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Response Time of a Canal Pool for Scheduled Water 

Delivery 

G. Belaud1, X. Litrico2, A.J. Clemmens3

Abstract 

 

Estimating the response time of a canal is essential for the open-loop 

control of an irrigation canal, since upstream flow releases must be 

anticipated in order to satisfy scheduled demands at irrigation outlets. 

We consider a flow release at the upstream end of a pool in order to 

satisfy a side withdrawal at its downstream end. When theflow is 

released, wave travel time causes the flow change to arrive some time 

later downstream and attenuation causes the flow to arrive gradually 

downstream, such that the peak discharge is further delayed. A clear 

definition of this response time is proposed, based on volume 

compensation. A linear approach is used to calculate the canal response 

to a flow release and a withdrawal, and then the volume passing at the 

downstream end of the canal. The approach provides an analytical 

determination of the time of opening that ensures volume compensation. 

A practical method to derive this response time is proposed. It is 

illustrated for a canal for which different downstream boundary 

conditions are imposed. 

Keywords: Response time, open-loop control, scheduled water delivery, flow 

propagation 
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INTRODUCTION 
The timing of the delay in a canal with scheduled water deliveries is essential. If the 

scheduled water is released too early, excess water is lost, and if it is released too late, the 

delivery is not efficient. This timing is difficult to estimate because it may be influenced by 

the hydraulic condition of the canal.  The backwater curve and the downstream boundary 

condition influence the time delay of a canal pool. These effects were illustrated by Strelkoff 

et al. (1998) through a simulation study of the influence of hydraulic structures on the delay 

of a canal pool. Several studies have attempted to define and calculate the response time of a 

pool [e.g.,Munier et al. (2010)]. Schuurmans (1990) proposed a method to calculate the time 

for downstream response to reach any proportion of the total increase, while other authors 

give a single value for this response time, based on maximum increase (Ankum, 1995) or 

dynamic storage (Schuurmans et al., 1995 ; Bautista et al., 2003). Munier et al. (2010) have 

proposed a method to compute the response time of a canal pool based on a first order with 

delay model that takes into account the backwater curve and the downstream boundary 

condition imposed by a hydraulic structure. However, this study chose to use the response 

time at 90%, corresponding to the time when the discharge increase has reached 90% of its 

final value. This choice was rather arbitrary.  

When the upstream flow is increased in order to deliver water to a lateral outlet, the 

discharge in the canal will decrease as soon as the outlet gate is opened. One may then try to 

find the proper time in order to deliver water to the outlet without affecting too much the flow 

in the canal. One way is to ensure that the total volume of water downstream from the gate 

remains constant. If the gate is opened too early, e.g. just as the wave arrives, more flow will 

be extracted than has arrived, and thus decreasing the amount of water available downstream. 

Conversely, if the outlet gate is opened too late, there will be an excess of flow in the main 

channel. 

This paper uses the model developed by Munier et al. (2010) and the IDZ (Integrator 

Delay Zero) model developed by Litrico & Fromion (2004) in order to find the appropriate 

time for the open-loop routing of demand changes. The results are then compared with a full 
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Saint-Venant’s equation solution for a test canal with different downstream boundary 

conditions. Finally,the concept of response time of an irrigation canal is discussed. 

 THEORETICAL CONCEPTS 

The problem can be viewed as a superposition of two processes: the propagation of a flow 

release within a canal pool, and the decrease of the pool level when a side outlet is opened. 

Both processes are first analyzed separately, then they are combined to derive the time which 

ensures volume compensation. We consider a canal pool (Fig. ) supplied with a discharge Qu. 

At a distance L from the upstream head, an outlet may withdraw a discharge Qw, while the 

remaining discharge is denoted Qd. At that location, the flow may be in the backwater caused 

by an inline structure, or uniform if this structure is far enough. Two extreme situations will 

be considered. The first situation (Fig. 1, above), refered to as “uniform flow”, is obtained by 

having a pool much longer than Lso that the level upstream of the outlet is not influenced by 

the pool downstream boundary condition. The second situation (Fig. 1, below) is when the 

outlet is located at the end of the pool, immediately upstream of a control structure. This 

control structure will be a gate or a weir. 

<Figure 1 about here > 

 

 

Propagation of a flow release 

Based on the linearization of the Saint-Venant equations, Munier et al. (2010) derived a 

simple first-order and delay (FOD) routing model, taking into account the effect of the 

downstream boundary condition. This model was then applied to actual field data, and was 

able to predict flow propagation very accurately.  The temporal form of the transfer function 

may be written as :  

 𝐾 𝑑𝑄𝑑
𝑑𝑡

(𝑡) + 𝑄𝑑(𝑡) = 𝑄𝑢(𝑡 − 𝜏)    (1) 
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where t is time, τ is the travel time of the wave from the upstream to downstream gate 

(primarily from celerity, but influenced by backwater), and K represents the attenuation 

during the propagation. The parameters K and τ may be calculated explicitly from the canal 

geometry and the flow conditions, including the effects of the downstream boundary 

condition. Alternatively, K and τ may be identified from field data, with measured values of 

