
HAL Id: hal-01111551
https://hal.science/hal-01111551v2

Submitted on 2 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic algorithms for extended precision using
floating-point expansions

Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu

To cite this version:
Mioara Joldes, Olivier Marty, Jean-Michel Muller, Valentina Popescu. Arithmetic algorithms for
extended precision using floating-point expansions. IEEE Transactions on Computers, 2016, 65 (4),
pp.1197 - 1210. �10.1109/TC.2015.2441714�. �hal-01111551v2�

https://hal.science/hal-01111551v2
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 1

Arithmetic algorithms for extended precision
using floating-point expansions

Mioara Joldeş, Olivier Marty, Jean-Michel Muller and Valentina Popescu

Abstract—Many numerical problems require a higher computing precision than the one offered by standard floating-point (FP)
formats. One common way of extending the precision is to represent numbers in a multiple component format. By using the so-
called floating-point expansions, real numbers are represented as the unevaluated sum of standard machine precision FP numbers.
This representation offers the simplicity of using directly available, hardware implemented and highly optimized, FP operations. It is
used by multiple-precision libraries such as Bailey’s QD or the analogue Graphics Processing Units (GPU) tuned version, GQD. In
this article we briefly revisit algorithms for adding and multiplying FP expansions, then we introduce and prove new algorithms for
normalizing, dividing and square rooting of FP expansions. The new method used for computing the reciprocal a−1 and the square
root
√

a of a FP expansion a is based on an adapted Newton-Raphson iteration where the intermediate calculations are done using
“truncated” operations (additions, multiplications) involving FP expansions. We give here a thorough error analysis showing that it
allows very accurate computations. More precisely, after q iterations, the computed FP expansion x = x0 + . . . + x2q−1 satisfies,
for the reciprocal algorithm, the relative error bound:

∣∣(x− a−1)/a−1
∣∣ ≤ 2−2q(p−3)−1 and, respectively, for the square root one:∣∣x− 1/

√
a
∣∣ ≤ 2−2q(p−3)−1/

√
a, where p > 2 is the precision of the FP representation used (p = 24 for single precision and

p = 53 for double precision).

Index Terms—floating-point arithmetic, floating-point expansions, high precision arithmetic, multiple-precision arithmetic, division,
reciprocal, square root, Newton-Raphson iteration

F

1 INTRODUCTION

MANY numerical problems in dynamical systems
or planetary orbit dynamics, such as the long-

term stability of the solar system [1], finding sinks in
the Henon Map [2], iterating the Lorenz attractor [3],
etc., require higher precisions than the standard double
precision (now called binary64 [4]). Quad or higher pre-
cision is rarely implemented in hardware, and the most
common solution is to use software emulated higher pre-
cision libraries, also called arbitrary precision libraries.
There are mainly two ways of representing numbers
in higher precision. The first one is the multiple-digit
representation: numbers are represented by a sequence of
possibly high-radix digits coupled with a single expo-
nent. An example is the representation used in GNU
MPFR [5], an open-source C library, which, besides
arbitrary precision, also provides correct rounding for
each atomic operation. The second way is the multiple-
term representation in which a number is expressed as

• M. Joldeş is with CNRS, LAAS Laboratory, 7 Avenue du Colonel Roche,
31077 Toulouse, France
E-mail: mmjoldes@laas.fr

• O. Marty is with ENS Cahan, 61 Avenue du Président Wilson, 94230
Cachan, France
E-mail: omarty@ens-cachan.fr

• J.-M. Muller is with CNRS, LIP Laboratory, ENS Lyon, 46 Allée d’Italie,
69364 Lyon Cedex 07, France
E-mail: jean-michel.muller@ens-lyon.fr

• V. Popescu is with LIP Laboratory, ENS Lyon, 46 Allée d’Italie, 69364
Lyon Cedex 07, France
E-mail: valentina.popescu@ens-lyon.fr

the unevaluated sum of several standard floating-point
(FP) numbers. This sum is usually called a FP expansion.
Bailey’s library QD [6] uses this approach and supports
double-double (DD) and quad-double (QD) computa-
tions, i.e. numbers are represented as the unevaluated
sum of 2 or 4 standard double-precision FP numbers. The
DD and QD formats and the operations implemented in
that library are not compliant with the IEEE 754-2008
standard, and do not provide correctly rounded opera-
tions. However, this multiple-term representation offers
the simplicity of using directly available and highly
optimized hardware implemented FP operations. This
makes most multiple-term algorithms straightforwardly
portable to highly parallel architectures, such as GPUs.
In consequence, there is a demand for algorithms for
arithmetic operations with FP expansions, that are suffi-
ciently simple yet efficient, and for which effective error
bounds and thorough proofs are given. Several algo-
rithms already exist for addition and multiplication [7],
[6, Thm. 44, Chap. 14].

In this article we mainly focus on division (and hence,
reciprocal) and square root, which are less studied in
literature. For these algorithms we provide a thorough
error analysis and effective error bounds. There are
two classes of algorithms for performing division and
square root: the so-called digit-recurrence algorithms [8],
that generalize the paper-and-pencil method, and the
algorithms based on the Newton-Raphson iteration [9],
[10]. While the algorithms suggested so far for dividing
expansions belong to the former class, here we will be
interested in studying the possible use of the latter class:

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 2

since its very fast, quadratic convergence is appealing
when high precision is at stake.

Another contribution of this article is a new method
for the renormalization of FP expansions. This operation
ensures certain precision related requirements and is an
important basic brick in most computations with FP
expansions. Our renormalization procedure takes advan-
tage of the computer’s pipeline, so it is fast in practice.
For the sake of completeness, we also briefly present a
variant of addition and multiplication algorithms which
we implemented, and for which we intend on providing
a full error analysis in a future related article.

A preliminary version of our work concerning only
the case of division was recently presented in [11].

The outline of the paper is the following: in Section 2
we recall some basic notions about FP expansions and
the algorithms used for handling them. Then, in Sec-
tion 3 we give the new renormalization algorithm along
with the proof of correctness. In Section 4 we present
methods for performing divisions, including existing
algorithms based on long classical division on expan-
sions (Sec. 4.1) and the Newton based method (Sec. 4.2),
followed by the correctness proof, the error analysis
and the complexity analysis. After that, in Section 5
we give a similar method for computing the square
root of an expansion along with the complexity analysis
of the algorithm. Finally, in Section 6 we assess the
performance of our algorithms – in terms of number of
FP operations and proven accuracy bounds.

2 FLOATING-POINT EXPANSIONS

A normal binary precision-p floating-point (FP) number
is a number of the form

x = Mx · 2ex−p+1,

with 2p−1 ≤ |Mx| ≤ 2p − 1, where Mx is an integer. The
integer ex is called the exponent of x, and Mx · 2−p+1

is called the significand of x. We denote accordingly to
Goldberg’s definition: ulp(x) = 2ex−p+1 [7, Chap. 2] (ulp
is an acronym for unit in the last place). Another useful
concept is that of unit in the last significant place: uls(x) =
ulp(x) · 2zx , where zx is the number of trailing zeros at
the end of Mx.

In order to ensure the uniqueness of the representation
we need to set the first bit of the significand to 1 and
adjust the exponent according to that. This is called a
normalized representation. This is not possible if x is less
than 2emin , where emin is the smallest allowed exponent.
Such numbers are called subnormal, where the first bit of
the significand is 0 and the exponent is the minimum
representable one. The IEEE 754 standard specifies that
an underflow exception is raised every time a subnormal
number occurs and the operation is inexact.

A natural extension of the notion of DD or QD is the
notion of floating-point expansion. The arithmetic on FP
expansions was first developed by Priest [12], and in a
slightly different way by Shewchuk [13]. If, starting from
a set of FP inputs, we only perform exact operations,

then the values we obtain are always equal to finite sums
of FP numbers. Such finite sums are called expansions.
A natural idea is to try to manipulate such expansions,
for performing calculations that are either exact, either
approximate yet very accurate.

Definition 2.1. A FP expansion u with n terms is the
unevaluated sum of n FP numbers u0, . . . , un−1, in which
all nonzero terms are ordered by magnitude (i.e., ui 6=
0⇒ |ui| ≥ |ui+1|). Each ui is called a component of u.

The notion of expansion is “redundant” since a
nonzero number always has more than one represen-
tation as a FP expansion. To make the concept useful
in practice and easy to manipulate, we must introduce a
constraint on the components: the ui’s cannot “overlap”.
The notion of overlapping varies depending on the
authors. We give here two very different definitions,
using the above-introduced notation.

Definition 2.2. (Nonoverlapping FP numbers) Assum-
ing x and y are normal numbers with representations
Mx ·2ex−p+1 and My ·2ey−p+1 (with 2p−1 ≤ |Mx| , |My| ≤
2p−1), they are P-nonoverlapping (that is, nonoverlapping
according to Priest’s definition [14]) if |ey − ex| ≥ p.

Definition 2.3. An expansion is P-nonoverlapping (that
is, nonoverlapping according to Priest’s definition [14])
if all of its components are mutually P-nonoverlapping.

A visual representation of Definition 2.3, inspired
from [17] can be seen in Fig. 1 (a). Shewchuk [13] weak-
ens this into nonzero-overlapping sequences as shown in
Fig. 1 (b) (also inspired from [17]):

Definition 2.4. An expansion u0, u1, . . . , un−1 is S-
nonoverlapping (that is, nonoverlapping according to
Shewchuk’s definition [13]) if for all 0 < i < n, we have
eui−1 − eui ≥ p− zui−1 .

(a)

(b)
Fig. 1: Nonoverlapping sequence by (a) Priest’s scheme and

(b) Shewchuk’s scheme [17].

In general, a P-nonoverlapping expansion carries more
information than an S-nonoverlapping one with the same
number of components. In the worst case, in radix 2,
an S-nonoverlapping expansion with 53 components may
not contain more information than one double-precision
FP number; it suffices to put one bit of information into
every component.

When Priest first started developing the FP expansion
arithmetic, he considered that all the computations were

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 3

done in faithful FP arithmetic (see [14]), since round-
to-nearest rounding mode was not so common. More
recently, a slightly stronger sense of nonoverlapping was
introduced in 2001 by Hida, Li and Bailey [6]:

Definition 2.5. An expansion u0, u1, . . . , un−1 is B-
nonoverlapping (that is, nonoverlapping according to Bai-
ley’s definition [6]) if for all 0 < i < n, we have
|ui| ≤ 1

2 ulp(ui−1).

Remark 2.6. For P-nonoverlapping expansions we have
|ui| ≤ (2p − 1)/2p ulp(ui−1) and for S-nonoverlapping
expansions |ui| ≤ (2p − 1)/2p uls(ui−1).

Even though we presented here three different types of
nonoverlapping, in what follows we will focus only on
the P and B-nonoverlapping expansions, since, in general,
they provide more precision per given number of terms
of a FP expansion.

2.1 Error free transforms

Most algorithms performing arithmetic operations on
expansions are based on the so-called error-free transforms
(EFT), that make it possible to compute both the result
and the rounding error of a FP addition or multiplica-
tion. This implies that in general, each such EFT, applied
to two FP numbers, still returns two FP numbers. Al-
though these algorithms use native precision operations
only, they keep track of all accumulated rounding errors,
ensuring that no information is lost.

