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EXOTIC TILTING SHEAVES,

PARITY SHEAVES ON AFFINE GRASSMANNIANS,

AND THE MIRKOVIĆ–VILONEN CONJECTURE

CARL MAUTNER AND SIMON RICHE

Abstract. Let G be a connected reductive group over an algebraically closed

field F of good characteristic, satisfying some mild conditions. In this paper we
relate tilting objects in the heart of Bezrukavnikov’s exotic t-structure on the

derived category of equivariant coherent sheaves on the Springer resolution of

G, and Iwahori-constructible F-parity sheaves on the affine Grassmannian of
the Langlands dual group. As applications we deduce in particular the missing

piece for the proof of the Mirković–Vilonen conjecture in full generality (i.e. for

good characteristic), a modular version of an equivalence of categories due to
Arkhipov–Bezrukavnikov–Ginzburg, and an extension of this equivalence.

1. Introduction

1.1. Summary. Let F be an algebraically closed field, and let G be a connected
reductive group over F which is a product of simply-connected quasi-simple groups
and of general linear groups. We assume that the characteristic p of F is very
good for each quasi-simple factor of G. Let also Ǧ be the complex Langlands
dual group. The main result of this paper is an equivalence of categories relating
tilting objects in the heart of Bezrukavnikov’s exotic t-structure on the derived

category of G × Gm-equivariant coherent sheaves on the Springer resolution Ñ of
G, and Iwahori-constructible parity sheaves on the affine Grassmannian Gr of Ǧ,
with coefficients in F (in the sense of [JMW]).

We provide several applications of this result; in particular

(1) a proof that spherical parity sheaves on Gr, with coefficients in a field of
good characteristic, are perverse, which provides the last missing step in
the proof of the Mirković–Vilonen conjecture [MV] on stalks of standard
spherical perverse sheaves on Gr in the expected generality;

(2) a construction of an equivalence of categories relating Db CohG×Gm(Ñ )
to the “modular mixed derived category” of Iwahori-constructible sheaves
on Gr (in the sense of [AR2]), which is a modular generalization of an
equivalence due to Arkhipov–Bezrukavnikov–Ginzburg [ABG];

(3) an “extension” of (2) to an equivalence relating Db CohG×Gm(g̃) (where g̃ is
the Grothendieck resolution of G) to the modular mixed derived category
of Iwahori-equivariant sheaves on Gr.
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under Grant No. 0932078 000 while the first author was in residence at the Mathematical Sciences

Research Institute in Berkeley, California, during the Fall 2014 semester. C.M. thanks MSRI and
the Max Planck Institut für Mathematik in Bonn for excellent working conditions.
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A weaker version of (1) was obtained earlier by Juteau–Mautner–Williamson
[JMW2] using a case-by-case argument. The application to the Mirković–Vilonen
conjecture is due to Achar–Rider [ARd]. In the case p = 0, the equivalence in (2)
plays an important role in the representation theory of Lusztig’s quantum groups
at a root of unity, see [ABG, Be, BL]. We expect our equivalence to play a compa-
rable role in the modular representation theory of connected reductive groups.1 A
similar result has been obtained independently by Achar–Rider [ARd2], under the
assumption that spherical parity sheaves are perverse. Our methods are different
from theirs; see §1.7 below for a detailed comparison.

1.2. Main result. To state our results more precisely, let us choose a Borel sub-
group B ⊂ G, and a maximal torus T ⊂ B. Let b be the Lie algebra of B. Then

the Springer resolution Ñ is defined as

Ñ := {(ξ, gB) ∈ g∗ ×G/B | ξ|g·b = 0}.
This variety is endowed with a natural action of G×Gm, defined by

(g, x) · (ξ, hB) := (x−2g · ξ, ghB),

so that we can consider the derived category Db CohG×Gm(Ñ ) of G×Gm-equiva-

riant coherent sheaves on Ñ . This category possesses a remarkable t-structure,
called the exotic t-structure, defined by Bezrukavnikov [Be] in the case p = 0, and

studied in our generality in [MR]. The heart EG×Gm(Ñ ) of this t-structure has
a natural structure of a graded highest weight category, with weights the lattice
X = X∗(T) of characters of T, and “normalized” standard, resp. costandard, ob-
jects denoted ∆λ

Ñ
, resp. ∇λ

Ñ
. In particular, we will be interested in the category

Tilt(EG×Gm(Ñ )) of tilting objects in EG×Gm(Ñ ) (i.e. those objects which possess
both a standard filtration and a costandard filtration). This category is Krull–
Schmidt, and its indecomposable objects are parametrized in a natural way by
X× Z. For λ ∈ X, we denote by T λ the indecomposable object attached to (λ, 0).
Then for any n ∈ Z the object associated with (λ, n) is T λ〈n〉, where 〈n〉 is the
n-th power of the functor 〈1〉 of tensoring with the tautological 1-dimensional Gm-

module (see §5.2 for details). For any T in Tilt(EG×Gm(Ñ )), µ ∈ X and m ∈ Z, we
denote by (T : ∆λ

Ñ
〈m〉), resp. (T : ∇λ

Ñ
〈m〉), the multiplicity of the standard object

∆λ
Ñ
〈m〉, resp. of the costandard object ∇λ

Ñ
〈m〉, in a standard (resp. costandard)

filtration of T .
Let now Ǧ be a complex connected group, with a maximal torus Ť ⊂ Ǧ, and

assume that (Ǧ, Ť ) is Langlands dual to (G,T), in the sense that the root datum of
(Ǧ, Ť ) is dual to that of (G,T). In particular, we have an identification X = X∗(Ť ).
We let B̌ ⊂ Ǧ be the Borel subgroup containing Ť whose roots are the coroots of B
(which we will consider as the negative coroots). Let O := C[[z]] and K := C((z)).
Then the affine Grassmannian Gr of Ǧ is defined as

Gr := Ǧ(K )/Ǧ(O),

with its natural ind-variety structure. We denote by Ǐ the Iwahori subgroup of Ǧ(O)
determined by B̌, i.e. the inverse image of B̌ under the morphism Ǧ(O)→ Ǧ defined
by the evaluation at z = 0. Then Ǐ acts naturally on Gr via left multiplication on

1One year after this paper was written, this expectation was indeed confirmed in the arti-
cle [AR3] by P. Achar and the second author.
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Ǧ(K ), and the orbits of this action are parametrized in a natural way by X; we
denote by Grλ the orbit associated with λ and by iλ : Grλ ↪→ Gr the inclusion. We
let

Parity(Ǐ)(Gr,F)

be the category of parity sheaves on Gr, with coefficients in F, with respect to
the stratification by Ǐ-orbits (in the sense of [JMW]). This category is defined as
an additive subcategory of the derived category Db

(Ǐ)
(Gr,F) of Ǐ-constructible F-

sheaves on Gr. It is Krull–Schmidt, and its indecomposable objects are parametrized
in a natural way by X× Z. We denote by Eλ the indecomposable object attached
to (λ, 0); then for any n ∈ Z the object associated with (λ, n) is Eλ[n].

The main result of this paper (whose proof is given in §6.1) is the following.

Theorem 1.1. There exists an equivalence of additive categories

(1.1) Θ: Parity(Ǐ)(Gr,F)
∼−→ Tilt(EG×Gm(Ñ ))

which satisfies the following properties:

(1) Θ ◦ [1] ∼= 〈−1〉 ◦Θ;
(2) for all m ∈ Z, λ ∈ X and E ∈ Parity(Ǐ)(Gr,F), we have

(Θ(E) : ∆λ
Ñ 〈m〉) = dimF

(
Hm−dim(Gr−λ)(Gr−λ, i

∗
−λE)

)
;

(Θ(E) : ∇λÑ 〈m〉) = dimF
(
Hm−dim(Gr−λ)(Gr−λ, i

!
−λE)

)
;

(3) Θ(Eλ) ∼= T −λ for any λ ∈ X.

1.3. Outline of the proof. Our strategy of proof of Theorem 1.1 is based on the
description of both sides in (1.1) in terms of an appropriate category of “Soergel
bimodules.”2 This idea is very classical, see e.g. [S1, BY, Do] for examples in
characteristic zero, and [S3, AR1] for examples in positive characteristic.

On the “constructible side” (i.e. the left-hand side in (1.1)), this description is
obtained using the total cohomology functor. The arguments in this section follow
well-established techniques; see §1.8 below for a discussion of the only new idea
that is needed.