Qu(t) and Qd(t). The backwater curve affects both τ and K, but K is also largely influenced by 

the sensitivity of the downstream discharge to water variations (feedback effect). This 

sensitivity is given by a feedback coefficient, denoted kd

      𝑘𝑑 = 𝜕𝑄𝑑
𝜕𝑌

|𝑄0     (2) 

, defined as :  

where Y is the water depth, Q0

The scheduling problem consists of determining the time when to release a given discharge 

upstream,δQu, in order to supply the lateral outlet, located at the distance L,  at a scheduled 

time. For a step discharge release at time t=0, and without lateral withdrawal, the deviation 

q

 is a reference discharge.  

d
(r) of the downstream discharge Qd(t) from its initial value Q0

– for t<τ :  

is described by the closed-

form solution of Eq. (1), namely (Munier et al. 2010) :  

 qd
(r)(t) = qd,0 = 0  (3) 

– for t≥ τ:  

 qd
(r)(t) = (1− e− (t−τ)/K)δQu  (4) 

and, denoting yas the variation of Y from its reference value Y0:    

   y(t) = qd
(r)(t) / kd

The subscript zero refers to the initial conditions. The delay time τ represents the time when 

the downstream discharge starts to increase. Equation 4 shows that the discharge change 

downstream raises gradually according to an exponential function. Field tests of this model 

are presented in Munier et al. (2010).   

     (5) 
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We can also show that the expressionT=τ+K represents the travel time of long waves, and that 

it should be close to the dynamic storage time TV

This time may also be compared to the propagation time T

=dV/dQ as defined by Burt and Plusquellec 

(1990). This time is sometimes used for irrigation scheduling but, to date, there is no proof 

that it ensures volume compensation. The propagation time of long waves is also a practical 

way to estimate τ+K, and then K if τ is assumed to be the travel time of the surface waves. 

d

 c

 of the diffusive wave. In an 

infinitely long uniform channel, the speed of the diffusive wave can be easily calculated from 

canal characteristics based on the continuity equation as :  

d 

which gives, considering Manning’s equation and a rectangular channel,  

= dQ / dA 

 𝐶𝑑 = 𝑈0 �
5
3
− 4

3
𝑌𝑛

𝑏+2𝑌𝑛
�  (6) 

where 𝑈0 = 1
𝑛
𝑏𝑌𝑛 �

𝑏𝑌𝑛
𝑏+2𝑌𝑛

�
2/3

�𝑆𝑏  is the mean velocity for discharge Q in uniform flow, A is 

the wetted area, b is the canal width, n is Manning roughness coefficient, Sbthe canal bed 

slope and Yn is the normal depth. According to Bautista et al. (2005), this time is an upper 

bound of the time which ensures volume compensation. The lower bound would be given by 

the speed of short waves, 𝐶𝑠𝑤 = 𝑈0 + �𝑔𝐷 (D is the hydraulic depth defined as the ratio of 

area to top width).Most canal pools are relatively short and have a shorter long-wave travel 

time than given by Td

Withdrawal from a side outlet 

 as given by Eq. (6). 

We now consider the fixed lateral outflow, started at time Tw

In order to estimate the downstream discharge Q

. This causes a decrease of the 

water level Y in the canal, unless it is controlled (constant Y). This decrease appears when the 

flow is uniform, or when the water level is controlled by a fixed structure (gate or weir). 

d
(w), the dynamics of Y due to the 

withdrawal need to be determined. Since the use of the complete linearized Saint-Venant’s 

equations leads to rather complex calculations, it is preferable to use simpler methods such as 
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Integrator Delay (ID) method (Schuurmans et al., 1999), or Integrator Delay-Zero (IDZ) 

model (Litrico & Fromion, 2004). Compared to the ID model, IDZ accounts better for short 

waves, which cause the drop of the water level as soon as the lateral outlet is opened. Fields 

tests are presented in several papers (see review in Clemmens et al., 2012). Using the IDZ 

approximation, the response qd
(w)=Qd

(w)−Q0 to a local discharge withdrawal qw0 is given by 

– for t<Tw

 qd
(w) (t) = qd,0  = 0  (7) 

 :  

– for t≥Tw

     

  :   

𝑞𝑑
(𝑤)(𝑡) = −𝑞𝑤0 �1 − 𝑒−(𝑡−𝑇𝑤)/𝐾𝑝

1+𝑘𝑑𝑎
�  (8) 

where a[in m/(m3/s)] is the instantaneous level decrease response to a discharge withdrawal, 

and Kp is the time constant of the pool associated with outlet flow changes. This differs 

slightly from K which is the pool time constant associated with upstream inflow changes. The 

values of K and Kp

 y(t) = qd
(w)(t) / k

 are similar in magnitude and both are influenced by the downstream 

boundary conditions. Calculation details are reported in the appendix. The water level 

variation is 

d

Parameters a and K

  (9) 

p

Coupling the step inflow to the step withdrawal 

 can easily be determined from a simple step response test.  

