological change is not instantaneous). In this case, the dominating set may
be never stable and is then useless for the application that required it.

The second approach, proposed by [7], consists in computing a stable dominating set on the underlying
graph of the TVG. This approach is interesting since the outputted dominating set is stable in spite of
the dynamicity of the system but is still not suitable for our purpose. Indeed, as the dominating set is
computed on the underlying graph that may contain eventual missing edges, it is possible for a process
to be dominated only through such edges. In other words, a dominated process may have eventually only
dominated neighbors, that is counter-intuitive for a minimal dominating set and makes sense only in TVGs
where there is no eventual missing edges.

To overcome flaws of precedent definitions in our context of highly dynamic distributed systems (captured
by the class of TVGs COT ), we propose a third definition. In this definition, we require the outputted
minimal dominating set to be stable and each dominated process to be infinitely often neighbor of at least
one dominating process. In other words, we want to compute a minimal dominating set on the eventual
underlying graph. Note that this definition is exactly the same as the one of [7] in TVGs where there is no
eventual missing edges.

Definition 6 (Minimal dominating set over time) A set of processes M is a minimal dominating set
over time (MDST for short) of a TVG g if M is a minimal dominating set of Uωg .

We now specify the minimal dominating set construction problem over TVGs as follows.

Specification 2 (Minimal dominating set) An algorithm A satisfies the minimal dominating set spec-
ification for a class of TVGs C if the execution e = γ0, γ1, . . . of A on every TVG g of C has a suffix
ei = γi, γi+1, . . . for a given i ∈ N such that each process outputs constantly a boolean value in any con-
figuration of ei and that the set of processes outputting true is a minimal dominating set overt time of
g.
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4.1 Preliminaries

In this section, we present some preliminary results that are needed in the following. First, we introduce
the definition of a strong minimal dominating set of a graph as a dominated set of any connected spanning
subgraph of this graph. In Section 4.2, we prove that the existence of such a set in the underlying graph
of a TVG is necessary to the existence of an algorithm to construct a minimal dominating set over time
of this TVG. We claim in Section 4.3 that this condition is also sufficient. To prove this result, we use a
characterization of graphs that admit a strong minimal dominating set that we present in the end of this
preliminary section.

Definition 7 (Strong minimal dominating set) A strong minimal dominating set (SMDS for short) of
a (static) graph g is a subset of processes of g that is a minimal dominating set of every connected spanning
subgraph of g.

The following lemma follows directly from definitions and legitimates our interest for strong minimal
dominating sets.

Lemma 2 If the underlying graph of a TVG g ∈ COT admits a strong minimal dominating set M then M
is a minimal dominating set over time of g.

The next result provides us a characterization of (static) graphs that admits a SMDS. We use this
characterization in our minimal dominating set construction algorithm in the next section.

Lemma 3 For any (static) graph g and any minimal dominating set M of g, M is a strong minimal
dominating set of g if and only if the set of edges {{p, q}|q ∈ M ∩ Np} is a cut-set in g for every process
p ∈ V \M .

Proof. First, we prove that, for any SMDS M of a graph g, the set of edges {{p, q}|q ∈M ∩Np} is a
cut-set in g for every process p ∈ V \M . By contradiction, assume that there exists a SMDS M of a graph
g = (V,E) such that the set of edges {{p, q}|q ∈M ∩Np} is not a cut-set in g for a process p ∈ V \M . Let
sg = (V,E′) the subgraph of g defined by E′ = E \ {{p, q}|q ∈ M ∩ Np}. By assumption, sg is a connected
graph. Moreover, in sg the process p has no neighbor in M , that means that M is not a minimal dominating
set of sg. This contradicts the fact that M is a SMDS of g and proves the necessity of the condition.