We present here two EFTs that we use as basic bricks
for our work. Algorithm 2Sum (Algorithm 1) computes
the exact sum of two FP numbers a and b and returns the
result under the form s+e, where s is the result rounded
to nearest and e is the rounding error. It requires only
6 native FP operations (flops), which it was proven to
be optimal in [15], if we have no information on the
ordering of a and b.

Algorithm 1 2Sum (a, b).

s← RN(a+ b)
// RN stands for performing the operation in rounding to nearest mode.

t← RN(s− b)
e← RN(RN(a− t) + RN(b− RN(s− t)))
return (s, e) such that s = RN(a+ b) and s+ e = a+ b

There exists a similar EFT, that performs the same ad-
dition using only 3 native precision FP operations. This
one is called Fast2Sum [7] and it requires the exponent
of a to be larger than or equal to that of b. This condition
might be difficult to check, but of course, if |a| ≥ |b|, it
will be satisfied.

For multiplying two FP numbers there exist two algo-
rithms: Dekker’s product and 2MultFMA. They compute
the product of two FP numbers a and b and return the
exact result as π, the result rounded to nearest plus e,
the rounding error. The first one requires 17 flops. The
most expensive part of the algorithm is the computation

of the error e = a · b − π, but if a fused-multiply-
add (FMA [7]) instruction, that takes only one flop, is
available, it is easily computed. This gives Algorithm
2MultFMA (Algorithm 2), that takes only 2 flops. This
algorithm works providing that the product a · b does
not overflow and ea+ eb ≥ emin+p− 1, where ea and eb
are the exponents of a and b and emin is the minimum
representable exponent. If the second condition is not
satisfied, the product may not be representable as the
exact sum of two FP numbers (e would be below the
underflow threshold).

Algorithm 2 2MultFMA (a, b).

π ← RN(a · b)
// RN stands for performing the operation in rounding to nearest mode.

e← fma(a, b,−π)
return (π, e) such that π = RN(a · b) and π + e = a · b

These EFT can be extended to work on several inputs
by chaining, resulting in the so-called distillation algo-
rithms [16]. From these we make use of an algorithm
called VecSum by Ogita, Rump, and Oishi [13], [17].
VecSum, presented in Fig. 2 and Algorithm 3, is simply
a chain of 2Sum that performs an EFT on n FP numbers.

Algorithm 3 VecSum (x0, . . . , xn−1).

Input: x0, . . . , xn−1 FP numbers.
Output: e0 + . . .+ en−1 = x0 + . . .+ xn−1.
sn−1 ← xn−1
for i← n− 2 to 0 do

(si, ei+1)← 2Sum(xi, si+1)
end for
e0 ← s0
return e0, . . . , en−1

Fig. 2: VecSum with n terms. Each 2Sum box performs
Algorithm 1, the sum is outputted to the left and the error

downwards.

2.2 Addition and multiplication algorithms for ex-
pansions
An algorithm that performs the addition of two ex-
pansions a and b with n and m terms, respectively,
will return a FP expansion with at most n + m terms.
Similarly, for multiplication, the product can have at
most 2nm terms [12]. So-called normalization algorithms
are used to render the result nonoverlapping, and this
also implies a potential reduction in the number of terms.

Many variants of algorithms that compute the sum
and the product of two FP expansions have been pre-
sented in the literature [12], [13], [6], [16]. Here, we only

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 4

briefly present the algorithms that we used in our actual
implementation. The addition is based on the merge
algorithm and the multiplication is a generalization of
Bailey’s algorithm for DD and QD [6] and it was first
presented in [2].

The addition presented in Algorithm 4 and Fig. 3 is
performed by merging the two FP expansions, a, with
n and b, with m terms, respectively, and normalizing
the resulted array for obtaining an approximation s on
r terms of the sum a+ b.

Algorithm 4 Algorithm of addition of FP expansions.

Input: FP expansions a = a0 + . . .+ an−1; b = b0 + . . .+
bm−1.; r length of the result.

Output: FP expansion s = s0 + . . .+ sr−1.
1: f [0 : m+ n− 1]←Merge(a[0 : n− 1], b[0 : m− 1])
2: s[0 : r − 1]← Renorm(f [0 : m+ n− 1], r)
3: return FP expansion s = s0 + . . .+ sr−1.

Fig. 3: Addition of FP expansions with n and m terms. The
Merge box performs a classic algorithm for merging two

arrays and the Renormalize box performs Algorithm 6.

Subtraction is performed simply by negating the FP
terms in b.

Algorithm 5 Algorithm of multiplication of FP expan-
sions with k terms.
Input: FP expansions a = a0 + . . .+ ak−1; b = b0 + . . .+

bk−1.
Output: FP expansion r = r0 + . . .+ rk−1.

1: (r0, e0)← 2MultFMA(a0, b0)
2: for n← 1 to k − 1 do
3: for i← 0 to n do
4: (pi, êi)← 2MultFMA(ai, bn−i)
5: end for
6: rn, e[0 : n2 + n− 1]← VecSum(p[0 : n], e[0 : n2 − 1])
7: e[0 : (n+ 1)2 − 1]← e[0 : n2 + n− 1], ê[0 : n]
8: end for
9: for i← 1 to k − 1 do

10: rk ← rk + ai · bk−i
11: end for
12: for i← 0 to k2 − 1 do
13: rk ← rk + ei
14: end for
15: r[0 : k − 1]← Renormalize(r[0 : k])
16: return FP expansion r = r0 + . . .+ rk−1.

In Fig. 4 and Algorithm 5 we present the multipli-
cation algorithm. Although we have implemented fully
customized versions, for simplicity, we give here only
the “k input - k output” variant of the algorithm. We

consider two expansions a and b, each with k terms and
we compute the k most significant components of the
product r = a · b. In the renormalization step (line 15 of
Algorithm 5), we use an extra error correction term, so
we perform our “error free transformation scheme” k+1
times.

Here, we just give an intuitive explanation of the
multiplication algorithm. Let ε = 1

2 ulp(r0). Roughly
speaking, if r0 is of the order of Λ, then e0 is of order
O(εΛ). So for the product (p, e) = 2MultFMA(ai, bj),
p is of order O(εnΛ) and e of order O(εn+1Λ), where
n = i + j, and we consider only the terms for which
0 ≤ n ≤ k. This implies that for each n we have n + 1
products to compute (line 4 of Algorithm 5). Next, we
need to add all terms of the same order of magnitude.
Beside the n+1 products, we also have n2 terms resulting
from the previous iteration. This addition is performed
using VecSum (Algorithm 3) to obtain rn in line 6. The
remaining terms are concatenated with the errors from
the n+ 1 products, and the entire e0, . . . , e(n+1)2−1 array
is used in the next iteration. The (k+1)-st component rk
is obtained by simple summation of all remaining errors
with the simple products of order O(εkΛ). EFT are not
needed in the last step since the errors are not reused.

For the addition and multiplication algorithms pre-
sented in this section, we will provide an effective error
analysis in a subsequent paper. An important step for
this goal is to provide a thorough proof for the renor-
malization, which is used at the end of each of these
two algorithms. So, in what follows we focus on our
new algorithm for renormalization of expansions.

3 RENORMALIZATION ALGORITHM FOR EX-
PANSIONS

While several renormalization algorithms have been pro-
posed in literature, Priest [12] algorithm seems to be the
only one provided with a complete correctness proof.
It has many conditional branches, which make it slow
in practice, and has a worst case FP operation count of:
R(n) = 20(n−1), for an input FP expansion with n-terms.

In an attempt to overcome the branching problem we
developed a new algorithm (Algorithm 6), for which we
provide a full correctness proof.

First, we need to define the concept of FP numbers
that overlap by at most d digits.

Definition 3.1. Consider an array of FP numbers:
x0, x1, . . . , xn−1. According to Priest’s [12] definition,
they overlap by at most d digits (0 ≤ d < p) if and only
if ∀i, 0 ≤ i ≤ n− 2,∃ki, δi such that:

2ki ≤ |xi| < 2ki+1, (1)
2ki−δi ≤ |xi+1| ≤ 2ki−δi+1, (2)

δi ≥ p− d, (3)
δi + δi+1 ≥ p− zi−1, (4)

where zi−1 is the number of trailing zeros at the end of
xi−1 and for i = 0, z−1 := 0.

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 5

Fig. 4: Multiplication of FP expansions with k terms. Each 2MultFMA box performs Algorithm 2, the product is outputted
downwards and the error to the right; the VecSum box performs Algorithm 3, in which the most significant component of the
sum is outputted downwards; the circled + and ∗ signs represent standard round-to-nearest FP addition and multiplication.

Proposition 3.2. Let x0, x1, . . . , xn−1 be an array of FP
numbers which overlap by at most d digits (0 ≤ d < p).
The following properties hold:

|xj+1| < 2d ulp(xj), (5)
ulp(xj+1) ≤ 2d−p ulp(xj), (6)

|xj+2 + xj+1| ≤ (2d + 22d−p) ulp(xj). (7)

Proof: We have ulp(xj) = 2kj−p+1 and from (3) we
get |xj+1| < 2kj−δj+1 < 2p−δj ulp(xj) < 2d ulp(xj). This
proves that (5) holds for all 0 ≤ j < n− 1.

By applying (3) we get ulp(xj+1) = 2kj−δj−p+1 ≤
2d−p ulp(xj), which proves that (6) holds for all 0 ≤
j < n− 1.

We have |xj+1| ≤ 2d ulp(xj) and |xj+2| ≤
2d ulp(xj+1) ≤ 22d−p ulp(xj) from which (7) follows.

The renormalization algorithm (Algorithm 6, illus-
trated in Fig. 5) is based on different layers of chained
2Sum. For the sake of simplicity, these are grouped in
simpler layers based on VecSum. We will prove that our
algorithm returns a P-nonoverlapping sequence.

Proposition 3.3. Consider an array x0, x1, . . . , xn−1 of FP
numbers that overlap by at most d ≤ p − 2 digits and let
m be an input parameter, with 1 ≤ m ≤ n − 1. Provided
that no underflow / overflow occurs during the calculations,
Algorithm 6 returns a “truncation” to m terms of a P-
nonoverlapping FP expansion f = f0 + . . . + fn−1 such
that x0 + . . .+ xn−1 = f .

To prove this proposition, in what follows, we first
prove several intermediate properties. The notations

Algorithm 6 Renormalization algorithm

Input: FP expansion x = x0 + . . . + xn−1 consisting of
FP numbers that overlap by at most d digits, with
d ≤ p− 2; m length of output FP expansion.

Output: FP expansion f = f0 + . . . + fm−1 with fi+1 ≤
(1
2 + 2−p+2 + 2−p) ulp(fi), for all 0 ≤ i < m− 1.