Case of a fixed withdrawal 

The case of a fixed outlet flow, such as the one imposed by a pump, combined with a gravity 

structure for the continuing canal downstream is considered first.The linear framework allows 

both responses to besuperimposed. The intent is to find the time when the volume delivered 

downstream is not influenced by the combination of upstream flow change and outlet flow 
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change. Because of the gradual arrival of the discharge from upstream, the outlet can not be 

opened when the flow first arrives. Instead, the flow must increase for some time, during 

which extra flow will pass downstream. After the outlet is opened (at time Tw

In the case where the opening occurs after the short waves arrive, say T

), the flow 

downstream should be lower than the reference flow until the full amount of the upstream 

flow change arrives. The intent then is to balance these deviations in volume. 

w>τ, the response qd

– for t<τ :  

(t) 

is given by: 

 qd(t) = qd,0  = 0  (10) 

– for τ <t<Tw

 qd(t) = (1−e− (t−τ)/K) δQu  (11) 

:  

– for t>Tw

𝑞𝑑 (𝑡) = �1− e−(𝑡−𝜏)/𝐾�𝛿𝑄𝑢 − �1− e−(𝑡−𝑇𝑤)/𝐾𝑝

1+𝑘𝑑𝑎
�𝑞𝑤0 (12a) 

 :  

Since the released discharge should be equal to the withdrawn discharge, qw0can replace 

δQu 12ain Eq. ( ), leading to 

 𝑞𝑑 (𝑡) = 𝑞𝑤0 �
e−(𝑡−𝑇𝑤)/𝐾𝑝

1+𝑘𝑑𝑎
− e−(𝑡−𝜏)/𝐾�  (12b)  

As in Eqs. (5) and (9), y(t) = qd (t) / kd. The volume I flowing in the canal downstream of the 

outlet is obtained by integration of Eqs. (10-12). After a change of variable to remove the 

delay τ, wheretw=Tw

 𝐼 = 𝑞𝑤0 ��𝑡 + 𝐾e−𝑡/𝐾�
0
𝑡𝑤 + �𝐾e−𝑡/𝐾 − 𝐾𝑝

e−(𝑡−𝑡𝑤)/𝐾𝑝

1+𝑘𝑑𝑎
�
𝑡𝑤

+∞
�  (13) 

-τ, we get : 

When this volume is zero (I=0), the increase in volume passed downstream before the offtake 

is opened matches the decrease in volume downstream after the offtake is opened. The time 

tw

  �𝑡𝑤 + 𝐾e−𝑡𝑤/𝐾 − 𝐾� + �0 − 𝐾e−𝑡𝑤/𝐾 + 𝐾𝑝
1+𝑘𝑑𝑎

� = 0  (14) 

for whichI=0 isthe solution of  
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The solution to Eq. (14)gives the time tw

 𝑡𝑤 = 𝐾 − 𝐾𝑝
1+𝑘𝑑𝑎

  (15) 

 to switch the offtake pump on, namely :  

This means that the time at which to change the offtake flow to provide volume compensation 

depends on the way the downstream level is controlled by the cross-structure (here 

represented by the coefficient kd). Indeed, if the downstream level is perfectly controlled, i.e. 

if kd

 T

∞, we get :  

w 

If the canal is ended by an effective water level control structure (hydromechanical gate, 

duckbill weir, automatic weir or gate),  Eq. (11) shows that the pump should therefore be 

switched on when the downstream flow reaches 1–1/e ≈ 63% of the total flow reponse time, 

since t-τ=K. As previously shown, this time corresponds to the travel time of long waves. It is 

also equal to the dynamic storage time T

= τ + K 

v

This solution also applies to the case where the offtake is gravity fed, and an increase in 

discharge is passed downstream through a structure which provides constant flow. This would 

maintain the correct volume to the offtake structure. 

. 

Case of a gravity outlet and gravity check structure 

Consider the case where the flow through the outlet Qw

 𝑄𝑤 = 𝐶𝑐𝐵𝑤𝑊𝑤�2𝑔(𝑌 − 𝑦𝑤 − 𝐶𝑐𝑊𝑤)   (16) 

 is influenced by the water level y. A 

typical gravity outlet is a vertical sluice gate for which the discharge and water depth are 

related by a standard gate discharge equation :  

where Bw is the gate width, Ww its opening, yw its crest elevation and Cc the contraction 

coefficient (close to 0.6). When the water level Y is above the design level Y0, Qw is greater 

than the design discharge qw0. The linear approach gives an estimate of this deviation. 

Introducing kw=∂Qw/∂y, the first order approximation gives 

Qw≈qw0 + kw y      (17) 
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with  

 𝑘𝑤 = 𝐶𝑐 𝐵𝑤𝑊𝑤�2𝑔
2�𝑌0−𝑦𝑊−𝐶𝑐 𝑊𝑤

      (18) 

This is valid provided water level variations y are small compared to the head on the outlet. 