On the “coherent side” (i.e. the right-hand side in (1.1)), we adapt a construc-
tion due to Dodd [Do] in characteristic zero, which uses a “Kostant–Whittaker
reduction” functor. This construction uses modular (and integral) versions of some
classical results of Kostant, which are treated in the companion paper [R3]. Our
constructions are slightly different from Dodd’s, however, in that we do not use
a deformation to (asymptotic) D-modules, but only to coherent sheaves on the
Grothendieck resolution

g̃ := {(ξ, gB) ∈ g∗ ×G/B | ξ|g·n = 0},
where n is the Lie algebra of the unipotent radical of B. (On the constructible side,
this deformation amounts to replacing the category Parity(Ǐ)(Gr,F) by the category

ParityǏ(Gr,F) of Ǐ-equivariant F-parity sheaves on Gr.)
Our proof of fully-faithfulness of the Kostant–Whittaker reduction functor is

also different from the proof in [Do]. One of the crucial ideas in our proof, which

2Our “Soergel bimodules” are in fact not bimodules over any ring, but rather modules over a
certain algebra built out of two copies of a polynomial algebra. We use this terminology since
these objects play the role which is usually played by actual Soergel bimodules.
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we learnt in papers of Soergel [S1, S3] and was used also in [AR1], is to compute
Hom-spaces between Soergel bimodules from the analogue for parity sheaves. We
use this computation to prove the “coherent side”; see the proof of Theorem 5.14
for more details.

We also use some ideas from categorification, related to the fact that both cate-
gories appearing in (1.1) provide categorifications of the spherical module Msph of
the affine Hecke algebra Haff attached to G (in the sense that their split Grothen-
dieck groups are equipped with natural actions of Haff , and are naturally isomorphic
to Msph). On the left-hand side this uses the realization of Haff in terms of con-

structible sheaves on the affine flag variety of Ǧ, and on the right-hand side this
uses the Kazhdan–Lusztig–Ginzburg description of Haff in terms of equivariant co-
herent sheaves on the Steinberg variety of G, a “categorical” counterpart of which
is provided by the “geometric braid group action” studied in [R1, BR2].

Note that, surprisingly, our proof does not use the geometric Satake equivalence
from [MV].

1.4. Equivalences of triangulated categories. One of our motivations for the
study of the equivalence in Theorem 1.1 was the desire to obtain a“modular version”
of an equivalence of categories due to Arkhipov–Bezrukavnikov–Ginzburg [ABG] in
the case p = 0. Our version involves the “modular mixed derived category”

Dmix
(Ǐ)

(Gr,F) := Kb Parity(Ǐ)(Gr,F),

introduced and studied (in a more general setting) in [AR2]. In particular, it can
be endowed with a “perverse t-structure” and a “Tate twist” autoequivalence 〈1〉,
and possesses “standard objects” ∆mix

λ (λ ∈ X) and “costandard objects” ∇mix
λ

(λ ∈ X) which have the same properties as ordinary standard and costandard
perverse sheaves. For λ ∈ X, we denote by Emix

λ the object Eλ, considered as an

object of Dmix
(Ǐ)

(Gr,F). In case F = Q`, the category Dmix
(Ǐ)

(Gr,F) is equivalent to the

bounded derived category of the category P̃ of [BGS, §4.4], see [AR2, Remark 2.2].
As an immediate application of Theorem 1.1 we obtain the following theorem,

whose proof is given in §6.2, and which provides a “modular analogue” of the equiv-
alence of [ABG, Theorem 9.4.1].

Theorem 1.2. There exists an equivalence of triangulated categories

Φ: Dmix
(Ǐ)

(Gr,F)
∼−→ Db CohG×Gm(Ñ )

which satisfies

Φ ◦ 〈1〉 ∼= 〈1〉[1] ◦ Φ, Φ(∆mix
λ ) ∼= ∆−λ

Ñ
, Φ(∇mix

λ ) ∼= ∇−λÑ , Φ(Emix
λ ) ∼= T −λ

for all λ ∈ X.

Remark 1.3. One should think of Φ as some kind of “Ringel–Koszul duality,” i.e. a
composition of a Koszul duality (as in [BGS, Theorem 2.12.6], which sends simple
objects to projective objects) and a Ringel duality (which sends projective objects
to tilting objects). The relevance of such equivalences in Lie-theoretic contexts was
pointed out in [BG]; see also [BY]. The idea that, in a modular context, simple
perverse sheaves should be replaced by parity sheaves in “Koszul-type” statements
is implicit in [S3], and was developed more explicitly in [RSW].
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As explained in §1.3, our proof of Theorem 1.1 is based on the consideration of
a “deformation” of the picture, replacing Ǐ-constructible sheaves by Ǐ-equivariant

sheaves, and equivariant coherent sheaves on Ñ by equivariant coherent sheaves
on g̃. Using these considerations, we define objects ∆λ

g̃ and ∇λg̃ in Db CohG×Gm(g̃)

which satisfy

Li∗(∆λ
g̃) ∼= ∆λ

Ñ , Li∗(∇λg̃) ∼= ∇λÑ
for all λ ∈ X, where i : Ñ ↪→ g̃ is the inclusion (see §5.3). We also define an additive

and Karoubian subcategory Tilt of Db CohG×Gm(g̃), stable under the shift 〈n〉 for

any n ∈ Z, and indecomposable objects T̃ λ in Tilt satisfying Li∗(T̃ λ) ∼= T λ and

such that Tilt is Krull–Schmidt with indecomposable objects T̃ λ〈n〉 for λ ∈ X and
n ∈ Z, see §6.3. On the other hand, we consider the equivariant modular mixed
derived category

Dmix
Ǐ

(Gr,F) := Kb ParityǏ(Gr,F),

and denote by ∆mix
Ǐ,λ

, resp. ∇mix
Ǐ,λ

, the standard, resp. costandard, object associated

with λ ∈ X. For any λ ∈ X, the parity complex Eλ can be naturally “lifted” to the
category ParityǏ(Gr,F); we again denote by Emix

λ this object viewed as an object
in Dmix

Ǐ
(Gr,F).

The following “deformation” of Theorem 1.2 is proved in §6.3. (In case p = 0, a
similar result can be deduced from the main result of [Do], though this equivalence
is not explicitly stated there.)

Theorem 1.4. There exists an equivalence of triangulated categories

Ψ: Dmix
Ǐ

(Gr,F)
∼−→ Db CohG×Gm(g̃)

which satisfies

Ψ ◦ 〈1〉 ∼= 〈1〉[1] ◦Ψ, Ψ(∆mix
Ǐ,λ

) ∼= ∆−λ
g̃
, Ψ(∇mix

Ǐ,λ
) ∼= ∇−λg̃

, Ψ(Emix
λ ) ∼= T̃ −λ

for all λ ∈ X.

In §6.4 we also prove that the equivalences Ψ and Φ are compatible in the natural
way.

1.5. Parity, tilting and the Mirković–Vilonen conjecture. Our other main
motivation for the study of Theorem 1.1 comes from the Mirković–Vilonen conjec-
ture [MV, Conjecture 13.3]. In this subsection, we let G be more generally any
split connected reductive group scheme over an arbitrary commutative ring k. As
before, we fix a (split) maximal torus T and let X denote the weight lattice. We
again let Ǧ and Ť ⊂ Ǧ denote the unique (up to isomorphism) complex connected
reductive group and maximal torus with Langlands dual root datum, and consider
its affine Grassmannian Gr := Ǧ(K )/Ǧ(O).

The geometric Satake equivalence, proven by Mirković–Vilonen [MV] for any k
which is Noetherian and of finite global dimension, is an equivalence of abelian
categories

Sk : Perv(Ǧ(O))(Gr, k)
∼−→ Rep(G),

where Perv(Ǧ(O))(Gr, k) is the category of Ǧ(O)-constructible k-perverse sheaves

on Gr, and Rep(G) is the category of algebraic G-modules which are of finite type
over k. (This equivalence is compatible with the natural monoidal structures on
these categories.)
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After a choice of positive roots, the Ǧ(O)-orbits on Gr are parametrized in a

natural way by the set of dominant weights X+ ⊂ X; we denote by Grλ the orbit
associated with λ ∈ X+, and by iλ : Grλ ↪→ Gr the inclusion. For any λ ∈ X+, we
consider the perverse sheaf

I!(λ, k) := p(iλ)!kGrλ [dim(Grλ)].

By [MV, Proposition 13.1], this object corresponds, under Sk, to the Weyl G-
module associated with λ. Towards the end of their paper, Mirković–Vilonen state
the following conjecture.

Conjecture 1.5 (Mirković–Vilonen [MV]). The cohomology modules of the stalks
of I!(λ,Z) are free.