1: e[0 : n− 1]← V ecSum(x[0 : n− 1])
2: f (0)[0 : m]← V ecSumErrBranch(e[0 : n− 1],m+ 1)
3: for i← 0 to m− 2 do
4: f (i+1)[i : m]← V ecSumErr(f (i)[i : m])
5: end for
6: return FP expansion f = f

(1)
0 + . . .+f

(m−1)
m−2 +f

(m−1)
m−1 .

used in the proof (si, ei, εi, fi, ρi and gi) are defined
on the schematic drawings of the algorithms discussed.
We also raise the important remark that at each step
we prove that all the 2Sum blocks can be replaced by
Fast2Sum ones, but for simplicity of the proof we chose
to present first the 2Sum version.

First level (line 1, Algorithm 6)
It consists in applying Algorithm 3, VecSum (see also
Fig. 2) on the input array, from where we obtain the
array e = (e0, e1, . . . , en−1).

Proposition 3.4. After applying the VecSum algorithm, the
output array e = (e0, e1, . . . , en−1) is S-nonoverlapping
and may contain interleaving zeros.

Proof: Since si = RN(xi+si+1), si is closer to xi+si+1

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 6

Fig. 5: Renormalization of FP expansions with n terms. The
VecSum box performs Algorithm 3, the VecSum-ErrBranch box,

Algorithm 7 and the VecSumErr box, Algorithm 8.

than xi. Hence |(xi + si+1)− si| ≤ |(xi + si+1)− xi|, and
so |ei+1| ≤ |si+1|. Similarly, si is closer to xi + si+1 than
si+1, so |ei+1| ≤ |xi|. From (5) we get:

|xj+1| + |xj+2|+ · · · ≤
≤ [2d + 22d−p + 23d−2p + 24d−3p + . . .] ulp(xj)

≤ 2d
2p

2p − 1
ulp(xj). (8)

We know that sj+1 = RN(xj+1 + RN(· · · + xn−1))
and by using a property given by Jeannerod and Rump
in [18] we get:

|sj+1 − (xj+1 + . . .+ xn−1)|
≤ (n− j − 2) · 2−p · (|xj+1|+ · · ·+ |xn−1|) .(9)

From (8) and (9) we have:

|sj+1| ≤ 2d
2p

2p − 1
(1 + (n− j − 2)2−p) ulp(xj).

It is easily seen that

2d
2p

2p − 1
(1 + (n− j − 2)2−p) ≤ 2p−1, (10)

is satisfied for p ≥ 4 and n ≤ 16, for p ≥ 5 and n ≤ 32
and so on. This includes all practical cases, when d ≤
p− 2, so that ulp(sj+1) < ulp(xj). Therefore xj and sj+1

are multiples of ulp(sj+1), thus xj + sj+1 is multiple of
ulp(sj+1), hence RN(xj + sj+1) is multiple of ulp(sj+1)
and |ej+1| = |xj + sj+1 − RN(xj + sj+1)| is multiple of
ulp(sj+1).

Also, by definition of 2Sum, we have |ej+2| ≤
1
2 ulp(sj+1). Now, we can compare |ej+1| and |ej+2|. Since
|ej+1| is a multiple of ulp(sj+1), either ej+1 = 0 or ej+1

is larger than 2 |ej+2| and multiple of 2k, such that 2k >
|ej+2|. This implies that the array e = (e0, e1, . . . , en−1)
is S-nonoverlapping and may have interleaving zeros.
Remark 3.5. Since we have |sj+1| ≤ 2p−1 ulp(xj), for d ≤
p−2 and p ≥ 4 for n up to 16 and also ulp(xj) ≤ 21−p |xj |
we deduce that |sj+1| ≤ |xj |. Hence, at this level we can
use instead of 2Sum basic blocks the Fast2Sum ones.

Second level (line 2, Algorithm 6)

Algorithm 7 Second level of the renormalization algo-
rithm - VecSumErrBranch
Input: S-nonoverlapping FP expansion e = e0+. . .+en−1;

m length of the output expansion.
Output: FP expansion f = f0 + . . . + fm−1 with fj+1 ≤

ulp(fj), 0 ≤ j < m− 1.
1: j ← 0
2: ε0 = e0
3: for i← 0 to n− 2 do
4: (fj , εi+1)← 2Sum(εi, ei+1)
5: if εi+1 6= 0 then
6: if j ≥ m− 1 then
7: return FP expansion f = f0 + . . . + fm−1.

//enough output terms

8: end if
9: j ← j + 1

10: else
11: εi+1 ← fj
12: end if
13: end for
14: if εn−1 6= 0 and j < m then
15: fj ← εn−1
16: end if
17: return FP expansion f = f0 + . . .+ fm−1.

It is applied on the array e obtained previously. This
is also a chain of 2Sum, but instead of starting from
the least significant, we start from the most significant
component. Also, instead of propagating the sums we
propagate the errors. If however, the error after a 2Sum
block is zero, then we propagate the sum (this is shown
in Figure 6). In what follows we will refer to this
algorithm by VecSumErrBranch (see Algorithm 7). The
following property holds:

Proposition 3.6. Let an input array e = (e0, . . . , en−1) of
S-non-overlapping terms and 1 ≤ m ≤ n the required number
of output terms. After appling VecSumErrBranch, the output
array of f = (f0, . . . , fm−1), with 0 ≤ m ≤ n − 1 satisfies
|fi+1| ≤ ulp(fi) for all 0 ≤ i < m− 1.

Proof: The case when e contains 1 or 2 elements is
trivial. Consider now at least 3 elements. By definition
of 2Sum, we have |ε1| ≤ 1

2 ulp(f0) and by definition of
S-nonoverlapping,

e0 = E0 · 2k0 with |e1| < 2k0 ,

e1 = E1 · 2k1 with |e2| < 2k1 .

Hence, f0 and ε1 are both multiples of 2k1 . Two possible
cases may occur:

(i) ε1 = 0. If we choose to propagate directly ε1 = 0,
then f1 = e2 and ε2 = 0. This implies by induction
that fi = ei+1,∀i ≥ 1. So, directly propagating the error
poses a problem, since the whole remaining chain of
2Sum is executed without any change. So, as shown in

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 7

Algorithm 7, line 11, when εi+1 = 0 we propagate the
sum fj .

(ii) ε1 6= 0. Then |e2| < |ε1| and |ε1 + e2| < 2 |ε1|, from
where we get |f1| = |RN(ε1 + e2)| ≤ 2 |ε1| ≤ ulp(f0).

We prove by induction the following statement: at step
i > 0 of the loop in Algorithm 7, both fj−1 and εi are
multiples of 2ki with |ei+1| < 2ki . We proved above that
i = 1 holds. Suppose now it holds for i and prove it
for i + 1. Since fj−1 and εi are multiples of 2ki with
|ei+1| < 2ki and ei+1 = Ei+1 · 2ki+1 with |ei+2| < 2ki+1

(by definition of S-nonoverlapping), it follows that both fj
and εi+1 are multiples of 2ki+1 (by definition of 2Sum).

Finally, we prove the relation between fj and fj−1.
If εi+1 = 0, we propagate fj , i.e. εi+1 = fj . Otherwise
|ei+1| < |εi|, so |ei+1 + εi| < 2 |εi| and finally |fj | =
|RN(ei+1 + εi)| ≤ 2 |εi| ≤ ulp(fj−1).

Fig. 6: VecSumErrBranch with n terms. Each 2Sum box
performs Algorithm 1, the sum is outputted downwards and

the error to the right. If the error is zero, the sum is
propagated to the right.

Remark 3.7. For this algorithm we can also use Fast2Sum
instead of 2Sum. We already showed that either |ei+1| <
|εi|, or εi = 0, in which case we replace εi = fj−1, which
is a multiple of 2ki with |ei+1| < 2ki .

Third level and further (lines 3-5, Algorithm 6)
On the previously obtained array we apply a similar
chain of 2Sum, starting from the most significant com-
ponent and propagating the error. In these subsequent
levels, no conditional branching is needed anymore (see
Algorithm 8).

Algorithm 8 Third level of the renormalization algorithm
- VecSumErr
Input: FP expansion f = f0 + . . . + fm with |fi+1| ≤

ulp(fi), for all 0 ≤ i ≤ m− 1.
Output: FP expansion g = g0 + . . . + gm with |g1| ≤(

1
2 + 2−p+2

)
ulp(g0) and |gi+1| ≤ ulp(gi), for 0 < i ≤

m− 1.
1: ρ0 = f0
2: for i← 0 to m− 1 do
3: (gi, ρi+1)← 2Sum(ρi, fi+1)
4: end for
5: gm ← εm
6: return FP expansion g = g0 + . . .+ gm.

We prove the following property:

Proposition 3.8. After applying Algorithm 8, VecSumErr
on an input array f = (f0, . . . , fm), with |fi+1| ≤ ulp(fi),
for all 0 ≤ i ≤ m − 1, the output array g = (g0, . . . , gm)

Fig. 7: VecSumErr with m+1 terms. Each 2Sum box performs
Algorithm 1, sums are outputted downwards and errors to

the right.

satisfies |g1| ≤
(
1
2 + 2−p+2

)
ulp(g0) and |gi+1| ≤ ulp(gi),

for 0 < i ≤ m− 1.

Proof: Since |f1| ≤ ulp(f0) and g0 = RN(f0 + f1)
we have: (1/2) ulp(f0) ≤ ulp(g0) ≤ 2 ulp(f0), and |ρ1| ≤
(1/2) ulp(g0). We also have:

|f1| ≤ ulp(f0), which implies ulp(f1) ≤ 2−p+1 ulp(f0),

|f2| ≤ ulp(f1) ≤ 2−p+2 ulp(g0).

Hence:
|ρ1 + f2| ≤

(
1/2 + 2−p+2

)
ulp(g0).

Since
(
1/2 + 2−p+2

)
ulp(g0) is a FP number, we also have:

|g1| = |RN(ρ1 + f2)| ≤
(
1/2 + 2−p+2

)
ulp(g0).

This bound is very close to (1/2) ulp(g0) and it seems
that in most practical cases, one actually has |g1| ≤
1
2 ulp(g0). This implies that g0 and g1 are “almost” B-
nonoverlapping and a simple computation shows that
they are P-nonoverlapping as soon as p ≥ 3, which occurs
in all practical cases. As we iterate further, we get:

|ρi+1| ≤ (1/2) ulp(gi),

|fi+1| ≤ ulp(fi), which implies ulp(fi+1) ≤ 2−p+1 ulp(fi).

We know that ρi is multiple of ulp(fi) and from this
we derive two cases: (i) ρi = 0, and as a consequence
∀j ≥ i, gj = fj+1 and gm = 0. In the second case (ii) we
get:

|fi+1| ≤ |ρi| ≤ (1/2) ulp(gi−1),

|fi+1 + ρi| ≤ ulp(gi−1),

|gi| = |RN(fi+1 + ρi)| ≤ ulp(gi−1).

Remark 3.9. For Algorithm 8 we can also use the faster
algorithm, Fast2Sum(ρi, fi+1), because we either have
ρi = 0 or |fi+1| ≤ |ρi|.