Compared to the non-gravity outlet, there is an extra volume flowing through the outlet, due 

to gravity, as long as y>0, but the flow is reduced when y<0. Therefore, the time of opening 

may be changed. We denote Tw’ this time, and tw’=Tw’-τ. When t>Tw’, the coupling between 

the water level and the discharge at the downstream end of the pool will be different from that 

for a fixed withdrawal, and then the transfer functions may also be changed. We denote K’ 

and Kp’ the time constants observed when the second gravity structure is opened. The pool 

delay, denoted τ’, must also be changed in order to assure the continuity of discharge at t=Tw’ 

with Eq. (11). This implies that τ’-τ=(1-K’/K)tw

To find the time t

’. The volume I’ passing downstream is 

obtained by modifying Eq. (13) as follows: 

𝐼′ = 𝑞𝑤0

⎝

⎛�𝑡 + 𝐾𝑒−
𝑡
𝐾�
0

𝑡𝑤′

+ �𝐾′𝑒−
𝑡+𝜏−𝜏′
𝐾′ −

𝐾𝑝′𝑒
−𝑡−𝑡𝑤

′

𝐾𝑝′

1 + (𝑘𝑑 + 𝑘𝑤)𝑎
�

𝑡𝑤′

+∞

⎠

⎞ 

w’ that assures volume compensation(I’=0), an estimation of K’ and Kp’ is 

needed. To do that, we consider the case where gravity effects are significant, say kd are kw 

are small, which means 1+akd≈1 and 1+akw≈1. From the definition of Kp (see appendix), we 

find that 𝐾𝑝′ = 𝑘𝑑
𝑘𝑑+𝑘𝑤

𝐾𝑝. Similarly, we would have 𝐾′ = 𝑘𝑑
𝑘𝑑+𝑘𝑤

𝐾. Setting γ=kw/kd

   𝑡𝑤′ − 𝐾 + 𝛾𝐾
1+𝛾

𝑒−
𝑡𝑤′

𝐾 +  1
1+𝛾

𝐾𝑝
1+𝑘𝑑𝑎

= 0    (19)  

 and after a 

few calculatory manipulations, I’=0 yields  

Unlike in the non-gravity case, this equation does not give explicitly the optimal time tw’,due 

to the exponential term. A reasonable assumption is to consider that tw’ is close to tw, namely 

∆tw=tw’ –twis small compared to the pool time constant K.The Taylor series development of 

e−
𝑡𝑤′
𝐾  up to the first order of ∆tw/K gives 

𝑡𝑤 + ∆𝑡𝑤 − 𝐾 +
𝛾𝐾

1 + 𝛾
e−

𝑡𝑤
𝐾 �1 −

∆𝑡𝑤
𝐾
�𝐾 +

1
1 + 𝛾

𝐾𝑝
1 + 𝑘𝑑𝑎

≈ 0 
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Using Eq. (15) and rearranging, one obtains 

     ∆𝑡𝑤 ≈ 𝛾 𝐾−𝑡𝑤−𝐾e
−𝑡𝑤𝐾

1+𝛾�1−e−
𝑡𝑤
𝐾 �

    (20) 

Considering that tw/K is lower than 1, the Taylor series development up to the first order of 

tw

 ∆𝑡𝑤
𝑡𝑤

≈ −γ 𝑡𝑤
2𝐾

    (21) 

/K gives  

This proves that, whenγ=kw/kd is small(e.g., when the outlet is small relative to the continuing 

canal), the optimal time should be changed by only a small value compared to the constant 

flow withdrawal. A development up to the second order of Eq. (19) slightly improves the 

approximation of ∆tw

in which 𝜀 = 1 − e−
𝑡𝑤
𝐾  

, giving 

∆𝑡𝑤 ≈
−(1 + 𝛾𝜀) + �(1 + 𝛾𝜀)² − 2𝛾²(1 − 𝜀) �𝑡𝑤

𝐾
− 𝜀�

𝛾(1 − 𝜀) 𝐾 

APPLICATION TESTS 

General 

The configuration described in Fig. 1 is simulated using the linear approach described above, 

and a full Saint-Venant’s equations solution is provided as a reference. The simulations are 

performed with SIC, which solves the standard energy equation in steady flow, and the full 

Saint-Venant equations using a Preissmann scheme for unsteady flow  (Baume et al. 2005).  

In the first step, the parameters of the elementary transfer functions (transfer of a flow 

releasequ to the downstream flow qd
(r), transfer of a side withdrawalqwto the downstream flow 

qd
(w)) are identified by fitting the linear model of the simulated downstream discharge in 

response to a flow release, then to a withdrawal at the outlet. Then, both operations are 

combined with different times of opening Tw, and volume compensation is analyzed at the 

downstream end. The opening time which ensures volume compensation is finally determined 
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by both linear and nonlinear methods. Practical applications are presented in the discussion 

section. 

Canal parameters 

The tests were conducted with a rectangular open-channel, of width b=2m, bed slope Sf = 

4.4×10-4  and Manning coefficient n=0.014 s/m1/3. The length of the pool is L = 2300m. An 

outlet is located at x=2290m downstream from the upstream gate. We will consider the 

different situations described in Fig. 1: the uniform flow condition (normal depth Yn), and the 

canal ended by a control structure such as a gate or a weir, at x=2300m. In the case of the 

uniform flow, the canal is made twice as long (4600m) in order to be able to capture the 

hysteresis of the stage-discharge relationship in unsteady flow, but the response (discharge 

Qd

The initial discharge is Q

) is still observed at x=2300m. The simulation time step is 1 minute. Step variations (at 

head or at the outlet) are made over one time step. 

