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A lower bound concerning subset sums which do not
cover all the residues modulo p

Jean-Marc DESHOUILLERS!

A la mémoire de S. Srinivasan

ABSTRACT

Let ¢ > +/2 and let p be a prime number. J-M. Deshouillers and G. A.
Freiman proved that a subset A of Z/pZ, with cardinality larger than c,/p
and such that its subset sums do not cover Z/pZ has an isomorphic image
which is rather concentrated; more precisely, there exists s prime to p such
that s

Y =l <1+0(p Y Inp),

aEA p

where the constant implied in the “O” symbol depends on ¢ at most. We
show here that there exist a constant K depending on c¢ at most, and such
sets A, such that for all s prime to p one has

SIE) > 14 Kp 72
acA p

1 Let p be a prime number and A be a set of distinct non-zero residue
classes modulo p. We denote by A* the set of the subset sums of A, that is
to say

A ={)_b BcC A}

beB

G. A. Freiman and the author proved (cf. [1]) the following result.

1Supported by Université Victor Segalen Bordeaux 2 (EA 2961), Université Bordeaux1
and CNRS (UMR 5465)
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Theorem 1. Let ¢ > /2. Let p be a prime number and A be a subset of
Z[pZ with cardinality larger than c\/p, such that its subset sums do not cover
Z/pZ. There exists s prime to p such that

as —
doI=l <1+0@ Y Inp). (1)
acA p

In this paper we prove that the error term cannot be arbitrary small.
More precisely, we prove the following

Theorem 2. Let /2 < ¢ < 2. There exists a positive real number K such
that for all prime number p which is sufficiently large, there exists a subset
A of Z/pZ with cardinality larger than c\/p, such that its subset sums do not
cover Z/pZ, and such that for every s prime to p, one has

as _
SN > 1+ Kp2 (2)
acA p

2 Notation When a and b are two real numbers, we denote by (a,b)
the set of the integers x from the interval [a, b]. For a real number u, we use
the traditional notation e(u) = exp(2miu) and ||u|| = min,ez |u — z|; when
b € Z/pZ, the expression e(b/p) (resp. ||b/p||) denotes the common value of
all the e(b/p)’s (resp. ||b/p||), where b is any integer representing the class b
; we further let |b| denote the minimum of |b| over all the representative b of
b, or equivalently |b| = pl|b/p||-

The letter p denotes a prime number which is sufficiently large to satisfy
all the implicit or explicit inequalities.

3 A lemma Before embarking on the construction of A, we state and
prove a preliminary technical lemma.

Lemma 1. Let u and k be natural integers with 2 < u < 2k — 3. Then any
integer v in the interval [k +2,2k* — 3k] can be expressed as a sum of at most
v/k pairwise distinct elements from the interval [k + 2, 5k].

Proof of Lemma 1 The lemma is trivial when £ + 2 < v < 5k and we
may now assume that v > 5k. Let us write v = 2gk +r with 1 < ¢ <2k —4
and 3k < r < 5k, and let us consider two cases
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- if ¢ is even, say ¢ = 2¢, we have £ < k — 2 and we can write 2¢gk =
2 ini<enzo(2k 4 h),

- if ¢ is odd, say ¢ = 2/ 4+ 1, we have ¢ < k — 2 and we can write

In each case, we can represent v as a sum of ¢ + 1 pairwise distinct
integers from the interval [k + 2, 5k], whence the result.

4 Construction of A

4.1 We first construct an auxiliary suitable set of integers, £. We recall
that V2 < ¢ < 2 and let

4+ c* P
4_62+1J}andk=L 1_127

L = max{12, | ]

+1];

we thus have
(L? — 1) (k> — 4k +4) <p < (L?> = 1)(k* — 2k + 1).
We consider the set B = (k + 1, Lk) ; we have
2y pepb = (L* — 1)k* + (L — 1)k,
from which one deduces
(0.5L — 1)k —0.5 < Yy c5b— (k+1) — (p—1)/2 < (L* + 0.5L)k.