We understand this conjecture was formulated based on evidence in type A and
as part of an attempt to produce a “modular analogue” of results of Bezukavnikov
and collaborators (in particular, the equivalence of [ABG, Theorem 9.4.1]), like the
one we prove as Theorem 1.2.

Using [MV, Proposition 8.1(a)–(b)], one can also state this conjecture equiva-
lently as the property that, for any field k, the dimensions

dimk
(
Hm(Grµ, i

∗
µI!(λ,k))

)
are independent of k. Note that, by [MV, Lemma 7.1], if k has characteristic zero,

we have I!(λ,k) = IC(Grλ,k), and the graded dimensions of stalks of these objects
can be computed in terms of affine Kazhdan–Lusztig polynomials [KL] and vanish
in either all odd or all even degrees.

It was realized by Juteau [Ju] that Conjecture 1.5 does not hold as stated, namely
that the cohomology modules of the stalks of I!(λ,Z) can have p-torsion if p is a
prime number which is bad for Ǧ.

On the other hand, if I!(λ,Z) does not have p-torsion for any λ ∈ X+, then it
follows that for any field k of characteristic p, the tilting objects in Perv(Ǧ(O))(Gr,k)

are parity complexes, or equivalently that all the parity sheaves Eλ for λ ∈ −X+

(i.e. the parity sheaves which are Ǧ(O)-constructible) are perverse. (The equiva-
lence between these properties follows from [JMW2, Proposition 3.3].)

The statement that the parity sheaves Eλ for λ ∈ −X+ with coefficients in a
field k of characteristic p are perverse, was proved using a case-by-case analysis by
Juteau–Mautner–Williamson [JMW2, Theorem 1.8] provided that p is bigger than
explicit bounds. The bounds in [JMW2] are a byproduct of the method of proof
and are in general stronger than the condition that p is good (most notably when
G is quasi-simple of type Cn, in which case the bound is p > n).

Achar–Rider [ARd] then proved that if all the parity sheaves Eλ for λ ∈ −X+

with coefficients in a field k of characteristic p are perverse, then the cohomology
modules of the stalks of the perverse sheaves I!(λ,Z) have no p-torsion.

In §6.5 we give a uniform proof of the following.

Corollary 1.6. If p is good for Ǧ, then for any λ ∈ −X+ the parity sheaf Eλ is
perverse.

By the main result of [ARd], this implies:

Theorem 1.7 (Mirković–Vilonen conjecture). If p is good for Ǧ, then the coho-
mology modules of the stalks of the perverse sheaves I!(λ,Z) have no p-torsion.
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Our proof of Corollary 1.6 is based on the explicit description of the tilting
objects T λ for λ ∈ X+ obtained in [MR].

1.6. Other applications. Now, let us come back to our assumptions on G and p
from §1.1. In this subsection we state some other applications of Theorem 1.1. Most
of these results are already known (at least when p = 0), but their proof usually
requires the geometric Satake equivalence of §1.5. We find it useful to explain how
these results can be derived directly using our methods.

We denote by Parity(Ǧ(O))(Gr,F) the subcategory of Parity(Ǐ)(Gr,F) consisting

of objects which are Ǧ(O)-constructible, i.e. which are direct sums of objects Eλ[i]
where λ ∈ −X+ and i ∈ Z. We also denote by PParity(Ǧ(O))(Gr,F) the subcategory

of Parity(Ǧ(O))(Gr,F) consisting of objects which are perverse sheaves. By Corol-
lary 1.6, this category consists of objects which are direct sums of parity sheaves
Eλ where λ ∈ −X+.

To conform to the notation used most of the time in this context, for λ ∈ X+ we
set Eλ := Ew0λ (where w0 is the longest element in the Weyl group W of (G,T)),

and (as in §1.5) Grλ = tµ∈WλGrµ. We also denote by Lλ the unique Ť -fixed point
in Grλ, and by ıλ : {Lλ} ↪→ Gr the inclusion.

We denote by Tilt(G) the additive category of tilting G-modules, and by T(λ)
the indecomposable tilting G-module with highest weight λ (for λ ∈ X+). We also
denote by M(λ) and N(λ) the standard and costandard G-modules with highest
weight λ respectively (see [MR, §4.3]). We denote by (T(λ) : M(µ)) and (T(λ) :
N(µ)) the corresponding multiplicities.

From Theorem 1.1 one can deduce the following result (see §6.6).

Proposition 1.8. There exists an equivalence of additive categories

SF : PParity(Ǧ(O))(Gr,F)
∼−→ Tilt(G)

which satisfies SF(Eλ) ∼= T(λ) for all λ ∈ X+. Moreover, for λ, µ ∈ X+ we have

(1.2)
∑
k∈Z

dim
(
Hk−dim(Grµ)(ı∗µEλ)

)
· vk =

∑
ν∈X+

(
T(λ) : N(−w0ν)

)
· M−w0µ

ν (v−2),

where Mχ
η (v) is Lusztig’s q-analogue [L1].

In case p = 0, M(λ) and T(λ) both coincide with the simple G-module with
highest weight λ, so that

(
T(λ) : M(ν)

)
= δλ,ν . On the other hand we have

Eλ = IC(Grλ,F). By [KL], the dimensions of the stalks of this perverse sheaf can be
expressed in terms of Kazhdan–Lusztig polynomials for the affine Weyl group Waff

of G. Hence in this case, (1.2) provides a geometric proof of the relation between
affine Kazhdan–Lusztig polynomials and Lusztig’s q-analogue, conjectured in [L1]
and proved by different methods in [Ka].

Once it is known that the parity sheaves Eλ are perverse, as remarked in [JMW2,
Proposition 3.3], it follows that SF(Eλ) ∼= T(λ) (where SF is the geometric Satake
equivalence, see §1.5). Hence one can obtain a different construction of an equiv-
alence SF by simply restricting SF. In this setting, a sketch of a different proof
of (1.2) is given in [JMW2, Remark 4.2].

One can also apply our results to describe the (equivariant) cohomology of spher-
ical parity sheaves and their costalks (see §6.7 for the proof).
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Proposition 1.9. (1) For any λ ∈ X+, there exist isomorphisms of graded
vector spaces, resp. of graded H•

Ǐ
(pt;F)-modules,

H•(Gr, Eλ) ∼= T(λ), H•
Ǐ
(Gr, Eλ) ∼= T(λ)⊗H•

Ǐ
(pt;F),

where the grading on T(λ) is obtained from the Gm-action through the
cocharacter given by the sum of the positive coroots.

(2) For any λ, µ ∈ X+, there exist isomorphisms of graded vector spaces,
resp. of graded H•

Ǐ
(pt;F)-modules,

H•−dim(Grµ)(ı!µEλ) ∼=
(
T(λ)⊗ Γ(Ñ ,OÑ (−w0µ))

)G
,

H•−dim(Grµ)

Ǐ
(ı!µEλ) ∼=

(
T(λ)⊗ Γ(g̃,Og̃(−w0µ))

)G
,

where in both cases T(λ) is in degree 0, the global sections are equipped

with the grading induced by the Gm-actions on Ñ and g̃, and the H•
Ǐ
(pt;F)-

action on (T(λ) ⊗ Γ(g̃,Og̃(−w0µ)))G is induced by the natural morphism
g̃→ Lie(T) = Spec(H•

Ǐ
(pt;F)).

The first isomorphism in (1) can be alternatively deduced from the fact that
SF(Eλ) ∼= T(λ), see the comments after Proposition 1.8. Then one can deduce the
second isomorphism using [YZ, Lemma 2.2]. In case p = 0, the isomorphisms in (2)
are proved in [GR, Corollary 2.4.5 and Proposition 8.7.1].3

1.7. Comparison with [ARd2]. As mentioned already, in [ARd2] Achar and Rider
have obtained a different proof of Theorem 1.2. Their methods are quite different
from ours, and closer to the methods used in [ABG]. In fact, while for us most
of the work is required on the “coherent side,” in their approach the most difficult
constructions appear on the “topological side.” Moreover, the exotic t-structure
does not play any role in the construction of their equivalence.4 Another important
difference is that their arguments rely on the geometric Satake equivalence, while
ours do not.

The assumptions in [ARd2] are also different from ours: in fact they assume that
the field F is such that any spherical parity sheaf with coefficients in F on Gr is
perverse. Hence Corollary 1.6 allows to extend the validity of their results to all
good characteristics.