0=1.9m3/s, while the design discharge of the outlet is qw0 = 0.19m3/s. 

The control structures (weir or gate) impose a downstream depth Y0=1.235m, while the 

normal depth is Yn=1m. Both the weir and the gate have a fixed position during the 

simulations. The weir is long-crested so as to ensure a constant water level (level variation 

limited to 0.01m for 10% discharge variation). It is representative of the typical situation 

where water level is controlled whether by a long-crested weir or a by an automatic gate. We 

also simulated a perfect constant level (level variation lower than 0.001m for 10% discharge 

variation). The canal response to a step inflow is very close to the one obtained with the long-

crested weir.  For the step withdrawal, parameters a and Kpare not sensitive due to the 

infinitekd

The parameters of the transfer functions are first identified by performing two elementary 

operations :  

. In the following, the situation where downstream water level is maintained 

constant will be simulated with the long-crested weir. The case of the fixed gate is typical of 

manually operated systems; with the selected dimensions, a discharge increase by 10% causes 

a rise of 0.25m. 
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– a flow release ofδQu = 0.19 m3/s, at the upstream end of the canal after a steady flow 

period (discharge Q0

– a step withdrawal of q

) ;  

w0 = δQu after a steady flow period (discharge Q0

Both operations are performed at time t

).  

0=60min with SIC (referred to as Saint-Venant’s 

model) and with the linear models (Eqs. 3-5 for the step release, Eqs. 7-9 for the step 

withdrawal). From the simulated flow release, parameters τ, K and kd

< Figure 2 about here > 

 of the linear model 

(Eqs. 4-5) are identified. The linear model can be perfectly fitted with Saint-Venant’s results 

(Figs. 2a, 2c). In the case where a control structure is present (gate or weir), there is also a 

very good correspondence between predicted and observed  water levels, which justifies the 

linear approximation of the downstream coupling (Eq. 2). In the case of uniform flow, the 

comparison is not as good, since the transcient stage-discharge relationship may be non-

unique and depend on the local depth gradient. Yet, this effect has a limited influence.  

The step withdrawal leads to the determination of parameters a and Kp of IDZ linear model 

(Eqs. 8-9). The linear model also gives a response very close to Saint-Venant’s model (Figs 

2b, 2d). In uniform flow, a similar deviation as for the step release is observed. Model 

parameters are summarized in Table 1. The speed of the diffusive wave and the propogation 

time Td can be computed using Eq. (6). We obtain Td = L/cd ≈ 30.4 minutes, which is very 

close to the value of T=τ+K≃29.3 minutes obtained by identification on the step response for 

the uniform flow.The dynamic storage time TV is obtained by making the difference of 

volumes between the steady flows at Q0 and Q0+δQu, keeping the water level constant at the 

set point Y0, and then dividing this difference by δQu. The result is18.2 minutes. This 

essentially matches the travel time of long waves in the canal perfectly controlled, 

T=τ+K≃18.1 min, obtained by identification on the step response. The previous works by 

Bautista et al. (2003, 2005) explained that the volume compensation delay is bounded by the 

travel time of short waves and the travel time of the kinematic wave, which are both 

calculated simply from the uniform flow characteristics (L/Csw≈9 min and L/Cd≈30 min). 
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Time of opening and volume compensation 

Aflow release at the head is considered at t0=60min. A constant withdrawal is made 

att=t0+Tw. From Eq. (15), an estimation of the optimal time can be determined which ensures 

volume compensation. The corresponding values are given in Table 2. For the three 

situations, different times are expected, since the canal and the pool transfer functions are 

very different. Notice however that the optimal times are close to each others. They are also 

close to Tv, and smaller than Td

The corresponding simulations are made with both linear (Eqs. 10-12) and Saint-Venant 

models, at 20, 18 and 17 minutes for downstream boundaries defined by  uniform flow, the 

weir, and the gate respectively. Results are shown in Fig. 3. 

. 

<Figure 3 about here> 

Note that the Saint-Venant response (downstream dischargeQd) is very well approximated by 

the linear model, obtained by superposition of the linear response to the step release and the 

step withdrawal (Eqs. 10-12). The simulation with the gate gives larger errors during a short 

transcient period just after the outlet is opened (up to 0.01m3/s). This deviation is explained 

by nonlinearities in the pool response, as the pool constant Kpslightly depends on the initial 

state. This error results from a deviation I of the volumepassing downtream, calculated by the 

Saint-Venant model, which is -12.5m3. This corresponds to an outlet flow for a bit more than 

1 minute, and thus the opening should be delayed by this time. This error is rather small, 

about 6%, compared to Tw. The volume deviation is smaller for the uniform flow (-4.1m3, i.e. 

flow change for 22s) and for the weir (-1.5m3, i.e. flow change for 8s). The downstream 

volume deviation can be plotted as a function ofthe opening time(Fig. 4). This figure confirms 

that the linear approach gives a very good approximation of I, and that it can be used to 

determine the volume compensation time. 
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By performing a series of calculations with different withdrawal times, one can calculate this 

time with the  Saint-Venant model by trial and error. The values, reported in Table 2, are 

close to those obtained from Eq. (15).Note that the weir and the gate give similar values for 

Tw

The discharge increase in the canal can be determined at the time when it is the most suitable 

to open the outlet. Since attenuation is low for the canal ended by the weir, the discharge 

increased by 0.111m

, although the canal dynamics are very different. 