Second, we prove that any minimal dominating set M of a graph g such that the set of edges {{p, q}|q ∈
M ∩Np} is a cut-set in g for every process p ∈ V \M is a SMDS of g. By contradiction again, assume that
there exists a minimal dominating set M of a graph g = (V,E) such that the set of edges {{p, q}|q ∈M ∩Np}
is a cut-set in g for every process p ∈ V \M is not a SMDS of g. By definition of a SMDS, there exists a
connected subgraph sg = (V,E′) of g such that M is not a minimal dominating set of sg. Let us study the
two following cases.

1. M is not a dominating set of sg. Then, there exists a process p such that no neighbors of p in sg
belongs to M . As sg is connected, that means that the set {{p, q}|q ∈ M ∩ Np} is not a cut-set in g,
that is contradictory with the initial assumption on M .

2. M is a dominating set of sg but is not minimal. We say that a process of a dominating set properly
dominates one of its neighbor if it is the only dominating process in the neighborhood of this dominated
process. Then, we know that there exists, in sg, two neighbors p ∈ M and q ∈ M such that p does
not dominate properly any of its neighbors. As M is a minimal dominating set in g, we deduce that
p dominates properly at least one of its neighbors r ∈ V \M (recall that p and q are neighbors in g
by construction). That means that the set of edges {{r, s}|s ∈ M ∩ Nr} = {{p, r}} is not a cut-set
of g (since this edge does not belong to sg that is connected). This is contradictory with the initial
assumption on M .

These contradictions show us the sufficiency of the condition and ends the proof. �
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Figure 2: An illustration of the sequence (gn)n∈N used in the proof of Theorem 4.

4.2 Impossibility Result

The proof of our impossibility result presented in Theorem 4 makes use of a generic framework we proposed
in another work. We recall here the minimal definitions and results to understand our proof. Due to the
lack of space, the interested reader is referred to [5] for more details.

Summary of [5] For a given time domain T, a given static graph (V,E) and a given latency function ζ,
let us consider the set G(V,E),T,ζ of all TVGs over T that admit (V,E) as underlying graph and ζ as latency
function. For the sake of clarity, we will omit the subscript (V,E),T, ζ and simply denote this set by G.
Remark that two distinct TVGs of G can be distinguished only by their presence function. For any TVG
g in G, let us denote its presence function by ρg. We define now the following metric dG over G. If g = g′,
then dG(g, g′) = 0. Otherwise, dG(g, g′) = 2−λ with λ = Sup {t ∈ T|∀t′ ≤ t, ∀e ∈ E, ρg(e, t′) = ρg′(e, t

′)}.
For a given algorithm A and a given TVG g, let us define the (A, g)-output as the function that associate

to any time t ∈ T the state of g at time t when it executes A. We say that g is the supporting TVG of this
output. Let us consider the set OA,G of all (A, g)-outputs over all TVGs g of G. For the sake of clarity, we
will omit the subscript A,G and simply denote this set by O. Remark that two distinct output of O can be
distinguished only by their supporting TVG. For any output o in O, let us denote its supporting TVG by
go. We define now the following metric dO over O. If o = o′, then dO(o, o′) = 0. Otherwise, dO(o, o′) = 2−λ

with λ = Sup {t ∈ T|∀t′ ≤ t, o(t′) = o′(t′)}.
Once we have observed that the metric spaces (G, dG) and (O, dO) are complete, we are now able to

recall the main result of [5]. Intuitively, this theorem ensures us that, if we take a sequence of TVGs with
ever-growing common prefixes, then the sequence of corresponding outputs also converges. Moreover, we are
able to describe the output to which it converges as the output that corresponds to the TVG that shares all
commons prefixes of our TVGs sequence. This result is useful since it allows us to construct counter-example
in the context of impossibility results. Indeed, it is sufficient to construct a TVG sequence (with ever-growing
common prefixes) and to prove that their corresponding outputs violates the specification of the problem
for ever-growing time to exhibit an execution that violates infinitely often the specification of the problem.
More formally, we have:

Theorem 3 For any deterministic algorithm A, if a sequence (gn)n∈N of G converges to a given gω ∈ G,
then the sequence (on)n∈N of the (A, gn)-outputs converges to oω ∈ O. Moreover, oω is the (A, gω)-output.