1.8. A key lemma. A very important role in our arguments is played by the
following easy lemma (see [BY, Lemma 3.3.3]).

Lemma 1.10. Let k be an integral domain, and let K be its field of fractions. Let A
and B be k-algebras, and let ϕ : A → B be an algebra morphism. If the morphism
K ⊗k ϕ : K ⊗k A → K ⊗k B is an isomorphism, then the “restriction of scalars”
functor

Mod(B)→ Mod(A)

is fully-faithful on modules which are k-free.

3The conventions for the choice of positive roots and the normalization of line bundles are

different in [GR], which explains the formal difference between the two formulas. A more important
difference is that in [GR] we construct an explicit and canonical isomorphism, while here we only

claim the existence of such an isomorphism.
4The relation between their equivalence and the exotic t-structure is studied in [ARd2, Sec-

tion 8], but only after the equivalence is constructed.
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We learnt how useful this observation can be in [BY]. It also plays an important
role in [AR1]. In practice, this lemma can be used when we are interested in modules
over a k-algebra B which is “complicated” or not well understood, but for which we
have a “simplified model”A which is “isomorphic to B up to torsion”, i.e. such that
we have a k-algebra morphism A→ B inducing an isomorphism K⊗kA

∼−→ K⊗kB.
For instance, on the“constructible side”of our proof of Theorem 1.1, working over

F directly we would have to consider the equivariant cohomology algebra H•
Ǐ
(Gr;F).

Using the results in [YZ] (which rely on the geometric Satake equivalence) one
can obtain a description of this algebra in terms of the distribution algebra of the
universal centralizer associated with G. This algebra is a rather complicated object;
in particular it is not finitely generated over F. On the other hand, if K is a field of
characteristic zero, the algebra H•

Ǐ
(Gr;K) has a nice description (in terms similar to

the description of the cohomology of a finite flag variety as a coinvariant algebra)
which follows from [BF, Theorem 1].5 Hence, instead of working over F, our main
constructions are done with coefficients in a finite localization R of Z. In this case,
we do not have a very explicit description of the algebra H•

Ǐ
(Gr;R). But the same

construction as the one used by Bezrukavnikov–Finkelberg in the case of K provides
a “simplified model” for this algebra, which is isomorphic to H•

Ǐ
(Gr;R) “up to R-

torsion,” see §3.5. Since the modules over this algebra that we want to consider are
all R-free, using Lemma 1.10 we can replace the “complicated algebra” H•

Ǐ
(Gr;R)

by its “simplified model” without loosing any information.
Given this strategy, we also have to work over R on the “coherent side.” Most

of the complications appearing in this setting are treated in [BR2] and in [R3].

1.9. Contents. In Section 2 we prove some preliminary technical results, and in-
troduce some objects which will play an important role in the later sections. In
Section 3 we describe the left-hand side in (1.1) in terms of our Soergel bimodules.
In Section 4 we define the Kostant–Whittaker reduction functor, building on the
main results of [R3]. In Section 5 we use this functor to describe the right-hand side
in (1.1) in terms of Soergel bimodules. Finally, in Section 6 we prove the results
stated in the introduction.

1.10. Some notation and conventions. All rings in this paper are tacitly as-
sumed to be commutative and unital.

If A is an algebra, we denote by Mod(A) the category of left A-modules. If A is a
Z-graded algebra, we denote by Modgr(A) the category of Z-graded left A-modules.
We denote by 〈1〉 the shift of the grading defined by (M〈1〉)n = Mn−1. If M is a
free graded A-module of finite rank, we denote by grkA(M) ∈ Z[v, v−1] its graded
rank, with the convention that grkA(A〈n〉) = vn.

If X is a scheme, we denote by OX its structure sheaf, and by O(X) the global
sections of OX . If Y is a scheme and X is a Y -scheme, we denote by ΩX/Y , or
simply ΩX , the sheaf of relative differentials, and by Ω(X/Y ), or simply Ω(X), its
global sections.

If k is a ring and V is a free k-module of finite rank, by abuse we still denote
by V the affine k-scheme Spec

(
Sk(Homk(V, k))

)
, where S denotes the symmetric

algebra.

5This simpler description is related to the preceding one using the fact that, over a field
of characteristic zero, the distribution algebra of a smooth group scheme is isomorphic to the
enveloping algebra of its Lie algebra.
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If R is a finite localization of Z, we define a geometric point of R to be an
algebraically closed field whose characteristic p ≥ 0 is not invertible in R. If F is
a such a geometric point, then there exists a unique algebra morphism R → F, so
that tensor products on the form F⊗R (−) make sense.

If X is a Noetherian scheme and A is an affine X-group scheme, we denote by
Rep(A) the category of representations of A which are coherent as OX -modules.
If A is flat over X, then this category is abelian.

At various points in the paper we consider certain schemes and affine group
schemes that could be defined over various base rings. When it is not clear from
context, we will use a subscript to specify the base ring. For example, we write
XZ, resp. XF, to denote the Z-scheme X, resp. its base change to F. In order to
avoid notational clutter, we will affix a single subscript k to some constructions
like fiber products, for example writing (X ×Z Y )k and O(X ×Z Y )k rather than
Xk×Zk Yk and O(Xk×Zk Yk), or categories of equivariant coherent sheaves, writing

CohG(X)k instead of CohGk(Xk). We will also use the abbreviation DG(X)k :=

Db CohGk(Xk).

1.11. Acknowledgements. Soon after we started working on this paper, we were
informed by Pramod Achar and Laura Rider that they were also working on a
similar project, which was completed in [ARd2]. We thank them for keeping us
informed of their progress, and for useful discussions. We also thank the referee for
helpful comments.

2. Preliminary results

2.1. Reminder on parity sheaves. Let X be a complex algebraic variety, and

X =
⊔
s∈S

Xs

be a finite (algebraic) stratification of X into affine spaces. For any s ∈ S , we
denote by is : Xs ↪→ X the embedding. If k is a Noetherian ring of finite global
dimension, we denote by Db

S (X, k) the S -constructible derived category of sheaves
of k-modules on X. Note that any k-local system on any stratum Xs is constant.
If k′ is a k-algebra which is also Noetherian and of finite global dimension, we will
denote by

k′(−) : Db
S (X, k)→ Db

S (X, k′)

the derived functor of extension of scalars.
The following is a slight generalization of [JMW, Definition 2.4] (where it is

assumed that k is a complete local principal ideal domain).

Definition 2.1. An object F in Db
S (X, k) is called ∗-even, resp. !-even, ifHn(i∗sF),

resp. Hn(i!sF), vanishes if n is odd, and is a projective k-local system if n is even.
It is called even if it is both ∗-even and !-even.

An object F is called ∗-odd, resp. !-odd, resp. odd if F [1] is ∗-even, resp. !-even,
resp. even.

Finally, an object is called a parity complex if it is isomorphic to the direct sum
of an even and an odd object.

We will denote by ParityS (X, k) the full subcategory of Db
S (X, k) consisting of

parity complexes; it is stable under direct sums and direct summands. It is clear
also that if k′ is a k-algebra satisfying the assumptions above, then the functor
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k′(−) restricts to a functor from ParityS (X, k) to ParityS (X, k′) (which we denote
similarly).6

We now assume that a connected complex algebraic group A acts on X, sta-
bilizing each stratum Xs. We will assume that HnA(pt; k) vanishes if n is odd,
and is projective over k otherwise. One can consider the S -constructible A-
equivariant derived category Db

A,S (X, k) in the sense of Bernstein–Lunts. We let

For : Db
A,S (X, k)→ Db

S (X, k) be the forgetful functor. More generally, if A′ ⊂ A is
a closed subgroup satisfying the same assumption as A, we have a forgetful functor
For : Db

A,S (X, k)→ Db
A′,S (X, k). We say that an object F in Db

A,S (X, k) is a par-

ity complex if For(F) is a parity complex in the sense of Definition 2.1. We denote
by ParityA,S (X, k) the subcategory of Db

A,S (X, k) consisting of parity complexes.

For k′ a k-algebra satisfying the assumptions above, we also have an “extension of
scalars” functor k′(−) in this setting. If S is the stratification by A-orbits, we will
omit it from the notation.

We refer to [JMW] for the main properties of parity sheaves, in the case k is a
complete local principal ideal domain. Here we will only need the properties below,
which follow from [JMW, Proposition 2.6]. (Note that the proof in loc. cit. does
not use the running assumptions on the ring of coefficients.)