3/s before the outlet was opened, in response to the upstream release. 

This corresponds to a proportion α=59% of δQu, close to the 63% that would be obtained with 

a perfect level control. After the outlet is opened, the discharge drops 0.042m3/s below the 

reference discharge, and then increases during about 1 hour, until it reaches the reference 

discharge. The volume deviations before and after the outlet opening are then balanced. The 

proportion α is smaller with the uniform flow (44%, corresponding to 0.084m3/s) and much 

smaller for the gate (18%, 0.034m3/s). In the case of the gate, the deviation from the reference 

discharge after the opening is rather limited (-0.005m3

These results suggest that the optimal time T

/s), but it takes a longer time to reach 

equilibrium.  

w to open the outlet does not correspond to a 

fixed proportion of the response time for a discharge increase due to the step release. This 

proportion, denoted α, is equal to qd(Tw)/δQu, where qd(Tw) can be obtained by replacing the 

value of Tw

 𝛼 = 1 − 𝑒
−1+

𝐾𝑝
𝐾(1+𝑎𝑘𝑑) (22) 

 (Eq. 15) in Eq. (11). This yields  

Askd

< Table 2 about here > 

→+∞, Eq (22) shows that α→1−1/e=63%. 

< Figure 4 about here > 
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DISCUSSION 

Regarding the definition of the response time 

These results suggest an improved definition of the response time, based on the compensation 

volume.  

Different response times are used in practice, such as the travel time of the diffusive wave 

(long waves), the dynamic storage time, the travel time of the gravity waves (short-waves), 

the time of maximum flow increase. The principle of volume compensation gives a more 

precise definition. It leads to improved distribution efficiency as it specifies that the whole 

released volume is given to the targeted outlet. 

Effect of the boundary condition 

The downstream boundary condition largely affects the canal response. In the case of uniform 

flow, the diffusive wave celerity is easily calculated. However, these results show that 

opening the outlet at the travel time of the diffusive wave does not ensure volume 

compensation, and that a part of the upstream flow release is lost downstream. In our 

example, the diffusive wave propagation time was 30min, whereas the optimal time of 

opening would be about 20min.  

Due to feedback effects, the canal response may be accelerated in the case of a constant 

water level structure (long-crested weir, automated check gate, hydromechanical gate). In this 

case, and provided the withdrawn discharge is exactly equal to the discharge release at 

thehead, opening the outlet at the dynamic storage time is proved to ensure volume 

compensation. The optimal time of opening corresponds to 63% of the total discharge 

response time. This time is also the propagation time of long waves (diffusive wave), but it 

cannot be calculated from uniform flow conditions, as it is largely affected by the feedback of 

the control structure.  

With a fixed check gate, the response is slower than fora constant flow structure. As in 

uniform flow, the optimal opening time (20 min) is largely lower than the propagation time of 
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long waves (61 min). Opening the outlet at Tw=60 min leads to an excess of 480m3

Sensitivity to changes in canal parameters 

 

downstream. The optimal time is close to the one obtained with the long-crested weir. 

Reference regime 

Canal and pool parameters were identified for given reference discharge and water level. 

When the same parameters are used for different regimes, the linear approach may lead to 

errors due to nonlinear effects. For example,  the delay should increase as the initial discharge 

decreases, and conversely. This effect is analyzed with the canal ended by the weir. The canal 

response is simulated for initial dischargesQ0=0.5, 1.2, 1.9, and 2.6  m3

In practice, it is preferable to use tabulated values of the canal parameters (K, τ, a, K

/s. Figure 5shows that 

the linear response remains very close to the complete Saint-Venant’s solution. The maximum 

deviation is for the lowest discharge, but this deviation remains limited.  

p), 

depending on the regime, so that the linear response remains very accurate. In our example, 

the parameters obtained with Q0=1.9m3/s apply very well from Q0=1.2m3/s to Q0=2.6m3/s. 

The response for Q0=0.5m3/s remains acceptable. Indeed, the flow dynamics is mainly 

controlled by the short wave celerity 𝐶𝑠𝑤, largely greater than the mean flow velocity,and by 

the storage of the pool. Since the downstream water level is controlled, both characteristics 

are little changed when the discharge is changed. Figure5shows that the response is slightly 

delayed in the case of Q0=0.5m3/s, due to a decrease of the water depth in the upstream part 

of the pool (and then a decrease of the short wave celerity), and a moderate decrease of the 

flow velocity. With the same parameters as for Q0=1.9m3/s,  an excess of 8.3m3results, which 

means that the outlet should be opened 44s later in order to ensure volume compensation. 