By Lemma 1, when p is sufficiently large, we can find distinct elements in
(k 4 2,5k) the sum of which is ) , . zb — (k+ 1) — (p — 1)/2; let us denote
by C the set of those elements and let D = B\C. The set D is included in
(k+1, Lk), contains {k + 1} U (5k + 1, Lk) and satisfies

S:=> 4epd=m—-1)/2+ (k+1).
We finally define £ by
E=DU{—-d/deDandd>k+1}.

4.2 Let us now turn our attention to the set £* in Z. Its largest positive
element is S (defined as ) ,.pd = (p —1)/2 4 (k + 1)), the sum of the
positive elements of £. We have a priori two ways to get the largest element
in £* besides the one we just mentioned: either we subtract the smallest
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positive element of £ (which is £ + 1), or we add its negative element with
the minimal absolute value (which is at most —(k + 2)); there are thus no
element of £* between S — (k+1), which is (p—1)/2 and S, which is strictly
larger than (p 4+ 3)/2. On the other hand, by a similar computation, the
smallest element in £* is the sum of the negative elements of £, which is
—(S—(k+1)) = —(p—1)/2, and the smallest besides it, is larger than or
equal to —(S— (k+1)—(k+2))=—-(p—-1)/2+ (k+2).

4.3 Let A be the canonical image of £ on Z/pZ. We show that A* does
not cover Z/pZ : let us consider the point (p + 3)/2 (or more correctly, its
canonical image in Z/pZ). The only integers in £* that can cover this point
are (p+3)/2, which impossible, or (p+3)/2—p = —(p—3)/2 = —(p—1)/2+1,
which is again impossible. Thus A is different from Z/pZ.

5 No dilation of A leads to a small sum It remains to show that
relation (2) is satisfied.

5.1 We first consider the case when s is 1 or —1. In this case, we have

Y aeallsa/pll = 2(S/p) — (k+1)/p=1+k/p> 1+ ((1//(L> = 1)).p~"7?).

5.2 When 1 < |s| < p/(2Lk), we have ||sa/p|| = |s|.||a/p|| and so
2acallsa/pll > |s|-(1 + k/p) > 2.

5.3 Let us now consider the case when p/(2Lk) < |s| < p/((L — 6)k). The
interval (5k + 1,6k) is in D and for any integer d in this interval we have
2/L < |s|d/p < p/2 ; this implies ) . , ||sa/p|| > 2k/L, which is larger than
2 when p is large enough.

5.4 We finally consider the case when p/((L — 6)k) < |s| < p/2. For any
real number z we have 27||z| > 2|sin(7z)| > 2sin®(7x) = 1 — cos(27z) =
1 — R(e(x)). Since the interval (5k 4+ 1, Lk) is included in D, we have

Lk Lk

Slisafpll > D7 lsh/oll > 5 D7 (1= Relsh/p)
acA h=5k+1 h=5k+1
= o (L=5)k=R( D e(sh/n).

h=>5k+1
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We further have

Lk Lk 2
|5R(h§+le(sh/p))| < |h_z5:k+le(8h/p)‘ < STsmtre

and since |s| is less than p/2, we have

We thus have
> lisa/pll > k/(27) > 2,

acA

as soon as p is sufficiently large.

This ends the proof of Theorem 2.

6 Concluding remarks In order to get a result of the type ) . , || " | <
1 + Q(p~'/?), we need, with our construction, to have an upper bound for
Card(A) of the type c,/p with ¢ < 2, and we believe that when c tends to 2,
such a result cannot be valid.

In the other direction, we conjecture that, in Theorem 1, the upper
bound for the error term may replaced by O(p~'/?). However, our construc-
tion may be adapted to show that such an error term cannot be valid when

Card(A) = o(p~1/?).
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