The above proposition shows that while we obtain a
nonoverlapping condition for the first two elements of the
resulting array g, for the others we don’t strengthen the
existing bound |gi+1| ≤ ulp(gi). There is an advantage
however: if zeros appear in the summation process, they
are pushed at the end; we don’t use any branching.
This suggests to continue applying a subsequent level
of the same algorithm on the remaining elements, say
g1, . . . , gm. This is the idea of applying m − 1 levels of
VecSumErr in lines 3-5, Algorithm 6. We are now able to
prove Prop. 3.3.

Proof: (of Prop. 3.3) Consider m ≥ 2, otherwise the
output reduces to only one term. The loop in lines 3-5 of

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 8

Algorithm 6 is executed at least once. From Prop. 3.4, 3.6
and 3.8 we deduce that

∣∣∣f (1)1

∣∣∣ ≤ (1/2 + 2−p+2
)

ulp(f
(1)
0)

and
∣∣∣f (1)i+1

∣∣∣ ≤ ulp(f
(1)
i), for i > 0. If m = 2 then f

(1)
0 , f

(1)
1

are outputted and the proposition is proven. Otherwise,
f
(1)
0 is kept unchanged and another VecSumErr is applied

to remaining f
(1)
1 , . . . , f

(1)
m . We have:∣∣∣f (1)1

∣∣∣ ≤ (
1/2 + 2−p+2

)
ulp(f

(1)
0),∣∣∣f (1)2

∣∣∣ ≤ ulp(f
(1)
1) ≤ 2−p+1

(
1/2 + 2−p+2

)
ulp(f

(1)
0),

≤ 2−p+1 ulp(f
(1)
0).

Hence,∣∣∣f (2)1

∣∣∣ =
∣∣∣RN(f

(1)
1 + f

(1)
2)
∣∣∣ ,

≤
(
1/2 + 2−p+2 + 2−p+1

)
ulp(f

(1)
0).

Similarly,∣∣∣f (2)2

∣∣∣ ≤ (
1/2 + 2−p+2

)
ulp(f

(2)
1),∣∣∣f (2)3

∣∣∣ ≤ ulp(f
(2)
2) ≤ 2−p+1

(
1/2 + 2−p+2

)
ulp(f

(2)
1),

≤ 2−p+1 ulp(f
(2)
1).

So, f (1)0 , f
(2)
1 , f

(2)
2 are nonoverlapping. It follows by in-

duction that after m − 1 loop iterations the output
f
(1)
0 , . . . , f

(m−1)
m−2 , f

(m−1)
m−1 is a P-nonoverlapping expansion.

Finally, when all n − 1 terms are considered, after at
most n − 1 loop iterations we have: x0 + . . . + xn−1 =

f
(1)
0 + . . .+ f

(n−1)
n−2 + f

(n−1)
n−1 .

Fig. 8 gives an intuitive drawing showing the different
constraints between the FP numbers before and after the
first two levels of Algorithm 6. The notation is the same
as in Fig. 5.

Fig. 8: Illustration of the effect of Algorithm 6. Expansion x
is the input FP sequence, e is the sequence obtained after the
1st level and f (0) is the sequence obtained after the 2nd level.
Remark 3.10. In the worst case, Algorithm 6 performs
n− 1 Fast2Sum calls in the first level and n− 2 Fast2Sum
calls plus n − 1 comparisons in the second one. During
the following m − 1 levels we perform m − i Fast2Sum
calls, with 0 ≤ i < m − 2. This accounts for a total of
Rnew(n,m) = 7n+ 3

2m
2 + 3

2m− 13 FP operations.
Table 1 shows some effective values of the worst case

FP operation count for Priest’s renormalization algo-
rithm [12] and Algorithm 6. One can see that for n ≤ 7
our algorithm performs better or the same. Even though
from values of n > 7 Algorithm 6 performs worse in

TABLE 1: FP operation count for Algorithm 6 vs. Priest’s
renormalization algorithm [12]. We consider that both

algorithms compute n− 1 terms in the output expansion.
q 2 4 7 8 10 12 16

Alg. 6 10 45 120 151 222 305 507
Priest’s alg. [12] 20 60 120 140 180 220 300

terms of operation count than Priest’s one, in practice,
the last m−1 levels will take advantage of the computers
pipeline, because we do not need branching conditions
anymore, which makes it faster in practice.

In what follows we denote by AddRoundE(x[0 : n −
1], y[0 : m − 1], r), an algorithm for expansions ad-
dition, which given two (P− or B−) nonoverlapping
expansions, returns the r most significant terms of the
exact normalized (P− or B−) nonoverlapping sum. If no
request is made on the number of terms to be returned,
then we denote simply by AddE(x[0 : n−1], y[0 : m−1]).
Similarly, we denote by MulRoundE, MulE, SubRoundE,
SubE, DivRoundE, RenormalizeE algorithms for multipli-
cation, subtraction, division and normalization.

4 RECIPROCAL ALGORITHM

4.1 Algorithms using classical long division on ex-
pansions

In reference [12], division is done using the classical
long division algorithm (a variation of the paper-and-
pencil method), which is recalled in Algorithm 9. Bailey’s

Algorithm 9 Priest’s [12] division algorithm. We denote
by f [0 : . . .] and expansion f whose number of terms is
not known in advance.
Input: FP expansion a = a0 + . . . + an−1; b = b0 + . . . +

bm−1; length of output quotient FP expansion d.
Output: FP expansion q = q0 + . . . with at most d terms

s.t.
∣∣∣ q−a/ba/b

∣∣∣ < 21−b(p−4)d/pc.
1: q0 = RN(a0/b0)
2: r(0)[0 : n− 1]← a[0 : n− 1]
3: for i← 1 to d− 1 do
4: f [0 : . . .]←MulE(qi−1, b[0 : m− 1])
5: r(i)[0 : . . .] ← RenormalizeE(SubE(r(i−1)[0 : . . .], f [0 :

. . .]))

6: qi = RN(r
(i)
0 /b0)

7: end for
8: q[0 : . . .]← RenormalizeE(q[0 : d− 1])
9: return FP expansion q = q0 +

division algorithm [6] is similar. For instance, let a =
a0 +a1 +a2 +a3 and b = b0 +b1 +b2 +b3 be QD numbers.
First, one approximates the quotient q0 = a0/b0, then
computes the remainder r = a−q0b in quad-double. The
next correction term is q1 = r0/b0. Subsequent terms qi
are obtained by continuing this process. At each step
when computing r, full quad-double multiplication and
subtraction are performed since most of the bits will
be canceled out when computing q3 and q4, in Bailey’s
algorithm. A renormalization step is performed only at

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 9

the end, on q0 + q1 + q2 + ... in order to ensure non-
overlapping. No error bound is given in [6].

Note that in Algorithm 9 [12] a renormalization step
is performed after each computation of r = r − qib. An
error bound is given in [12]:

Proposition 4.1. [12] Consider two P-nonoverlapping ex-
pansions: a = a0 + . . . + an−1 and b = b0 + . . . + bm−1,
Priest division algorithm [12] computes a quotient expansion
q = q0 + . . .+ qd−1 s.t.∣∣∣∣q − a/ba/b

∣∣∣∣ < 21−b(p−4)d/pc. (11)

Daumas and Finot [19] modify Priest’s division al-
gorithm by using only estimates of the most signifi-
cant component of the remainder r0 and storing the
less significant components of the remainder and the
terms −qib unchanged in a set that is managed with
a priority queue. While the asymptotic complexity of
this algorithm is better, in practical simple cases Priest’s
algorithm is faster due to the control overhead of the
priority queue [19]. The error bound obtained with Dau-
mas’ algorithm is (using the same notations as above):∣∣∣∣q − a/ba/b

∣∣∣∣ < 2−d(p−1)
d−1∏
i=0

(4i+ 6). (12)

4.2 Reciprocal of expansions with an adapted
Newton-Raphson iteration
The classical Newton-Raphson (NR) iteration for com-
puting reciprocals [9], [10], [7, Chap. 2] is based on the
general NR iteration for computing the roots of a given
function f , which is:

xn+1 = xn −
f(xn)

f ′(xn)
. (13)

When x0 is close to a root α, f ′(α) 6= 0, the iteration
converges quadratically. For computing 1/a we choose
f(x) = 1/x− a, which gives

xn+1 = xn(2− axn). (14)

The iteration converges to 1/a for all x0 ∈ (0, 2/a).
However, taking any point in (0, 2/a) as the starting
point x0 would be a poor choice. A much better choice
is to choose x0 equal to a FP number very close to 1/a.
This only requires one FP division. The quadratic conver-
gence of (14) is deduced from xn+1−1/a = −a(xn−1/a)2.
This iteration is self-correcting because rounding errors do
not modify the limit value.

While iteration (14) is well known, in Algorithm 10
we use an adaptation for computing reciprocals of FP
expansions, with truncated operations involving FP ex-
pansions. Our algorithm works with both B- and P-
nonoverlapping FP expansions. For the sake of clarity
we consider first the case of B-nonoverlapping FP expan-
sions, and then make the necessary adjustments for P-
nonoverlapping expansions in Proposition 4.4.

Algorithm 10 Truncated Newton iteration based algo-
rithm for reciprocal of an FP expansion.

Input: FP expansion a = a0+. . .+a2k−1; length of output
FP expansion 2q .

Output: FP expansion x = x0 + . . .+x2q−1 s.t.
∣∣x− 1

a

∣∣ ≤
2−2

q(p−3)−1

|a|
.

1: x0 = RN(1/a0)
2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], a[0 : 2i+1 −

1], 2i+1)
4: ŵ[0 : 2i+1 − 1]← SubRoundE(2, v̂[0 : 2i+1 − 1], 2i+1)
5: x[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], ŵ[0 : 2i+1 −

1], 2i+1)
6: end for
7: return FP expansion x = x0 + . . .+ x2q−1.

4.3 Error analysis of Algorithm 10
Let a = a0 + . . .+ a2k−1 be a B-nonoverlapping FP expan-
sion with 2k terms and q ≥ 0. We will prove that our
algorithm returns an approximation x = x0 + . . .+x2q−1
of 1/a, in the form of a B-nonoverlapping FP expansion
with 2q terms, such that

|x− 1/a| ≤ 2−2
q(p−3)−1/|a|. (15)

We will first prove the following proposition:

Proposition 4.2. Consider a B-nonoverlapping expansion
u = u0 + u1 + . . . + uk with k normal binary FP terms of
precision p. Denote u(i) = u0 + u1 + · · · + ui, i ≥ 0, i.e. “a
truncation” of u to i+1 terms. The following inequalities hold
for 0 ≤ i ≤ k:

|ui| ≤ 2−ip |u0| , (16)∣∣∣u− u(i)∣∣∣ ≤ 2−ip |u| η

1− η
, (17)(

1− 2−ipη

1− η

)
|u| ≤

∣∣∣u(i)∣∣∣ ≤ (1 +
2−ipη

1− η

)
|u| , (18)

|1/u− 1/u0| ≤ η/|u|, (19)

where

η =

∞∑
j=0

2(−j−1)p =
2−p

1− 2−p
.

Proof: By definition of a B-nonoverlapping expansion
and since for any normal binary FP number ui, ulp(ui) ≤
2−p+1 |ui| we have |ui| ≤ (1/2) ulp(ui−1) ≤ 2−p |ui−1|
and (16) follows by induction.