This delay remains limited, although it can be addressed using the canal parameters for the 

corresponding regime. 
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Change in canal roughness 

Similarly, we simulated changes in friction by increasing Manning roughness coefficient by 

10%, 25%, 50% and 100%. This corresponds to the situation where the canal parameters 

given in Table 1 were obtained when the canal was clean, and then flow changes are applied 

later when vegetation has developed on the canal banks (e.g., Lozano et al., 2012). The 

simulated flow changes are presented in Fig. 5. We can see that a reasonable change in 

roughness causes a limited effect on flow propagation. Increasing the roughness decreases the 

flow velocity (mainly in the uniform part), but it also increases the water level, and then the 

celerity of the surface waves. This implies that the arrival of the flow release is almost 

unchanged. Howerer, the filling of the pool is largely delayed when roughness is very 

large.With n=0.0154s/m1/3, which is a significant roughness change (+10%), Tw

< Figure 5 about here > 

 should be 

delayed by about 1 minute to ensure volume compensation. It is almost 4 minutes for n+25%. 

In practice, the use of tabulated values for canal parameters is a way to address situations 

when roughness largely varies throughout the year. 

Gravitational outlets 

In the case of a gravitational outlet, the outlet is opened at a fixed opening. Therefore, its 

discharge is not constant, as it increases if the water level in the pool increases. Consider a 

side outlet consisting of a gate of width Bw=0.4m, crest elevation yw=0.3m and Cc=0.6. The 

withdrawal is performed at different times (t0+19, 30 and 60min) by opening the outlet to a 

fixed position (Ww=0.198m), which ensures a withdrawal of qw0=0.190m3/s for the design 

water level Y0. Equation (18) gives kw≃0.108m2/s. This value is much smaller than kd, which 

implies that the downstream discharge should be close to the one obtained with the fixed 

discharge (Eqs. 10-12). The linear approximation of the side discharge, obtained from Eq. 

(17),causes an error lower than 1% in the range 𝑌 ∈ [𝑌0 − 0.12m;𝑌0 + 0.49m], which is a 

large range. 
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With a perfect downstream level control, gravity has no effect on Qw. Simulation was 

performed with the canal ended by a fixed gate with an upstream flow release at t0=60min, 

followed by a step withdrawal obtained with a fixed opening. Figure 6compares the linear 

simulation with the complete Saint Venant’s solution for three opening times (t0

The gravitational effects may lead to overestimation of the withdrawn discharge if the outlet 

is opened after the optimal time. The overestimation is higher for the gate and the latest 

opening (T

+17, 30 and 

60min). Note that both approaches give reasonable trends. The linear approach generally 

overestimates the Saint Venant’s solution. This is due to the fact that the lateral outlet slightly 

changes the feedback, and then the parameters of the transfer functions (see appendix). The 

overestimation is rather limited (less than 1 l/s), which confirms the validity of the linear 

assumption. 

w=60min), since the water level reaches 13cm above its design value. This leads to 

an overestimation of about 35m3 compared to the fixed withdrawal. If the outlet is opened at 

the optimal time (here, t0+17 min), there is almost no impact on the volume. Indeed, after the 

flow has arrived anduntil the outlet is opened, the water level is above its reference value. 

When the outlet is opened, its takes more than its design discharge and the water level drops 

more than what it would do if we had qw=qw0. This, in turn, implies that qw becomes lower 

than qw0.Then, the excess of withdrawn flow (immediately after the opening) is compensated 

by the negative deviation that appears later. This implies that the optimal opening time is 

almost unchanged compared to the fixed withdrawal.Equation (20) shows that one should 

anticipate the opening by about Δtw

The extreme case is when both structures (inline and outlet) are of the same size. In this case, 

k

≈0.16min, which can be neglected. 

d=kwand they will take the same discharge. Equation (20) gives Δtw≈1 min, which remains 

small. Figure 6b shows the simulated discharges Qd and Qwwith Saint-Venant model, as well 

as the linear response, for Tw=17min (obtained from Eq. 15) and Qw0=1.9m3/s.We can see 

that the excess of flow (Qw>Qw0) when Tw<t<82min is compensated by the deficit (Qw>Qw0) 

when t>82min, ensuring volume compensation. By trial and error, we find that the optimal 

time is between 16 and 17 min. The linear model still presents the same error as in Fig. 3c, but 
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the optimal time for volume compensation is correctly estimated even without correction due 

to gravity.   

< Figure 6 about here > 

CONCLUSION 

Considering the existence of various definitions for the response time of an irrigation canal, a 

clear definition of this timehas been proposed based on the concept of volume 

compensation,considering the time when  areleased volume is exactly passed through a 

downstreamoutlet.   

Based on linear theory, a method has been proposed to calculate this response time 

analytically from the canal characteristics. These characteristics may be obtained theoretically 

from physical parameters, including those of the downstream control structure, or, more 

practically, from simple analyses of canal response.  