Application to minimal dominating set We are now in measure to prove our impossibility result.
This result states that there exists no deterministic algorithm that satisfies the minimal dominating set
specification on a TVG of COT as soon as the underlying graph of the considered TVG does not admit a
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strong minimal dominating set. Intuitively, this impossibility comes from the following fact. As no process
is able to detect eventual missing edges, the minimal dominated set computed by any algorithm must be a
minimal dominated set of any possible eventual underlying graph, that is of any connected subgraph of the
underlying graph. In other words, the computed minimal dominated set is a strong minimal dominating set.
The existence of such a set is then a necessary condition to the existence of an algorithm to compute a minimal
dominating set over time. The main difficulty of the formal proof of this result lies in the construction of
the TVGs sequence that allows us to apply Theorem 3.

Theorem 4 For any set of (static) graphs F containing at least one graph that does not admit a strong
minimal dominating set, there exists no deterministic algorithm that satisfies the minimal dominating set
specification for COT |F .

Proof. Let us introduce some notation first. We define, for any TVG g = (V,E, T , ρ, ζ, φ), the TVG
g � {(Ei, Ti)|i ∈ I} (with I ⊆ N and for any i ∈ I, Ei ⊆ E and Ti ⊆ T ) as the TVG (V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =


0 if ∃i ∈ I, e ∈ Ei and t ∈ Ti
1 if ∃i ∈ I, e ∈ E \ Ei and t ∈ Ti
ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F containing at least one graph that
does not admit a strong minimal dominating set and that there exists a deterministic algorithm A that
satisfies the minimal dominating set specification for COT |F . In consequence, any process that executes A
outputs a boolean value at any time.

Let g = (V,E, T , ρ, ζ, φ) be a TVG of COT |F such that Ug does not admit a strong minimal dominating
set and that all edges of Ug are present during the first communication step of the execution of A on g
(g exists by construction of F and by definition of COT |F ). Let t0 be the time of completion of the first
communication step of the execution of A on g. We construct then a sequence (gn)n∈N of TVGs as follows.
We set g0 = g. Assume that we have already gi = (V,E, T , ρ′, ζ, φ) for a given i ∈ N such that gi ∈ COT |F ,
Ugi = Ug, and ∃αi > t0,∀e ∈ E,∀t ≤ αi, ρ

′(e, t) = ρ(e, t). Then, we define inductively gi+1 as follows (refer
to Figure 2 for an illustration, gray boxes represent portions of executions where A outputs a stable minimal
dominating set):

1. Consider the execution of A over gi and let ηi ∈ T be the smallest time strictly greater than αi from
which the set of processes that output true is constant (ηi exists by assumption on A since gi ∈ COT |F );

2. Let Mi be the minimal dominating set computed by A on gi (i.e. the set of processes of gi outputting
true after ηi). As Ugi = Ug, we know by assumption on Ug that Ugi does not admit a SMDS. In
particular, Mi is not a SMDS of Ugi . Hence, there exists a process pi of V \Mi such that the set of
edges Ei = {{pi, q}|q ∈Mi ∩Npi} is not a cut-set of Ugi ;

3. Let g′i = gi � {(Ei, T ∩]ηi,+∞[)}.

4. Remark that Ug′i = Ugi = Ug (by construction of g′i since ηi > t0) and that Uωg′i
is connected (since

E(Uωg′i
) = E(Ug) \ Ei by construction3 and Ei is not a cut-set of Ug). Hence, g′i ∈ COT |F and we can

consider the execution of A over g′i. Let αi ∈ T be the smallest time strictly greater than ηi from which
the set of processes that output true is constant. Let M ′i be the minimal dominating set computed by
A on g′i (i.e. the set of processes of g′i outputting true after αi). Note that M ′i 6= Mi since Mi is not a
minimal dominating set of Uωg′i