Lemma 2.2. (1) If F is in ParityA,S (X, k), then H•A(X,F) is a finitely gen-
erated projective module over H•A(pt; k). If A′ ⊂ A is a closed subgroup as
above, then the natural morphism

H•A′(pt; k)⊗H•A(pt;k) H•A(X,F)→ H•A′(X,For(F))

is an isomorphism. If k′ is a k-algebra as above, then the natural morphism

k′ ⊗k H•A(X,F)→ H•A(X, k′(F))

is also an isomorphism.
(2) If F , G are in ParityA,S (X, k), then Hom•Db

A,S (X,k)(F ,G) is a finitely gen-

erated projective H•A(pt; k)-module. If A′ ⊂ A is a closed subgroup as above,
then the natural morphism

H•A′(pt; k)⊗H•A(pt;k) Hom•Db
A,S (X,k)(F ,G)→ Hom•Db

A′,S (X,k)(For(F),For(G))

is an isomorphism. If k′ is a k-algebra as above, then the natural morphism

k′ ⊗k Hom•Db
A,S (X,k)(F ,G)→ Hom•Db

A,S (X,k′)(k
′(F), k′(G))

is also an isomorphism. �

Remark 2.3. In [JMW], the ring k is assumed to be a principal ideal domain, so
every finitely generated projective k-module is free.

We will also use the following observation.

6This remark uses the property that the functor k′(−) commutes with the functors i!s and i∗s .

For i∗s , this follows from [KS, Proposition 2.6.5]. For i!s, we observe that [KS, Proposition 3.1.11]
provides a morphism of functors k′(−) ◦ i!s → i!s ◦ k′(−). To prove that this morphism is an

isomorphism on Db
S (X, k), it suffices to remark that Db

S (X, k) is generated (as a triangulated
category) by objects of the form (it)∗(MXt

) where t ∈ S and M is a finitely generated flat

k-module, and that our morphism is clearly an isomorphism on such objects.
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Lemma 2.4. Assume that k is complete local. If F is an object of ParityA,S (X, k)
which is indecomposable, then its image For(F) in ParityS (X, k) is also indecom-
posable.

Proof. Under our assumptions on k, ParityA,S (X, k) and ParityS (X, k) are Krull–
Schmidt categories (see [JMW, Remark 2.1]). Hence to prove the indecomposability
of For(F) it suffices to prove that EndDb

S (X,k)(For(F)) is a local ring. By Lemma 2.2

the ring Hom•Db
S (X,k)(For(F),For(F)) is a quotient of Hom•Db

A,S (X,k)(F ,F). Hence

EndDb
S (X,k)(For(F)) is a quotient of EndDb

A,S (X,k)(F). Since the latter is local, the

former is also local, which finishes the proof. �

Assume now that k is an integral domain. Recall that, in this setting, the rank of
a projective k-module M , denoted rkk(M), is the dimension of the Frac(k)-vector
space Frac(k) ⊗k M . To X one can associate the free Z[v, v−1]-module MX with
basis (es : s ∈ S ) indexed by S , and to any F in ParityA,S (X, k) the elements

ch∗X(F) =
∑
s∈S
j∈Z

rkk
(
Hj−dim(Xs)(Xs, i

∗
sF)

)
· vj · es,

ch!
X(F) =

∑
s∈S
j∈Z

rkk
(
Hj−dim(Xs)(Xs, i

!
sF)

)
· v−j · es.

We also define a bilinear form 〈−,−〉 on MX , with values in Z[v, v−1], by setting

〈vnes, v
met〉 = v−n−mδs,t.

The following result is also an easy application of [JMW, Proposition 2.6], whose
proof is left to the reader.

Lemma 2.5. Assume that k is an integral domain.

(1) If F is in ParityA,S (X, k), then its Grothendieck–Verdier dual DX(F) is
also in ParityA,S (X, k), and moreover we have

ch!
X(DX(F)) = ch∗X(F).

(2) If F , G are in ParityA,S (X, k), then we have

grkH•A(pt;k)

(
Hom•Db

A,S (X,k)(F ,G)
)

= 〈ch∗X(F), ch!
X(G)〉. �

Remark 2.6. In the paper we will also use the straightforward generalization of
the notions and results of this subsection to the case of ind-varieties, in the setting
of [JMW, §2.7].

2.2. Equivariant coherent sheaves. Let X be a Noetherian scheme, and let H
be an affine group scheme over X. Consider a Noetherian X-scheme Y endowed
with an action of H, i.e. we are given a morphism a : H ×X Y → Y of X-schemes
which satisfies the natural compatibility property with the group structure on H.
Let also p : H ×X Y → Y be the projection. Then one can define the category
CohH(Y ) of H-equivariant coherent sheaves on Y as the category of pairs (F , φ)

where F is a coherent sheaf on Y and φ : p∗(F)
∼−→ a∗(F) is an isomorphism which

satisfies the usual cocyle condition. If H is flat over X, then this category is abelian.
We define the “universal stabilizer” as the fiber product

(2.1) S := Y ×Y×XY (H×X Y )



EXOTIC TILTING SHEAVES AND PARITY SHEAVES 13

where the morphism Y → Y ×X Y is the diagonal embedding (which we will denote
by ∆), and the morphism H×X Y → Y ×X Y is a× p. Then S is an affine group
scheme over Y , and the natural morphism S → H ×X Y is a closed embedding of
Y -group schemes.

The goal of this subsection is to recall the construction of a faithful functor

(2.2) CohH(Y )→ Rep(S)

whose composition with the forgetful functor Rep(S)→ Coh(Y ) coincides with the

natural forgetful functor ForHY : CohH(Y )→ Coh(Y ).
We begin with a remark. Let X ′ be a Noetherian X-scheme. Then one can

consider the X ′-group scheme H′ := H×XX ′, which acts naturally on Y ′ := Y ×X
X ′. If f : Y ′ → Y is the natural morphism, then we remark that the usual pullback

functor f∗ : Coh(Y ) → Coh(Y ′) induces a functor from CohH(Y ) to CohH′(Y ′),
which we also denote f∗. In particular, using this construction for the morphism
Y → X, we obtain a functor

p∗1 : CohH(Y )→ CohH×XY (Y ×X Y ),

where Y ×X Y is considered as a Y -scheme through the second projection.
Using this functor we can define (2.2) as the composition

CohH(Y )
p∗1−→ CohH×XY (Y ×X Y )→ CohS(Y ×X Y )

∆∗−−→ CohS(Y ) = Rep(S),

where the second arrow is the restriction functor, and S acts trivially on Y . (Note
that ∆ is an S-equivariant morphism of Y -schemes.)

More generally, if Z ⊂ Y is a (not necessarily H-stable) closed subscheme, one
can consider the restriction SZ := Z ×Y S, and the composition

CohH(Y )→ Rep(SZ)

of (2.2) with restriction to Z. The composition of this functor with the forgetful

functor Rep(SZ)→ Coh(Z) is the composition CohH(Y )
ForHY−−−→ Coh(Y )→ Coh(Z),

where the second functor is restriction.

2.3. Deformation to the normal cone. Let A be a ring, and let I ⊂ A be an
ideal. We define the associated deformation to the normal cone7 DNCI(A) as the
subalgebra of A[~±1] generated by A[~] together with the elements of the form ~−1f
for f ∈ I.

Lemma 2.7. Let A′ be a ring, and let A→ A′ be a flat ring morphism. We denote
by I ′ the ideal of A′ generated by the image of I. Then there exists a canonical
isomorphism of k-algebras

A′ ⊗A DNCI(A)
∼−→ DNCI′(A

′).

Proof. The natural morphism

A′ ⊗A DNCI(A)→ A′ ⊗A
(
A[~±1]

)
= A′[~±1]

is injective. The image of this morphism is clearly DNCI′(A
′), which provides the

desired isomorphism. �

7Our terminology comes from geometry: if X is the spectrum of A and Y ⊂ X the closed
subscheme associated with I, then the spectrum of DNCI(A) is (a slight variant of) the usual
deformation to the normal cone of X along Y considered e.g. in [Fu, Chap. 5].
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2.4. Two lemmas on graded modules over polynomial rings. Let k be a
ring, and let V be a free k-module of finite rank. We denote by A be the symmetric
algebra of V over k, which we consider as a Z-graded k-algebra with the generators
V ⊂ A in degree 2. We consider the trivial A-module k as a graded module
concentrated in degree 0.

Lemma 2.8. (1) Let M be a graded A-module which is bounded below for the
internal grading, and assume that

k ⊗AM is graded free over k and TorA1 (k,M) = 0.

Then M is graded free over A.
(2) Let M be an object of the bounded derived category of graded A-modules,

and assume that the cohomology modules of M are all bounded below for
the internal grading. Assume that the complex k ⊗LA M is concentrated in
degree 0, and graded free over k. Then M is concentrated in degree 0, and
is graded free over A.