One shows that, when the downstream level is perfectly controlled, the time which ensures 

volume compensation is the one when the discharge increase has reached 63% of its final 

value. This corresponds to the dynamic storage time. This resultdoes not apply when the 

downstream level is not perfectly controlled, which is the case for a fixed gate or a uniform 

flow.    
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APPENDIX. TRANSFER FUNCTIONS 

Following the approach developed in Litrico and Fromion (2004), the Saint-Venant transfer matrix between 

water level variations (y0, y1) and discharge variations (q0,q1

    �𝑦�0𝑦�1
� = �

𝑝11 𝑝12
𝑝21 𝑝22� . �𝑞�0𝑞�1

�  (23) 

) is written, where 0 denotes the upstream end of 

the canal, 1 denotes the downstream end: 

where 𝑓 denotes the Laplace transform of function f, and all functions depend on Laplace variable s. At the 

downstream end, the discharge outflow q1 is the sum of the discharges qd (passing downstream) and the 

withdrawn discharge qw

    𝑞�𝑑 = 𝑘𝑑𝑝21
1−𝑘𝑑𝑝22

𝑞�0 + 𝑘𝑑𝑝22
1−𝑘𝑑𝑝22

𝑞�𝑤 (24) 

.  Using Eq. (A1) and the linear coupling at the downstream structure (Eq. 5), one has 
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The right-hand term is composed of two parts: one for the transfer of the upstream discharge release, and one for 

the transfer of the withdrawal. Now we use analytical approximations of these transfer functions. Munier et al. 

(2010) have shown that the first transfer function can be approximated by a first-order with delay model:  

𝑘𝑑𝑝21
1 − 𝑘𝑑𝑝22

≈
𝑒−𝜏𝑠

1 + 𝐾𝑠
 

The second transfer function can be approximated by a similar dynamics, but without delay since the withdrawal 

and the downstream discharge are considered at the same location. The IDZ model (Litrico and Fromion, 2004) 

gives a more accurate description of the pool dynamics:  

𝑝22(𝑠) = −𝑎 −
𝑏
𝑠

 

Parameters a and bare linked to the pool characteristics: a is the instantaneous level decrease response to a 

discharge withdrawal, which represents the high-frequency response of the pool, and b is the inverse of the 

backwater area. The transfer function of the side withdrawal is then simplified as follows: 

𝑘𝑑𝑝22
1 − 𝑘𝑑𝑝22

≈ −1 +
𝑠

(1 + 𝑘𝑑𝑎)𝑠 + 𝑘𝑑𝑏
 

Setting 𝐾𝑝 = 1+𝑘𝑑𝑎
𝑘𝑑𝑏

, the above expression is re-written as 

𝑘𝑑𝑝22
1 − 𝑘𝑑𝑝22

≈ −1 +
1

(1 + 𝑘𝑑𝑎) .
𝐾𝑝𝑠

1 + 𝐾𝑝𝑠
 

In the time domain, the response to a step withdrawalqw0 at Tw

for a gravity outlet, Eq. (24) will be modified by replacing the side discharge 𝑞�𝑤 (step withdrawal) by 𝑞�𝑤′ =

𝑞�𝑤 + 𝑘𝑤𝑦�𝑑. The downstream response is obtained as follows: 

 is given by Eq. (8). 

    𝑞′�𝑑 = 𝑘𝑑𝑝21
1−(𝑘𝑑+𝑘𝑤)𝑝22

𝑞�0 + 𝑘𝑑𝑝22
1−(𝑘𝑑+𝑘𝑤)𝑝22

𝑞�𝑤 (25) 

If kd>>kw, the downstream response is little affected by the gravity effect. Assuming 𝑞′�𝑑 ≈ 𝑞�𝑑, gives𝑞�𝑤′ ≈ 𝑞�𝑤 +

𝑘𝑤
𝑘𝑑
𝑞�𝑑. 
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Table 1: Simulation parameters for the study case 

Parameter Uniform Perfect control Weir Gate 
Downstream depth Y0 1.01  (m) 1.235 1.235 1.235 
 unif. flow  length=20m width=2m 
 (imposed at 

x=4600m) 
 crest elev.=1.1m Opening 

=0.356m 
Canal transfer function     
Feedback coef. kd 2.5  (m²/s) +∞ 21.0 0.9 
Delay time τ (min) 6.5 7.0 7.2 6.4 
Canal time constant K (min) 22.8 11.1 12.2 54.4 
Pool reaction to a withdrawal     
Sensitivity a (s/m2 0.77 ) - 0.21 0.18 
Pool time constant Kp 28.3  (min) - 7.9 50.8 
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Table 2: Results for optimal time of opening, constant rate of withdrawal (qw0=0.19m3/s for t>t0+Tw

Type of downstream boundary condition 

) 

Uniform Weir Gate 
Optimal time (linear, Eq. 15) Tw (min) 19.7 17.9 17.1 

Optimal time (Saint Venant) Tw (min) 20.5 18.13 18.08 

Max(Qd−Q0) (m3 0.084 /s) (at the time when the outlet is opened) 0.111 0.034 

Rate of total increase α 44% 59% 18% 
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