Consequently we have |u− u0| =
|u1 + u2 + · · ·+ uk| ≤ 2−p |u0| + 2−2p |u0| + · · · +
2−kp |u0| ≤ |u0| η. One observes that u and u0 have the
same sign. A possible proof is by noticing that 1− η > 0
and − |u0| η ≤ u − u0 ≤ |u0| η. Suppose u0 > 0, then
−u0η ≤ u − u0 ≤ u0η, hence u0(1 − η) ≤ u ≤ u0(1 + η)
which implies u > 0. The case u0 < 0 is similar. It
follows that

|u|/(1 + η) ≤ |u0| ≤ |u|/(1− η). (20)

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 10

For (17) we use (20) together with:

∣∣∣u− u(i)∣∣∣ ≤ ∞∑
j=0

2(−i−j−1)p |u0| ≤ 2−ipη |u0| ,

and (18) is a simple consequence of (17). Similarly, (19)
follows from |1/u− 1/u0| = (1/|u|) · |(u0 − u)/u0| ≤
η/|u|.

Proposition 4.3. Provided that no underflow / overflow
occurs during the calculations, Algorithm 10 is correct when
run with B-nonoverlapping expansions.

Proof: The input of the algorithm is a non-
overlapping FP expansion a = a0 + a1 + · · · + a2k−1, in
which every term ai is a normal binary FP number of
precision p. Let fi = 2i+1−1 and a(fi) = a0+a1+. . .+afi
i.e. “a truncation” of a to fi + 1 terms, with 0 ≤ i.

For computing 1/a we use Newton iteration: x0 =
RN(1/a0), xi+1 = xi(2 − a(fi)xi)), i ≥ 0 by truncating
each FP expansion operation as follows:

• let vi := (a(fi) · xi) be the exact product represented
as a non-overlapping expansion on 22(i+1) terms, we
compute v̂i := v

(2i)
i i.e. vi “truncated to” 2i+1 terms;

• let wi := 2 − v̂i be the exact result of the subtrac-
tion represented as a non-overlapping expansion
on 2i+1 + 1 terms, we compute ŵi := w

(2i)
i i.e. vi

“truncated to” 2i+1 terms;
• let τi := xi · ŵi be the exact product represented as

a non-overlapping expansion on 2 · 2i(2i+1) terms,
we compute xi+1 := τ

(2i+1−1)
i i.e. τi “truncated to”

2i+1 terms.

Let us first prove a simple upper bound for the
approximation error in x0:

ε0 = |x0 − 1/a| ≤ 2η/|a|. (21)

Since x0 = RN(1/a0), then |x0 − 1/a0| ≤ 2−p |1/a0|,
so |x0 − 1/a| ≤ 2−p |1/a0| + |1/a− 1/a0| ≤
((1 + η)2−p + η)/|a| ≤ 2η/|a| (from (20)).

Let us deduce an upper bound for the approximation
error in x at step i + 1, εi+1 = |xi+1 − 1/a|. For this,
we will use a chain of triangular inequalities that make
the transition from our “truncated” Newton error to the
“untruncated” one. Let γi = 2−(2

i+1−1)pη/(1− η). We
have from Proposition 4.2, eq. (17):

|xi+1 − τi| ≤ γi |xi · ŵi| , (22)

|wi − ŵi| ≤ γi |wi| ≤ γi |2− v̂i| , (23)

|vi − v̂i| ≤ γi
∣∣∣a(fi) · xi∣∣∣ , (24)

∣∣∣a− a(fi)∣∣∣ ≤ γi |a| . (25)

From (22) we have:

εi+1 ≤ |xi+1 − τi|+ |τi − 1/a|
≤ γi |xi · ŵi|+ |xi · ŵi − 1/a|
≤ γi |xi(wi − ŵi)|+ γi |xiwi|+ |xi · ŵi − 1/a|
≤ (1 + γi) |xi| |wi − ŵi|+ γi |xiwi|
+ |xi · wi − 1/a| .

Using (23) and (24):

εi+1 ≤ |xi · wi − 1/a|+ ((1 + γi)γi + γi) |xiwi|
≤ |xi · (2− vi)− 1/a|+ |xi| · |(vi − v̂i)|
+ (γi(1 + γi) + γi) |xi| (|(2− vi)|+ |vi − v̂i|)
≤

∣∣∣xi · (2− a(fi) · xi)− 1/a
∣∣∣

+ γi(1 + γi)
2
∣∣x2i ∣∣ ∣∣∣a(fi)∣∣∣

+ (γi(1 + γi) + γi)
∣∣∣xi(2− a(fi) · xi)∣∣∣ .

By (25), we have:∣∣∣xi · (2− a(fi) · xi)− 1/a
∣∣∣ ≤ |a| |xi − 1/a|2 + γi |xi|2 |a| ,

|xi|2
∣∣∣a(fi)∣∣∣ ≤ (1 + γi) |xi|2 |a| ,

and∣∣∣xi · (2− a(fi) · xi)∣∣∣ ≤ |a| |xi − 1/a|2 + γi |xi|2 |a|+ 1/|a|.

Hence we have:

εi+1 ≤ (1 + γi)
2 |a| |xi − 1/a|2

+ γi(1 + γi)
2(2 + γi)

∣∣x2i ∣∣ |a|
+ γi(2 + γi)1/|a|. (26)

We now prove by induction that for all i ≥ 0:

εi = |xi − 1/a| ≤ 2−2
i(p−3)−1/|a|. (27)

For i = 0, this holds from (21) and the fact that
η = 1/(2p − 1) ≤ 2−p+1. For the induction step, we have
from (26):

εi+1 ≤ (1 + γi)
2 |a| |εi|2

+ γi(1 + γi)
2(2 + γi) (1± εi |a|)2

1

|a|

+ γi(2 + γi)
1

|a|
, (28)

which implies

|a| εi+1

2−2i+1(p−3) ≤ (1 + γi)
2

4
+

(1 + 2−p+2)(2 + γi)

64

·
(

1 + (1 + γi)
2
(

1 + 2−2
i(p−3)−1

)2)
≤ 1/2. (29)

This completes our proof.

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 11

Proposition 4.4. Algorithm 10 is correct when run with P-
nonoverlapping expansions.

Proof: The previous analysis holds provided that
we use Remark 2.6. This mainly implies the following

changes η′ = 2
2p−3 , γ′i =

(
2

2p−1

)2i+1−1
η′

1−η′ . With this
change it is easy to verify that equations (21)–(28) hold
as soon as p > 2. Note that for the induction step at
i = 1, a tighter bound is needed for ε′0 ≤

2−p(1+η′)+η′

|a| ≤
2η′

|a|
3−2−p

4 , but the rest of the proof is identical, safe for
some tedious computations.

4.4 Complexity analysis for reciprocal

Our algorithm has the feature of using “truncated” ex-
pansions, while some variants of Add-RoundE and Mul-
RoundE compute the result fully and only then truncate.
This is the case of Priest’s algorithms, which are not
tuned for obtaining “truncated” expansions on the fly –
and thus penalize our algorithm–. On the other hand, the
algorithms presented in Sec. 2.2, can take into account
only the significant terms of the input expansions in or-
der to compute the result. Even though these algorithms
have not yet been proven to work properly, we obtained
promising results in practice, so we will perform the
complexity analysis based on them.

We present here the operation count of our algorithms,
by taking ([7]) 6 FP operations for 2Sum, 3 for Fast2Sum
and 2 for 2MultFMA. For the sake of simplicity,
for multiplication, we will consider that the input
expansions have the same number of terms.
– The renormalization (Algorithm 6) of an overlapping
expansion x with n terms, requires (2n−3)+

∑m−2
i=0 m−i

Fast2Sum calls and n− 1 comparisons. This accounts for
Rnew(n,m) = 7n+ 3

2m
2 + 3

2m− 13 FP operations.
– The addition (Algorithm 4) of two P-nonoverlapping
expansions requires n + m − 1 comparisons and a
renormalization Rnew(n + m, r). This accounts for
A(n,m, r) = 3

2r
2 + 3

2r + 8n+ 8m− 14 FP operations.
– The multiplication (Algorithm 5) of two P-
nonoverlapping expansions requires

∑k
i=1 i 2MultFMA

calls,
∑k−1
i=1 (n2 + n) 2Sum calls, k− 1 FP multiplications,

followed by k2+k−2 FP additions and a renormalization
Rnew(k + 1, k) in the end. This accounts for
M(k) = 2k3 + 7

2k
2 + 19

2 k − 9 FP operations.
–> The special case of multiplying a FP expansion to a
single FP value accounts for only M1(k) = 9

2k
2+ 17

2 k−7.
– Using these algorithms for addition and multiplication
of FP expansions, Priest’s division (Algorithm 9) requires
d divisions and (d − 1)(M1(k)) +

∑d−1
i=0 A(k + 2k(i −

1), k+ 2k(i− 1), k+ 2k(i− 1)) +Rnew(d, d) function calls
in the worst case. This accounts for D(d, k) = 2d3k2 −
6d2k2 + 32

2 d
2k+ 3

2d
2 + 10dk2− 52

2 dk−
23
2 d−

9
2k

2− 17
2 k− 6

FP operations.

Proposition 4.5. Using for addition and multiplication of FP
expansions the algorithms presented in Sec. 2.2, Algorithm 10
requires 32

7 8q + 34
3 4q + 57 · 2q − 24q − 1510

21 FP operations.

Proof: During the ith iteration the following opera-
tions with expansions are performed: 2 multiplications
M(2i+1); one addition A(2i+1, 1, 2i+1). Since q iterations
are done, the total number of FP operations is: 32

7 8q +
34
3 4q + 57 · 2q − 24q − 1510

21 FP operations.
Remark 4.6. Division is simply performed with Algo-
rithm 10 followed by a multiplication M(2q) where the
numerator expansion has 2q terms.

5 SQUARE ROOT ALGORITHMS

The families of algorithms most commonly used are
exactly the same as for division, although, in the case
of FP expansions the digit-recurrence algorithm is tipi-
cally more complicated than for division. This is why
a software implementation would be tedious. Moreover,
Newton-Raphson based algorithms offer the advantage
of assuring a quadratic convergence.

5.1 Square root of expansions with an adapted
Newton-Raphson iteration
Starting from the general Newton-Raphson iteration (13),
we can compute the square root in two different ways.
We can look for the zeros of the function f(x) = x2 − a
that leads to the so called “Heron iteration”:

xn+1 =
1

2
(xn +

a

xn
). (30)

If x0 > 0, then xn goes to
√
a. This iteration needs a

division at each step, which counts as a major drawback.
To avoid performing a division at each step we can

look for the positive root of the function f(x) = 1/x2−a.
This gives the iteration

xn+1 =
1

2
xn(3− ax2n). (31)

This iteration converges to 1/
√
a, provided that x0 ∈

(0,
√

3/
√
a). The result can be multiplied by a in or-

der to get an approximation of
√
a. To obtain fast,

quadratic, convergence, the first point x0 must be a close
approximation to 1/

√
a. The division by 2 is done by

multiplying each of the terms of the input expansion by
0.5, separately.