Proof. (1) Let M ′ be a free graded A-module and let f : M ′ → M be a morphism
such that the induced morphism k⊗AM ′ → k⊗AM is an isomorphism. (Such an
M ′ exists by our first assumption.) By the graded Nakayama lemma, f is surjective.
Let M ′′ be its kernel, and consider the exact sequence

TorA1 (k,M)→ k ⊗AM ′′ → k ⊗AM ′ → k ⊗AM → 0.

This exact sequence shows, using our second assumption, that k ⊗A M ′′ = 0. By
the graded Nakayama lemma again, we deduce that M ′′ = 0, which finishes the
proof.

(2) An easy argument using the graded Nakayama lemma shows that M is con-
centrated in non-positive degrees. Now, consider the truncation triangle

τ<0M →M → H0(M)
+1−−→ .

Applying the functor k ⊗LA (−) we obtain a distinguished triangle

k
L
⊗A τ<0M → k

L
⊗AM → k

L
⊗A H0(M)

+1−−→ .

The associated long exact sequence of cohomology implies that TorA1 (k,H0(M)) = 0,
hence H0(M) is free by (1). Considering again the long exact sequence we obtain
that k⊗LA τ<0M = 0, hence that τ<0M = 0 by the graded Nakayama lemma, which
finishes the proof. �

Now we assume that we are given an open k-subscheme V ′ ⊂ V . Then, for any
algebraically closed field F and any ring morphism k → F, we set

VF := Spec(F)×Spec(k) V, V ′F := Spec(F)×Spec(k) V
′.

Lemma 2.9. Let M , N be free graded A-modules of finite rank, and let ϕ : M → N
be a morphism of graded A-modules. Assume that grkA(M) = grkA(N), and that
the morphism

ϕ′F : O(V ′F)⊗AM → O(V ′F)⊗A N
induced by ϕ is injective for any algebraically closed field F and any ring morphism
k → F. Then ϕ is an isomorphism.
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Proof. Let ϕF : F⊗kM → F⊗kN be the morphism induced by ϕ. Then, considering
the commutative diagram

F⊗kM

��

ϕF // F⊗k N

��
O(V ′F)⊗AM

ϕ′F // O(V ′F)⊗A N

(where the verticall arrows are injective since the morphism V ′F → VF is an open
embbeding) we see that ϕF is injective, hence an isomorphism under our assumption
on graded ranks. Now if i ∈ Z, the k-modules Mi and Ni are free of (the same)
finite rank, and the determinant of the restriction ϕi : Mi → Ni of ϕ (in any fixed
choice of bases) does not belong to any prime ideal of k. Hence this determinant is
invertible, proving that ϕ is an isomorphism. �

2.5. Affine braid groups and associated Hecke algebras. Let (X,Φ, X̌, Φ̌) be
a root datum, and let Φ+ ⊂ Φ be a system of positive roots. We will assume that
X̌/ZΦ̌ has no torsion (or in other words that the connected reductive groups with
root datum (X,Φ, X̌, Φ̌) have a simply-connected derived subgroup). For α ∈ Φ,
we denote by α∨ the corresponding coroot, and by sα the associated reflection.

Let W be the corresponding Weyl group, and Waff := W n X be the associated
affine Weyl group. To avoid confusions, for λ ∈ X we denote by tλ the corresponding
element of Waff . We let ZΦ ⊂ X be the root lattice; then the subgroup WCox

aff :=
Wn(ZΦ) ⊂Waff is a Coxeter group with generators given by reflections along walls
of the fundamental dominant alcove. (In other words, we use the same conventions
as in [L2, §1.4].) The simple reflections which belong to W will be called finite; the
ones which do not belong to W will be called affine.

Let us consider the length function ` : Waff → Z≥0 defined as follows: for w ∈W
and λ ∈ X we set

(2.3) `(w · tλ) =
∑

α∈Φ+∩w−1(Φ+)

|〈λ, α∨〉|+
∑

α∈Φ+∩w−1(−Φ+)

|1 + 〈λ, α∨〉|.

Then the restriction of ` to WCox
aff is the length function associated with the Cox-

eter structure considered above. We denote by Ω the subgroup of Waff consisting
of elements of length 0; it is a commutative group isomorphic to X/ZΦ via the
composition of natural maps Ω ↪→ W n X� X� X/ZΦ. Moreover, any element
of Waff can be written in the form ωv for unique ω ∈ Ω and v ∈ WCox

aff . (For all of
this, see [L2, §1.5].)

We will also consider the braid group Baff associated with Waff . It is defined as
the group generated by elements Tw for w ∈ Waff , with relations Tvw = TvTw for
all v, w ∈ Waff such that `(vw) = `(v) + `(w). There exists a canonical surjection
Baff �Waff sending Tw to w. One can define (following Bernstein and Lusztig), for
each λ ∈ X, an element θλ ∈ Baff , see e.g. [R1, §1.1] for details. (This element is
denoted Tλ in [L2, §2.6].) Then Baff admits a second useful presentation (usually
called the Bernstein presentation), with generators {Tw, w ∈W} and {θλ, λ ∈ X},
and the following relations (where v, w ∈ W , λ, µ ∈ X, and α runs over simple
roots):

(1) TvTw = Tvw if `(vw) = `(v) + `(w);
(2) θλθµ = θλ+µ;
(3) Tsαθλ = θλTsα if 〈λ, α∨〉 = 0;
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(4) θλ = Tsαθλ−αTsα if 〈λ, α∨〉 = 1.

(See [BR1] for a proof of this fact in the case X/ZΦ is finite; the general case is
similar.)

The following lemma is proved in [R2, Lemma 6.1.2].

Lemma 2.10. For any affine simple reflection s0, there exist a finite simple reflec-
tion t and an element b ∈ Baff such that Ts0 = b · Tt · b−1. �

We define the affine Hecke algebra Haff as the quotient of the group algebra of
Baff over Z[v, v−1] by the relations

(Ts + v−1)(Ts − v) = 0

for all finite simple reflections s. (Note that the same formula for affine simple
roots automatically follows by Lemma 2.10.) We denote by HW the subalgebra of
Haff generated by Z[v, v−1] and the elements Tw for w ∈W , and by Mtriv the HW -
module which is free of rank one over Z[v, v−1], and where Ts acts by multiplication
by v for each finite simple reflection s.

We define the “spherical” right Haff -module

Msph := Mtriv ⊗HW Haff .

We denote by m0 ∈ Msph the element 1 ⊗ 1. For λ ∈ X, we denote by wλ the
shortest representative in Wtλ ⊂Waff , and set mλ := m0 ·Twλ . Then the elements
mλ, λ ∈ X, form a Z[v, v−1]-basis of Msph. We define a bilinear form 〈−,−〉 on
Msph, with values in Z[v, v−1], by setting

〈vimλ, v
jmµ〉 = v−j−iδλ,µ.

For any sequence of simple reflections s = (s1, · · · , sr) and any ω ∈ Ω we will
consider the element

m(ω, s) := m0 · Tω · (Ts1 + v−1) · · · (Tsr + v−1) ∈Msph.

Remark 2.11. Our element Ts ∈ Haff corresponds to the element denoted Hs in [S2],
while our v corresponds to v−1 in [S2].

3. Constructible side

3.1. Overview. In this section we describe the category Parity(Ǐ)(Gr,F) in terms
of an appropriate category of Soergel bimodules using a “total cohomology” func-
tor. Similar constructions appear in [S1, S3, AR1] for flag varieties of reductive
groups, and in [BY] for flag varieties of Kac–Moody groups (with coefficients in
characteristic zero). The main difference with these works is that in our case the
cohomology algebra is much more complicated. To overcome this difficulty we work
over a certain ring R of integers, which allows to replace this cohomology algebra
by a “simplified model,” see §1.8 for a discussion of this idea.

After setting the notation in §3.2, we introduce our “Soergel bimodules” in §§3.3–
3.4. In §3.5 we study the equivariant cohomology of Gr. In §3.6 we explain how the
category Parity(Ǐ)(Gr,F) can be recovered from a certain category of (equivariant)
“Bott–Samelson parity sheaves” over R. Then in §3.7 we introduce our “total coho-
mology functor,” and in §§3.8–3.9 we prove that this functor induces an equivalence
between “Bott–Samelson” parity sheaves and Soergel bimodules. Finally, in §3.10
we derive a formula for the graded rank of the space of morphisms between certain
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Soergel bimodules, which will play an important role in a proof on the “coherent
side” (see §5.8).

