Homological projective duality for determinantal varieties

Abstract : In this paper we prove Homological Projective Duality for categorical resolutions of several classes of linear determinantal varieties. By this we mean varieties that are cut out by the minors of a given rank of a m x n matrix of linear forms on a given projective space. As applications, we obtain pairs of derived-equivalent Calabi–Yau manifolds, and address a question by A. Bondal asking whether the derived category of any smooth projective variety can be fully faithfully embedded in the derived category of a smooth Fano variety. Moreover we discuss the relation between rationality and categorical representability in codimension two for determinantal varieties.
Type de document :
Article dans une revue
Advances in Mathematics, Elsevier, 2016, 296, pp.181-209. 〈10.1016/j.aim.2016.04.003〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01111000
Contributeur : Marie-Annick Guillemer <>
Soumis le : jeudi 29 janvier 2015 - 13:41:59
Dernière modification le : vendredi 8 juin 2018 - 14:50:07

Lien texte intégral

Identifiants

Citation

Marcello Bernardara, Michele Bolognesi, Daniele Faenzi. Homological projective duality for determinantal varieties. Advances in Mathematics, Elsevier, 2016, 296, pp.181-209. 〈10.1016/j.aim.2016.04.003〉. 〈hal-01111000〉

Partager

Métriques

Consultations de la notice

195