As in the case of the reciprocal (Sec. 4.2), in Algo-
rithm 11 we use an adaption of iteration (31), using the
truncated algorithms presented above.

The error analysis for this algorithm follows the same
principle as the one for the reciprocal algorithm. The
detailed proof is given in Appendix A. We show that the
relative error decreases after every loop of the algorithm,
by taking into account the truncations performed after
each operation. The strategy is to make the exact Newton
iteration term and bound appear. We show that by the
end of the ith iteration of the loop, εi =

∣∣∣x(2i) − 1/
√
a
∣∣∣ ≤

2−2
i(p−3)−1/

√
a.

In his library, QD, Bailey also uses the Newton it-
eration for the square root computation. Although he
uses the same function as we do, he uses the iteration

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 12

Algorithm 11 Truncated “division-free” Newton itera-
tion (31) based algorithm for reciprocal of the square root
of an FP expansion. By “division-free” we mean that we
do not need a division of FP expansions.

Input: FP expansion a = a0+. . .+a2k−1; length of output
FP expansion 2q .

Output: FP expansion x = x0 + . . .+ x2q−1 s.t.∣∣x− 1/
√
a
∣∣ ≤ 2−2

q(p−3)−1/
√
a. (32)

1: x0 = RN(1/
√
a0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], a[0 : 2i+1 −

1], 2i+1)
4: ŵ[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], v̂[0 : 2i+1 −

1], 2i+1)
5: ŷ[0 : 2i+1 − 1]← SubRoundE(3, ŵ[0 : 2i+1 − 1], 2i+1)
6: ẑ[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], ŷ[0 : 2i+1 −

1], 2i+1)
7: x[0 : 2i+1 − 1]← ẑ[0 : 2i+1 − 1] ∗ 0.5
8: end for
9: return FP expansion x = x0 + . . .+ x2q−1.

under the form: xi+1 = xi + 1
2xi(1− ax

2
i), which from a

mathematical point of view is the same, but it requires a
different implementation. Even though Bailey does not
provide an error analysis for his algorithm, we managed
to prove that the error bound is preserved when using
this iteration (see Appendix A for the detailed proof).

“Heron iteration” algorithm

The same type of proof as above can be applied for the
algorithm using the “Heron iteration” (30) and the same
type of truncations. In this case (Algorithm 12) we obtain
a slightly larger error bound for both types of nonover-
lapping FP expansions: |x−

√
a| ≤ 3

√
a · 2−2q(p−3)−2.

Algorithm 12 Truncated “Heron iteration” (30) based
algorithm for square root of an FP expansion.

Input: FP expansion a = a0+. . .+a2k−1; length of output
FP expansion 2q .

Output: FP expansion x = x0 + . . .+ x2q−1 s.t.∣∣x−√a∣∣ ≤ 3
√
a · 2−2

q(p−3)−2. (33)

1: x0 = RN(
√
a0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1] ← DivRoundE(a[0 : 2i+1 − 1], x[0 : 2i −

1], 2i+1)
4: ŵ[0 : 2i+1 − 1] ← AddRoundE(x[0 : 2i − 1], v̂[0 : 2i+1 −

1], 2i+1)
5: x[0 : 2i+1 − 1]← ŵ[0 : 2i+1 − 1] ∗ 0.5
6: end for
7: return FP expansion x = x0 + . . .+ x2q−1.

5.2 Complexity analysis for square root

We will perform our operation count based on the
addition and multiplication presented in Sec. 2.2, the
same as in Section 4.4.

Proposition 5.1. Using for addition, multiplication and
division of FP expansions the algorithms previously presented,
Algorithm 11 requires 48

7 8q + 16 · 4q + 78 · 2q− 33q− 699
7 FP

operations.

Proof: During the ith iteration, 3 multiplications
M(2i+1), one addition A(2i+1, 1, 2i+1) and one division
by 2 are performed. Since q iterations are done, the total
number of FP operations is: 48

7 8q+16·4q+78·2q−33q− 699
7 .

Remark 5.2. We obtain the square root of an expan-
sion by simply multiplying the result obtained from
Algorithm 11 by the input expansion a. This means an
additional M(2q), where 2q is the number of terms in a.

Proposition 5.3. Using for addition, multiplication and
division of FP expansions the algorithms previously presented,
Algorithm 12 requires 368

49 8q+ 196
9 4q+170·2q−12q2− 2245

21 q−
87445
441 FP operations.

Proof: One addition A(2i+1, 2i+1, 2i+1), one division
D(2i+1) and a division by 2 are performed during each
ith iteration. Since q iterations are done, the total number
of FP operations is: 368

49 8q+ 196
9 4q+170·2q−12q2− 2245

21 q−
87445
441 .
Based on these values, Algorithm 11 performs slightly

better than Algorithm 12, and in the same time the
obtained error bound is tighter.

6 COMPARISON AND DISCUSSION

In Table 2 we show values of the bounds provided by
our error analysis, compared with those of Priest and
Daumas for the reciprocal computation. Our algorithm
performs better for the same number of terms in the
computed quotient, say d = 2q in equations (11) and (12).
Moreover, our algorithm provides a unified error bound
with quadratic convergence independent of using un-
derlying P- or B-nonoverlapping expansions. In the last
column of the same table we give the largest errors
that we actually obtained through direct computation
of the reciprocal using our algorithm. The given value
represents the obtained value upper rounded to the im-
mediate power of 2. For each table entry we performed
1 million random tests.

The complexity analysis shows that our algorithm
performs better, for expansions with more than 2 terms,
even if no error bound is requested (see Table 3 for some
effective values of the worst case FP operation count).

Note that, for instance, to guarantee an error bound of
2−d(p−3)−1, Priest’s algorithm (based on the bound given
in Prop 4.1) needs at least (dp − 3d + 2)p/(p − 4) terms,
which entails a very poor complexity. This implies that
Daumas’ algorithm might be a good compromise in this

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 13

TABLE 2: Error bounds values for Priest (11) vs.
Daumas (12) vs. our analysis (15). β gives the largest

obtained errors for Algorithm 10 using the standard FP
formats double and single. *underflow occurs

Prec, iteration Eq. (11) Eq. (12) Eq. (15) β
p = 53, q = 0 2 2−49 2−51 2−52

p = 53, q = 1 1 2−98 2−101 2−104

p = 53, q = 2 2−2 2−195 2−201 2−208

p = 53, q = 3 2−6 2−387 2−401 2−416

p = 53, q = 4 2−13 2−764 2−801 2−833

p = 24, q = 0 2 2−20 2−22 2−23

p = 24, q = 1 1 2−40 2−43 2−46

p = 24, q = 2 2−2 2−79 2−85 2−92

p = 24, q = 3 2−5 2−155 2−169 *
p = 24, q = 4 2−12 2−300 2−337 *

TABLE 3: FP operation count for Priest vs. our algorithm;
d = 2q terms are computed in the quotient.

d 2 4 8 16
Alg. 9 [12] 24 1714 52986 1808698

Alg. 10 + Alg. 5 140 795 4693 31601

case, provided that the priority queue used there can be
efficiently implemented.

This plus the performance tests that we ran confirm
our hypothesis that for higher precisions the Newton-
Raphson iteration is preferable to classical division.

In the case of the square root, because no error bound
is given for the digit-recurrence algorithm we can only
compare between the errors that we obtain if using the
two different types of Newton iteration available for
computing the square root. The effective values of the
bounds are given in Table 4. The bound provided for
Algorithm 11 is only slightly tighter that the one for
Algorithm 12. The same as for the reciprocal, in the last
column we present the bounds obtained through direct
computation using Algorithm 11.

TABLE 4: Error bounds values for (44) vs. (33). β gives the
largest obtained errors for Algorithm 11 using the standard

FP formats double and single. *underflow occurs
Prec, iteration Eq. (44) Eq. (33) β
p = 53, q = 0 2−51 3 · 2−52 2−52

p = 53, q = 1 2−101 3 · 2−102 2−103

p = 53, q = 2 2−201 3 · 2−202 2−206

p = 53, q = 3 2−401 3 · 2−402 2−412

p = 53, q = 4 2−801 3 · 2−802 2−823

p = 24, q = 0 2−22 3 · 2−23 2−23

p = 24, q = 1 2−43 3 · 2−44 2−45

p = 24, q = 2 2−85 3 · 2−86 2−90

p = 24, q = 3 2−169 3 · 2−170 *
p = 24, q = 4 2−337 3 · 2−338 *

In Table 5 we give some effective values of the worst
case FP operation count for Algorithm 11 vs Algo-
rithm 12 based on section 5.2.

TABLE 5: FP operation count for Algorithm 11 vs.
Algorithm 12; 2q terms are computed in the quotient.

q 1 2 3 4
Alg. 11 + Alg. 5 182 1054 6275 42430

Alg. 12 170 1049 5972 38239

The algorithms presented in this article were im-
plemented in the CAMPARY (CudA Multiple Preci-

sion ARithmetic librarY) software available at http:
//homepages.laas.fr/mmjoldes/campary. The library is
implemented in CUDA – an extension of the C lan-
guage developed by NVIDIA [20] for their GPUs. The
algorithms presented are very suitable for the GPU: all
basic operations (+,−, ∗, /,√) conform to the IEEE 754-
2008 standard for FP arithmetic for single and double
precision; support for the four rounding modes is pro-
vided and dynamic rounding mode change is supported
without any penalties. The fma instruction is supported
for all devices with Compute Capability at least 2.0.

In the implementation we use templates for both the
number of terms in the expansion and the native type
for the terms. In other words, we allow static generation
of any input-output precision combinations (e.g. add a
double-double with a quad-double and store the result
on triple-double) and operations with types like single-
single, quad-single, etc. are supported. All the functions
are defined using host device specifiers, which
allows for the library to be used on both CPU and GPU.

In Table 6 we give some GPU performance measure-
ments for the reciprocal and square root algorithms
implemented in CAMPARY compared to the GQD im-
plementation. The tests were performed on a Tesla C2075
GPU, using CUDA 7.0 software architecture, using a
single thread of execution. More extensive comparisons,
on both CPU and GPU, can be consulted at http://
homepages.laas.fr/mmjoldes/campary.

TABLE 6: GPU performance in MFlops/s for the reciprocal,
division and square root algorithms implemented in CAM-
PARY vs. GQD. di represents the input size (the numerator
size for division) and do is the size of the computed result (the
denominator and the quotient for division). − − − error due
to the GPU’s limited stack size and local memory

CAMPARY QD
di, do Alg. 10 Alg. 10+Alg. 5 Alg. 11 Div. Sqrt.
2, 2 0.0501 0.0348 0.027 0.0632 0.0495
4, 4 0.0114 0.0083 0.0063 0.0044 0.0015
8, 8 0.0025 0.0017 0.0013 ∗ ∗

16, 16 0.00031 0.00023 −−− ∗ ∗
1, 2 0.0672 0.0419 0.0338 0.102 ∗
2, 4 0.012 0.0086 0.0068 ∗ ∗
1, 4 0.0122 0.0087 0.0074 0.2564 ∗
4, 2 0.0501 0.0348 0.0268 ∗ ∗
2, 8 0.0030 0.002 0.0016 ∗ ∗
4, 8 0.0027 0.0018 0.0014 ∗ ∗
4, 16 0.0004 0.00028 −−− ∗ ∗
8, 16 0.00039 0.00027 −−− ∗ ∗

As a future work we intend to generalize the theo-
retical analysis of DD and QD addition/multiplication
algorithms and thus to be able to provide a full error
analysis for these algorithms.