3.2. Notation. In this section we let Ǧ be a connected reductive algebraic group
over C, with a chosen Borel subgroup B̌ ⊂ Ǧ and maximal torus Ť ⊂ B̌. We let
X̌ := X∗(Ť ) be the lattice of characters of Ť , and Φ̌ ⊂ X̌ be the roots of Ǧ. We
also fix a finite localization R of Z. In the whole section we will make the following
assumptions:

(1) X̌/ZΦ̌ has no torsion (or in other words the connected reductive groups
which are Langlands dual to Ǧ have a simply-connected derived subgroup);

(2) all the torsion primes of the “refined root system” Φ̌ ⊂ X̌ (in the sense
of [De, Section 5]) are invertible in R.

In the later sections we will apply our results in the case Ǧ is a product of simple
groups (of adjoint type) and general linear groups; in this case the first condition is
automatic, and the second condition means that the prime numbers which are not
very good for some simple factor of Ǧ are invertible in R.

Let O := C[[z]] and K := C((z)). We consider the affine Grassmannian

Gr := Ǧ(K )/Ǧ(O),

with its natural ind-variety structure. We denote by Ǐ the Iwahori subgroup of Ǧ(O)
determined by B̌, i.e. the inverse image of B̌ under the morphism Ǧ(O)→ Ǧ defined
by the evaluation at z = 0. Then Ǐ acts naturally on Gr via left multiplication on
Ǧ(K ). We also let the multiplicative group Gm act on Gr by loop rotation (i.e. via
x · g(z) = g(x−1z)), so that we obtain an action of the semi-direct product Ǐ oGm.

The main players of this section are the categories

ParityǏoGm
(Gr,R), ParityǏ(Gr,R) and Parity(Ǐ)(Gr,R).

Here, in the right-hand side, we use the notation Parity(Ǐ)(Gr,R) for the category

ParityS (Gr,R) where S is the stratification of Gr by orbits of Ǐ. If F is a field
(not necessarily algebraically closed) whose characteristic is invertible in R, we can
consider the unique algebra morphism R→ F, and the categories

(3.1) ParityǏoGm
(Gr,F), ParityǏ(Gr,F) and Parity(Ǐ)(Gr,F).

We let X := X∗(Ť ) be the lattice of cocharacters of Ť , and Φ ⊂ X be the coroots
of Ǧ (with respect to Ť ). The choice of B̌ determines a system of positive roots:
more precisely we denote by Φ̌+ ⊂ Φ̌ the roots which are opposite to the Ť -weights
in the Lie algebra of B̌. We denote by Φ+ ⊂ Φ the corresponding system of positive
coroots. To these data one can associate the affine Weyl group Waff and its length
function ` as in §2.5.

Recall that the Ǐ-orbits on Gr are parametrized in a natural way by Waff/W ∼= X,
and that each Ǐ-orbit is stable under the action of Ǐ o Gm. More precisely, any
λ ∈ X defines a point zλ ∈ Ť (K ) ⊂ Ǧ(K ). We set Lλ := zλǦ(O)/Ǧ(O) ∈ Gr,
and Grλ := Ǐ · Lλ. Then we have

Gr =
⊔
λ∈X

Grλ.

Moreover, the dimension of Grλ is the length of the shortest representative in tλW ⊂
Waff , i.e. `(w−λ). For any w ∈ tλW we also set Grw := Grλ.
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Let F be as above, and consider the categories in (3.1). By [JMW] these
categories are all Krull–Schmidt, and their indecomposable objects can be de-
scribed as follows. For any λ ∈ X there exists a unique indecomposable object
Eλ in ParityǏoGm

(Gr,F) which is supported on Grλ and whose restriction to Grλ is
FGrλ

[dim(Grλ)]. Moreover any indecomposable object in ParityǏoGm
(Gr,F) is iso-

morphic to Eλ[n] for some unique λ ∈ X and n ∈ Z. By Lemma 2.4, the images of
Eλ under the appropriate forgetful functors to ParityǏ(Gr,F) and Parity(Ǐ)(Gr,F)
remain indecomposable; for simplicity these images will still be denoted by Eλ.
The same description of indecomposable objects as above applies in the categories
ParityǏ(Gr,F) and Parity(Ǐ)(Gr,F).

The connected components of Gr are parametrized by Ω; for ω ∈ Ω we denote
by Gr(ω) the corresponding component. (In fact, if we identify Ω with X/ZΦ as
in §2.5, then Gr(ω) is the union of the orbits Grλ where λ has image ω in X/ZΦ.)

Below we will also use the affine flag variety

Fl := Ǧ(K )/Ǐ,

with its natural ind-variety structure, and the natural Ǐ-action. The Ǐ-orbits on Fl
are parametrized in a natural way by Waff , and are stable under the loop rotation
action. If Flw is the orbit associated with w ∈Waff , then we have dim(Flw) = `(w),
and the image of Flw under the natural projection Fl� Gr is Grw. For each simple
reflection s, the orbit Fls is isomorphic to A1

C, and its closure Fls is isomorphic to
P1
C.

We define

t := X̌⊗Z R, t∗ := HomR(tR,R) = X⊗Z R.

(In fact, t is the Lie algebra of the R-torus which is Langlands dual to Ť .) Then
there exists a canonical isomorphism of graded R-algebras

(3.2) O(t∗) = S(t)
∼−→ H•

Ť
(pt;R),

where t is in degree 2, and S(t) is the symmetric algebra of t. Using [To, Theo-
rem 1.3(2)], we deduce, under our assumptions on R,8 a canonical isomorphism

(3.3) O(t∗/W )
∼−→ H•

Ǧ
(pt;R).

We will also identify H•Gm
(pt;R) with R[~] (where ~ is an indeterminate, in degree

2) in the natural way.

Lemma 3.1. The R-scheme t∗/W is isomorphic to an affine space. Moreover,
O(t∗) is free over O(t∗/W ).

Proof. The claims follow from [De, Théorème 2(c) & Théorème 3] and our assump-
tion on R, since O(t∗/W ) = SZ(X̌)W ⊗Z R. �

Remark 3.2. The main result of this section will be proved in the Ǐ-equivariant
setting; the Ǐ o Gm-equivariant setting will be used only for technical purposes.
However, similar results hold in the ǏoGm-equivariant case. On the“coherent side”,
replacing Ǐ by Ǐ oGm amounts to deforming coherent sheaves on g̃ to asymptotic
D-modules on B; see [Do] for details in the characteristic zero case.

8Recall that the torsion primes of Ǧ (in the sense of [To]) are the same as the torsion primes

of the “refined root system” Φ̌ ⊂ X̌ (in the sense of [De]).
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3.3. Some algebras. We denote by ∆ ⊂ t∗/W × t∗/W the diagonal copy of t∗/W ,
and by I1 ⊂ O(t∗/W × t∗/W ) the associated ideal (i.e. the ideal generated by
elements of the form f ⊗ 1 − 1 ⊗ f for f ∈ O(t∗/W )). We also denote by I2 ⊂
O(t∗/W×t∗), resp. I3 ⊂ O(t∗×t∗), the ideal generated by the image of I1 under the
ring morphism associated with the quotient morphism t∗/W × t∗ → t∗/W × t∗/W ,
resp. t∗ × t∗ → t∗/W × t∗/W .

We will consider the Z-graded algebras9

C~ := DNCI2(O(t∗/W × t∗)), C̃~ := DNCI3(O(t∗ × t∗)),

C := C~/~ · C~, C̃ := C̃~/~ · C̃~.

Here the grading is induced by the grading on O(t∗) and R[~] from §3.2. We also
set C ′~ := DNCI1(O(t∗/W × t∗/W )).

By Lemmas 2.7 and 3.1, we have canonical isomorphisms

(3.4) C~ ∼= O(t∗/W × t∗)⊗O(t∗/W×t∗/W ) C
′
~, C̃~ ∼= O(t∗ × t∗)⊗O(t∗/W×t∗) C~.

Lemma 3.3. (1) The two natural ring morphisms O(t∗/W )[~]→ C ′~ are flat.

(2) The natural ring morphisms O(t∗/W )[~]→ C~ and O(t∗)[~]→ C~ are flat.

(3) The two natural ring morphisms O(t∗)[~]→ C̃~ are flat.

Proof. First we treat (1). By symmetry, it is enough to prove the claim in the
case of the morphism induced by the first projection t∗/W × t∗/W → t∗/W . By
Lemma 3.1, we can fix an isomorphism of R-schemes t∗/W ∼= AnR for some n ∈ Z≥0.
Then ∆ identifies with the diagonal copy of AnR in A2n

R . Writing A2n
R as the direct

sum of the diagonal and antidiagonal copies of AnR, we obtain ring isomorphisms

C ′~
∼= R[x1, · · · , xn]⊗DNCI+(R[y1, · · · , yn]) ∼= R[x1, · · · , xn, z1, · · · , zn, ~],

where I+ ⊂ R[y1, · · · , yn] is the ideal of the subscheme {0} ⊂ AnR, and zi := ~−1yi.
With these identifications, the morphism under consideration is defined by ~ 7→ ~,
xi 7→ xi + ~zi. This morphism is clearly flat.