(recall that, in Uωg′i
, pi has no neighbor in Mi);

5. Let gi+1 = gi � {(Ei, T ∩]ηi, αi])}.
3 where E(g) denotes the set of edges of g.
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It is straightforward to check that this construction ensures that, if there exists gi = (V,E, T , ρ′, ζ, φ)
for a given i ∈ N such that gi ∈ COT |F , Ugi = Ug, and ∃αi > t0,∀e ∈ E,∀t ≤ αi, ρ

′(e, t) = ρ(e, t), then
gi+1 satisfies the same property. Moreover, as g0 = g, this property is naturally satisfied for i = 0 with any
α0 > t0. Hence, the sequence (gn)n∈N is well-defined. Note that, for any i ∈ N, ηi < αi and αi < ηi+1 (by
construction).

That allows us to define the following TVG: gω = g � {(Ei, T ∩]ηi, αi])|i ∈ N}. Note that Ugω = Ug and
then that gω belongs to COT |F . Observe that, for any k ∈ N∗, we have dG(gk, gω) = 2−ηk by construction
of (gn)n∈N and gω. Thus, (gn)n∈N converges in COT |F to gω.

We are now in measure to apply the Theorem 3 that states that the (A, gω)-output is the limit of the
sequence of the (A, gn)-outputs. In other words, the (A, gω)-output shares a prefix of length ηi with the
(A, gi)-output for any i ∈ N (recall that the sequence of the (A, gn)-outputs is Cauchy since it converges).
That means that, for any i ∈ N∗, the set of processes that output true in gω at ηi is Mi and the set of
processes that output true in gω at αi is M ′i . As we know that Mi 6= M ′i for any i ∈ N, we obtain that the
set of processes that output true in gω never converges, that contradicts the fact that A satisfies the minimal
dominating set specification for COT |F and ends the proof. �

4.3 Algorithm

We are now able to prove the sufficiency of the existence of a strong minimal dominating set on the underlying
graph for the construction of a minimal dominating set over time of any TVG of COT . We prove this result
simply by presenting an algorithm based on our underlying graph computation algorithm presented in Section
3.

This algorithm works as follows. Once a process has computed the underlying graph, it is easy to decide
if this process belongs to the outputted minimal dominating set: the process enumerates (locally and in a
deterministic order based e.g. on process identities) all minimal dominating sets of the underlying graph
and chooses the first one that satisfies Lemma 3. This latter is then a strong minimal dominating set of
the underlying graph and hence a minimal dominating set over time of the TVG by Lemma 2. In order to
avoid the use of an algorithm of termination detection (for the underlying graph computation), each process
repeats the local computation of its output at each update of its local copy of the underlying graph by the
algorithm of Section 3. The existence of this simple algorithm allows us to state the following result:

Theorem 5 For any set of (static) graphs F containing only graphs that admit a strong minimal dominating
set, there exists a deterministic algorithm that satisfies the minimal dominating set specification for COT |F .

5 Conclusion

This paper addressed the construction of a minimal dominating set over time (MDST) in highly dynamic
distributed systems. We considered the weakest connectivity assumption in the hierarchy of time-varying
graphs: the graph may be disconnected at each time, topological changes are unpredictable but we know
that any process is able to communicate with any other infinitely often using so-called temporal paths.
In this context, we proposed a new definition of minimal dominating set increasing the stability of the
computed MDST. Next, we provided a necessary and sufficient topological condition for the existence of a
deterministic MDST algorithm. We then proposed a new measure of time complexity that takes in account
the communication delays due to network dynamic.

The above results used the construction of an underlying graph. We showed the time optimality of our
algorithm with respect to our measure. Note that our result (Theorem 2) is valid for greedy algorithms only.
We conjecture that all distributed underlying graph algorithms are greedy. This would lead to generalize
our result of optimality. Also, we would like to extend our approach to other related overlay constructions.
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