ACKNOWLEDGMENTS

The Authors would like to thank Région Rhône-Alpes
and ANR FastRelax Project for the grants that support
this activity.

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 14

REFERENCES

[1] J. Laskar and M. Gastineau, “Existence of collisional trajectories
of Mercury, Mars and Venus with the Earth,” Nature, vol.
459, no. 7248, pp. 817–819, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1038/nature08096

[2] M. Joldes, V. Popescu, and W. Tucker, “Searching for sinks for
the hénon map using a multipleprecision gpu arithmetic library,”
SIGARCH Comput. Archit. News, vol. 42, no. 4, pp. 63–68, Dec.
2014. [Online]. Available: http://doi.acm.org/10.1145/2693714.
2693726

[3] A. Abad, R. Barrio, and A. Dena, “Computing periodic orbits
with arbitrary precision,” Phys. Rev. E, vol. 84, p. 016701, Jul 2011.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.
84.016701

[4] IEEE Computer Society, IEEE Standard for Floating-Point Arith-
metic. IEEE Standard 754-2008, Aug. 2008, available at http:
//ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-Precision Binary Floating-Point Library with
Correct Rounding,” ACM Transactions on Mathematical Software,
vol. 33, no. 2, 2007, available at http://www.mpfr.org/.

[6] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic (ARITH-16), N. Burgess and
L. Ciminiera, Eds., Vail, CO, Jun. 2001, pp. 155–162.

[7] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010,
ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[8] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic
Publishers, Boston, MA, 1994.

[9] T. J. Ypma, “Historical development of the Newton-Raphson
method,” SIAM Rev., vol. 37, no. 4, pp. 531–551, Dec. 1995.
[Online]. Available: http://dx.doi.org/10.1137/1037125

[10] M. Cornea, R. A. Golliver, and P. Markstein, “Correctness proofs
outline for Newton–Raphson-based floating-point divide and
square root algorithms,” in Proceedings of the 14th IEEE Symposium
on Computer Arithmetic (Adelaide, Australia), Koren and Kornerup,
Eds. IEEE Computer Society Press, Los Alamitos, CA, Apr. 1999,
pp. 96–105.

[11] M. Joldes, J.-M. Muller, and V. Popescu, “On the computation
of the reciprocal of floating point expansions using an adapted
newton-raphson iteration,” in Application-specific Systems, Architec-
tures and Processors (ASAP), 2014 IEEE 25th International Conference
on, June 2014, pp. 63–67.

[12] D. M. Priest, “Algorithms for arbitrary precision floating point
arithmetic,” in Proceedings of the 10th IEEE Symposium on Computer
Arithmetic (Arith-10), P. Kornerup and D. W. Matula, Eds. IEEE
Computer Society Press, Los Alamitos, CA, Jun. 1991, pp. 132–
144.

[13] J. R. Shewchuk, “Adaptive precision floating-point arithmetic
and fast robust geometric predicates,” Discrete Compu-
tational Geometry, vol. 18, pp. 305–363, 1997. [Online].
Available: http://link.springer.de/link/service/journals/00454/
papers97/18n3p305.pdf

[14] D. M. Priest, “On properties of floating-point arithmetics: Nu-
merical stability and the cost of accurate computations,” Ph.D.
dissertation, University of California at Berkeley, 1992.

[15] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller, “On the
computation of correctly-rounded sums,” in Proceedings of the 19th
IEEE Symposium on Computer Arithmetic (ARITH-19), Portland, OR,
June 2009.

[16] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point
summation part I: Faithful rounding,” SIAM Journal on Scientific
Computing, vol. 31, no. 1, pp. 189–224, 2008. [Online]. Available:
http://link.aip.org/link/?SCE/31/189/1

[17] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot
product,” SIAM Journal on Scientific Computing, vol. 26, no. 6, pp.
1955–1988, 2005.

[18] C.-P. Jeannerod and S. M. Rump, “Improved error bounds for
inner products in floating-point arithmetic,” SIAM Journal on
Matrix Analysis and Applications, vol. 34, no. 2, pp. 338–344, Apr.
2013.

[19] M. Daumas and C. Finot, “Division of floating point expansions
with an application to the computation of a determinant,” Journal
of Universal Computer Science, vol. 5, no. 6, pp. 323–338, jun 1999.

[20] NVIDIA, NVIDIA CUDA Programming Guide 5.5, 2013.

Mioara Joldeş was born in Abrud, Romania,
in 1984. She received her Ph.D. degree in
2011 from the École Normale Superieure de
Lyon. She is Chargée de Recherches (junior
researcher) at CNRS, France. Her research in-
terests are in Computer Arithmetic, Validated
Computing and Computer Algebra.

Olivier Marty was born in Evry, France, in 1993.
He received his L3 degree in 2014 from the
Ecole normale superieure de Cachan and he
is now in the Parisian Master of Research in
Computer Science at this school. His research
interest is in Algorithm Design and Theoretical
Computer science

Jean-Michel Muller was born in Grenoble,
France, in 1961. He received his Ph.D. degree in
1985 from the Institut National Polytechnique de
Grenoble. He is Directeur de Recherches (senior
researcher) at CNRS, France, and he is the co-
head of GDR-IM. His research interests are in
Computer Arithmetic. Dr. Muller was co-program
chair of the 13th IEEE Symposium on Computer
Arithmetic (Asilomar, USA, June 1997), general
chair of SCAN’97 (Lyon, France, sept. 1997),
general chair of the 14th IEEE Symposium on

Computer Arithmetic (Adelaide, Australia, April 1999), general chair
of the 22nd IEEE Symposium on Computer Arithmetic (Lyon, France,
June 2015). He is the author of several books, including ”Elementary
Functions, Algorithms and Implementation” (2nd edition, Birkhauser,
2006), and he coordinated the writing of the ”Handbook of Floating-
Point Arithmetic (Birkhauser, 2010). He is an associate editor of the
IEEE Transactions on Computers, and a senior member of the IEEE.

Valentina Popescu was born in Baia-Mare, Ro-
mania, in 1991. She received her MS. degree
in 2014 from the Universite Toulouse 3 - Paul
Sabatier. She is a Ph.D. student in the AriC
team, LIP Laboratory, ENS-Lyon, France. Her
research interests are in Computer Arithmetic
and Validated Computing.

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 15

APPENDIX

Square root algorithm convergence proof

This proof follows the same principle as the convergence
proof for the reciprocal algorithm, and it uses the same
notations. We will show that Algorithm 11, having as
an input a FP expansion a = a0 + · · ·+ a2k−1, computes
and returns an approximation of 1√

a
in the form of a FP

expansion x = x0 + · · · = x2q−1, s.t:∣∣∣∣x− 1√
a

∣∣∣∣ ≤ 2−2
q(p−3)−1
√
a

.

For the sake of clarity we present first the case of B-
nonoverlapping FP expansion, and then make the neces-
sary adjustments for P-nonoverlapping expansion in A.2.

Proposition A.1. Algorithm 11 is correct when run with
B-nonoverlapping expansions.

Proof: In Proposition 4.2 we gave and proved some
properties of the B-nonoverlapping FP expansions. To
those we are going to add a new one:∣∣∣∣ 1√

u
− 1
√
u0

∣∣∣∣ ≤ 1√
u
η. (34)

It can be seen that
∣∣∣ 1√

u
− 1√

u0

∣∣∣ = 1√
u

∣∣∣1− √
u√
u0

∣∣∣. By
using Proposition 4.2 eq. (20), the fact that u and u0 have
the same sign, and the fact that the square root is an
increasing function, we have:

∣∣∣1− √
u√
u0

∣∣∣ ≤ 1−
√

1
1+η ≤ η,

which proves the property.
We continue by first proving a simple upper bound

for the approximation error in x0:

ε0 =

∣∣∣∣x0 − 1√
a

∣∣∣∣ ≤ 1√
a
η(3 + η). (35)

We denote α = RN(
√
a0), so we have x0 = RN(1/α).

We know that
∣∣α−√a0∣∣ ≤ 2−p

√
a0 and

∣∣x0 − 1
α

∣∣ ≤ 2−p 1
α ,

so we obtain:
∣∣∣ 1α − 1√

a0

∣∣∣ ≤ (1
1−2−p − 1) 1√

a0
. By (34) we

have:∣∣∣∣x0 − 1
√
a0

∣∣∣∣ ≤ ∣∣∣∣x0 − 1

α

∣∣∣∣+

∣∣∣∣ 1α − 1
√
a0

∣∣∣∣
≤ 2−p

1

α
+

∣∣∣∣ 1α − 1
√
a0

∣∣∣∣
≤ 2−p

1
√
a0

+ (2−p + 1)

∣∣∣∣ 1α − 1
√
a0

∣∣∣∣
≤ 2η

1
√
a0
.

From (34) it follows:

ε0 ≤
∣∣∣∣x0 − 1

√
a0

∣∣∣∣+

∣∣∣∣ 1√
a
− 1
√
a0

∣∣∣∣
≤ 2η

1
√
a0

+ η
1√
a
.

Because
√
a√

1+η
≤ √a0, then 1√

a0
≤
√
1+η√
a
≤ 1+η/2√

a
.

Now we can conclude that ε0 ≤ (2η(1 + η
2) + η) 1√

a
≤

η(3 + η) 1√
a

.
Before going further, let Ei = εi

√
a, such that:

E0 ≤ η(3 + η).

Next we will deduce an upper bound for the approx-
imation error in x at step i + 1, εi+1 =

∣∣∣xi+1 − 1√
a

∣∣∣. For
this, we use, same as in the case of the reciprocal, a chain
of triangular inequalities that make the transition from
our “truncated” Newton error, to the “untruncated” one.

For the truncations we use the same type of notations
as for the reciprocal error bound proof, so: at each step of
the algorithm vi, wi, and yi represent the exact results of
the computations and we use the hatted notation (v̂i, ŵi,
and ŷi) to represent the results truncated to 2i+1 terms.
τi denotes the exact result of the last two operations:
1
2xi · ŷi, so xi+1 is τi’s truncation to 2i+1 terms.

Let γi = 2−(2
i+1−1)p η

1−η , the same as before. We have
from Proposition 4.2, eq. (17):

|xi+1 − τi| ≤ γi |τi| ≤ γi
∣∣∣∣12xiŷi

∣∣∣∣ , (36)

|yi − ŷi| ≤ γi |yi| ≤ γi |3− ŵi| , (37)

|wi − ŵi| ≤ γi |wi| ≤ γi |xiv̂i| , (38)

|vi − v̂i| ≤ γi |vi| ≤ γi
∣∣∣xia(fi)∣∣∣ , (39)∣∣∣a− a(fi)∣∣∣ ≤ γi |a| . (40)

From (36) we have:

εi+1 ≤ |xi+1 − τi|+
∣∣∣∣τi − 1√

a

∣∣∣∣
≤ γi

∣∣∣∣12xiŷi
∣∣∣∣+

∣∣∣∣12xiŷi − 1√
a

∣∣∣∣ .
Using (37) and (38):

εi+1 ≤ γi(2 + γi)

∣∣∣∣12xi(3− ŵi)
∣∣∣∣

+

∣∣∣∣12xi(3− ŵi)− 1√
a

∣∣∣∣
≤ γi(2 + γi)

∣∣∣∣12xi
∣∣∣∣ (|3− wi|+ γi |wi|)

+γi

∣∣∣∣12xiwi
∣∣∣∣+

∣∣∣∣12xi(3− wi)− 1√
a

∣∣∣∣ .
By (39) we have:

εi+1 ≤ γi

∣∣∣∣12xi
∣∣∣∣ ((2 + γi) |3− xiv̂i|

+(1 + γi(2 + γi)) |xiv̂i|)

+

∣∣∣∣12xi(3− xiv̂i)− 1√
a

∣∣∣∣
≤ γi

∣∣∣∣12xi
∣∣∣∣ ((2 + γi)(|3− xivi|+ γi |vixi|)

+(1 + γi(2 + γi))(1 + γi) |xivi|)

+γi

∣∣∣∣12x2i vi
∣∣∣∣+

∣∣∣∣12xi(3− xivi)− 1√
a

∣∣∣∣ .

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 16

From (40) we have:

εi+1 ≤ γi(2 + γi)

∣∣∣∣12xi
∣∣∣∣ (∣∣∣3− x2i a(fi)∣∣∣

+(γi + 1)2
∣∣∣x2i a(fi)∣∣∣) +

∣∣∣∣12xi(3− x2i a(fi))− 1√
a

∣∣∣∣
≤ γi(2 + γi)(

∣∣∣∣12xi(3− x2i a)

∣∣∣∣+ γi

∣∣∣∣12x3i a
∣∣∣∣)

+γi

∣∣∣∣12x3i a
∣∣∣∣+ γi(2 + γi)(γi + 1)3

∣∣∣∣12x3i a
∣∣∣∣

+

∣∣∣∣12xi(3− x2i a)− 1√
a

∣∣∣∣ .
Hence we have:

εi+1 ≤ (1 + γi)
2

∣∣∣∣xi+1 −
1√
a

∣∣∣∣
+γi((γi + 1)2 + (γi + 1)3

+(γi + 1)4)

∣∣∣∣12x3i a
∣∣∣∣

+γi(2 + γi)
1√
a
. (41)

By using the quadratic convergence of the sequence we
can say that:∣∣∣∣xi+1 −

1√
a

∣∣∣∣ =
1

2

√
a(xi
√
a+ 2)

∣∣∣∣xi − 1√
a

∣∣∣∣2 . (42)

We now prove by induction that for all i ≥ 0 εi =∣∣∣xi − 1√
a

∣∣∣ respects the imposed bound.

We know that |xi
√
a| ≤ εi

√
a+1 and

∣∣x3i a∣∣ ≤ (εi
√
a+1)3√
a

and from (41) we have:

εi+1 ≤ 1

2
(1 + γi)

2
√
a(εi
√
a+ 3)ε2i

+
1

2
γi((γi + 1)2 + (γi + 1)3

+(γi + 1)4)
(εi
√
a+ 1)3√
a

+γi(2 + γi)
1√
a
. (43)

Using the notation Ei = εi
√
a we can transform (43)

in an equation independent of a:

Ei+1 ≤ 1

2
(1 + γi)

2(Ei + 3)E2
i

+
1

2
γi((γi + 1)2 + (γi + 1)3

+(γi + 1)4)(Ei + 1)3 + γi(2 + γi)

For the last part of the proof we denote by f a function
that writes the previous inequality as: Ei+1 ≤ f(Ei, i).
We want to show that ∀i ∈ N, Ei ≤ 2−2

i(p−3)−1 so we
will define ind(i) = 2−2

i(p−3)−1.
For i = 0 we verify that E0 ≤ ind(0) for p ≥ 3.
For i ≥ 1 by induction:

• for i = 1 we can prove by using computer algebra
that the inequality is verified if p ≥ 4, which holds
in practice;

• it is easily shown (by using the definition of a
decreasing function and computation for example)
that the function i 7→ f(ind(i),i)

ind(i+1) is decreasing and it’s
value in 1 is < 1 for p ≥ 3. So, f(ind(i),i)

ind(i+1) ≤ 1;
• suppose that Ei ≤ ind(i), we have Ei+1

ind(i+1) ≤
f(ind(i),i)
ind(i+1) ≤ 1 which concludes the induction.

At last we find the final inequality with i = q.

Proposition A.2. Algorithm 11 is correct when run with
P-nonoverlapping expansions.

Proof: The proof is similar, the same error analysis
holds with the same parameter changes as in Prop. 4.4.

Bailey’s Iteration Convergence Proof

Algorithm 13 Algorithm for reciprocal of the square root
of an FP expansion based on Newton-Raphson interation
of the form xi+1 = xi + 1

2xi(1 − ax
2
i), which is used in

QD library

Input: FP expansion a = a0+. . .+a2k−1; length of output
FP expansion 2q .

Output: FP expansion x = x0 + . . .+ x2q−1 s.t.∣∣∣∣x− 1√
a

∣∣∣∣ ≤ 2−2
q(p−3)−1
√
a

. (44)

1: x0 = RN(1/
√
a0)

2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], a[0 : 2i+1 −

1], 2i+1)
4: ŵ[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], v̂[0 : 2i+1 −

1], 2i+1)
5: ŷ[0 : 2i+1 − 1]← SubRoundE(1, ŵ[0 : 2i+1 − 1], 2i+1)
6: ẑ[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], ŷ[0 : 2i+1 −

1], 2i+1)
7: t̂[0 : 2i+1 − 1]← ẑ[0 : 2i+1 − 1] ∗ 0.5
8: x[0 : 2i+1 − 1] ← AddRoundE(x[0 : 2i − 1], t̂[0 : 2i+1 −

1], 2i+1)
9: end for

10: return FP expansion x = x0 + . . .+ x2q−1.

Similarly to the previous proof, one has from Propo-
sition 4.2, eq. (17):

|xi+1 − τi| ≤ γi |τi| ≤ γi
∣∣xi + t̂i

∣∣ ≤ γi ∣∣∣∣xi +
ẑi
2

∣∣∣∣ , (45)

|zi − ẑi| ≤ γi |zi| ≤ γi |xiŷi| , (46)

|yi − ŷi| ≤ γi |yi| ≤ γi |1− ŵi| , (47)

|wi − ŵi| ≤ γi |wi| ≤ γi |xiv̂i| , (48)

IEEE TRANSACTIONS ON COMPUTERS, VOL. , 201X 17

|vi − v̂i| ≤ γi |vi| ≤ γi
∣∣∣xia(fi)∣∣∣ , (49)

∣∣∣a− a(fi)∣∣∣ ≤ γi |a| . (50)

From (45) we have:

εi+1 ≤ |xi+1 − τi|+
∣∣∣∣τi − 1√

a

∣∣∣∣
≤ γi

∣∣∣∣xi +
ẑi
2

∣∣∣∣+

∣∣∣∣xi +
ẑi
2
− 1√

a

∣∣∣∣ .
Using (46) and (47):

εi+1 ≤ γi(1 + γi)

∣∣∣∣12xiŷi
∣∣∣∣

+γi

∣∣∣∣xi +
xiŷi

2

∣∣∣∣
+

∣∣∣∣xi +
xiŷi

2
− 1√

a

∣∣∣∣
≤ γi(1 + γi)

2

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

+γi

∣∣∣∣xi +
1

2
xi(1− ŵi)

∣∣∣∣+ γ2i

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

+

∣∣∣∣xi +
1

2
xi(1− ŵi)−

1√
a

∣∣∣∣+ γi

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− ŵi)
∣∣∣∣

+γi

∣∣∣∣xi +
1

2
xi(1− ŵi)

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− ŵi)−

1√
a

∣∣∣∣ .
By (48) we have:

εi+1 ≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− xiv̂i)
∣∣∣∣

+γi

∣∣∣∣xi +
1

2
xi(1− xiv̂i)

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− xiv̂i)−

1√
a

∣∣∣∣
+γi(1 + γi)

3

∣∣∣∣12x2i v̂i
∣∣∣∣

From (49) we have:

εi+1 ≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− x2i a(fi))
∣∣∣∣

+γi

∣∣∣∣xi +
1

2
xi(1− x2i a(fi))

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− x2i a(fi))−

1√
a

∣∣∣∣
+γi(1 + γi)

3(2 + γi)

∣∣∣∣12x3i a(fi)
∣∣∣∣

From (50) we have:

εi+1 ≤ γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− x2i a)

∣∣∣∣
+γi

∣∣∣∣xi +
1

2
xi(1− x2i a)

∣∣∣∣
+

∣∣∣∣xi +
1

2
xi(1− x2i a)− 1√

a

∣∣∣∣
+γi(1 + γi)

3(3 + 3γi + γ2i)

∣∣∣∣12x3i a
∣∣∣∣

From (42) and similarly to (41), one has:

εi+1 ≤ (1 + γi)

∣∣∣∣xi+1 −
1√
a

∣∣∣∣
+γi(1 + γi)(2 + γi)

∣∣∣∣12xi(1− x2i a)

∣∣∣∣
+γi(1 + γi)

3(3 + 3γi + γ2i)

∣∣∣∣12x3i a
∣∣∣∣

+
γi√
a

We know that |xi
√
a| ≤ εi

√
a + 1 and∣∣x3i a∣∣ ≤ (εi

√
a+1)3√
a

and moreover
∣∣ 1
2xi(1− x

2
i a)
∣∣ ≤

1
2

(
εi + 1√

a

) (
aε2i + 2

√
aεi
)
, so we have:

εi+1 ≤ 1

2
(1 + γi)

√
a(εi
√
a+ 3)ε2i

+γi(1 + γi)(2 + γi)
εi
2

(
εi +

1√
a

)(
aεi + 2

√
a
)

+
1

2
γi(1 + γi)

3(3 + 3γi + γ2i)
(εi
√
a+ 1)3√
a

+
γi√
a
. (51)

Using the notation Ei = εi
√
a we can transform (51)

in an equation independent of a:

Ei+1 ≤ 1

2
(1 + γi)(Ei + 3)E2

i

+γi(1 + γi)(2 + γi)
Ei
2

(Ei + 1) (Ei + 2)

+
1

2
γi(1 + γi)

3(3 + 3γi + γ2i)(Ei + 1)3

+γi.

For the last part of the proof, we proceed exactly like
in the previous proof and are able to find the same
bound ind(i) = 2−2

i(p−3)−1 by applying exactly the same
inductive reasoning.