The second claim in (2) is an immediate consequence of (1) and the first iso-
morphism in (3.4). To prove the first claim we decompose the morphism as the
composition O(t∗/W )[~] → C ′~ → C~. Now the first morphism is flat by (1),
and the second one is flat by the first isomorphism in (3.4) since the projection
t∗ → t∗/W is flat (see Lemma 3.1). This implies the desired claim.

Finally, in (3) the flatness of the morphism induced by the first projection t∗ ×
t∗ → t∗ follows from (2) and the second isomorphism in (3.4). Then the flatness of
the other morphism follows by symmetry. �

Let us denote by

f1, f2 : O(t∗)[~]→ C̃~

the morphisms considered in Lemma 3.3(3). These morphisms endow C̃~ with the
structure of a graded O(t∗)[~]-bimodule. In fact this algebra has a natural structure
of bialgebra in the category of graded O(t∗)[~]-bimodules, constructed as follows.
Consider the R[~]-algebra morphism

(3.5) O(t∗ × t∗)[~]→ C̃~ ⊗O(t∗)[~] C̃~

9Here the letter “C” stands for “coinvariants,” since these algebras will play the role played by

the coinvariant algebra in [S1, S3, AR1].
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sending any x in the first copy of O(t∗) to f1(x)⊗1, and any y in the second copy of
O(t∗) to 1⊗f2(y). One can easily check that the image under this morphism of any

element of the form g⊗1−1⊗g with g ∈ O(t∗/W ) belongs to ~·(C̃~⊗O(t∗)[~] C̃~). It

follows from Lemma 3.3(3) that C̃~⊗O(t∗)[~] C̃~ is flat over R[~]; in particular it has
no ~-torsion. Hence (3.5) factors in a unique way through a graded R[~]-algebra
morphism

C̃~ → C̃~ ⊗O(t∗)[~] C̃~,

which provides our comultiplication morphism. Using this structure, if M and N

are graded C̃~-modules, then we obtain that the tensor product M ⊗O(t∗)[~] N has

a natural structure of graded C̃~-module.
Similar constructions provide a structure of graded (O(t∗/W )[~],O(t∗)[~])-bimo-

dule on C~, and a graded R[~]-algebra morphism

C~ → C~ ⊗O(t∗)[~] C̃~.

Hence, if M is a graded C~-module and N is a graded C̃~-module, we obtain that
the tensor product M ⊗O(t∗)[~] N has a natural structure of graded C~-module.

Applying the functor R⊗R[~] (−), we also obtain graded algebra morphisms

C̃ → C̃ ⊗O(t∗) C̃, C → C ⊗O(t∗) C̃,

and the corresponding structures for tensor products of graded modules.

3.4. “Algebraic” Bott–Samelson category. The group Waff acts naturally on
t∗ × A1

R, via the formulas

v · (ξ, x) = (v · ξ, x), tλ · (ξ, x) = (ξ + xλ, x)

for ξ ∈ t∗, x ∈ A1
R, v ∈W and λ ∈ X. For this action, the subspace t∗ = t∗×{0} ⊂

t∗ × A1
R is stable, and the action of Waff on this subspace factors through the

natural action of W = Waff/X. The Waff -action on t∗ × A1
R induces an action on

the graded algebra O(t∗)[~] = O(t∗ × A1
R). If w ∈ Waff , we denote by (O(t∗)[~])w

the subalgebra of w-invariants.
Below we will need the following easy lemma.

Lemma 3.4. For any simple reflection s, the morphism

R⊗R[~] (O(t∗)[~])s → O(t∗)s

induced by the restriction morphism O(t∗)[~]→ O(t∗) is an isomorphism.

Proof. If s is finite, then the claim is obvious. The general case follows, using
Lemma 2.10. �

For any w ∈ Waff , we define the graded O(t∗ × t∗)[~]-module E~
w as follows.

As a graded R-module, we have E~
w = O(t∗)[~]. The right copy of O(t∗)[~] in

O(t∗ × t∗)[~] = O(t∗)[~] ⊗R[~] O(t∗)[~] acts in the natural way, by multiplication.

And any f in the left copy of O(t∗)[~] acts by multiplication by w−1 · f . Since the
induced action of O(t∗×t∗) on E~

w/~·E~
w factors through an action of O(t∗×t∗/W t∗),

there exists a unique extension of the action of O(t∗ × t∗)[~] to an action of C̃~ on
E~
w. By restriction, one can also consider E~

w as a graded C~-module.
If s is a simple reflection, we also consider the graded O(t∗ × t∗)[~]-module

D~
s := O(t∗)[~]⊗(O(t∗)[~])s O(t∗)[~]〈−1〉.
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Using the same arguments as above and Lemma 3.4, one can check that the action

of O(t∗ × t∗)[~] on D~
s extends in a canonical way to an action of C̃~, so that D~

s

can be considered as a graded C̃~-module.
Now, using the constructions of §3.3 one can define, for any ω ∈ Ω and any

sequence s = (s1, · · · , sn) of simple reflections, the graded C~-module

D~(ω, s) := E~
ω ⊗O(t∗)[~] D

~
s1 ⊗O(t∗)[~] · · · ⊗O(t∗)[~] D

~
sn .

We will also consider the corresponding constructions for C-modules: we set

Ew := E~
w/~ · E~

w, Ds := D~
s/~ ·D~

s ,

and then

D(ω, s) := D~(ω, s)/~ ·D~(ω, s) ∼= Eω ⊗O(t∗) Ds1 ⊗O(t∗) · · · ⊗O(t∗) Dsn .

Note for later use that, by Lemma 3.4, we have a canonical isomorphism

(3.6) Ds
∼−→ O(t∗)⊗O(t∗)s O(t∗).

With these definitions one can define the category BSalg with

• objects: triples (ω, s, i) with ω ∈ Ω, s a sequence of simple reflections
indexed by (1, · · · , n) for some n ∈ Z, and i ∈ Z;
• morphisms: for ω, ω′ ∈ Ω, s and t sequences of simple reflections, and
i, j ∈ Z,

HomBSalg

(
(ω, s, i), (ω′, t, j)

)
={

HomModgr(C)

(
D(ω, s)〈−i〉, D(ω, t)〈−j〉

)
if ω = ω′;

0 if ω 6= ω′.

3.5. Equivariant cohomology of Gr. The graded algebras C~ and C defined
in §3.3 can be used to describe the algebras H•

ǏoGm
(Gr;R) and H•

Ǐ
(Gr;R) “up to

torsion,” as follows. There exists a natural graded algebra morphism

O(t∗)[~]
(3.2)−−−→
∼

H•
ǏoGm

(pt;R)→ H•
ǏoGm

(Gr;R).

On the other hand, we have a canonical isomorphism

H•
ǏoGm

(Gr;R) ∼= H•
Ǧ(O)oGm

(
(Ǐ oGm)\(Ǧ(K ) oGm);R

)
,

so that there also exists a natural graded algebra morphism

O(t∗/W )[~]
(3.3)−−−→
∼

H•
Ǧ(O)oGm

(pt;R)→ H•
ǏoGm

(Gr;R).

induced by the multiplication of Ǧ(O)oGm on Ǧ(K )oGm on the right. Using the
fact that the projection Ǧ(K ) o Gm → pt factors through Gm, it is not difficult
to check that the images of ~ under these two morphisms coincide (see the proof of
Lemma 3.6 below for similar considerations). Hence combining them we obtain an
algebra morphism

(3.7) O(t∗/W × t∗)[~]→ H•
ǏoGm

(Gr;R).

Remark 3.5. Note that we have switched the order of the factors here: the left-hand
factor of t∗/W × t∗ is related to the multiplication of Ǧ(O) on Ǧ(K ) on the right,
while the right-hand factor is related to the multiplication of Ǐ on Ǧ(K ) on the left.
This choice of convention complicates some formulas in this section, but it will make
the comparison with the constructions on the“coherent”side easier. Another option
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would have been to work with the (less customary) variety Gr′ := Ǧ(O)\Ǧ(K )
instead of Gr. Here Gr′ is isomorphic to Gr through Ǧ(O)g 7→ g−1Ǧ(O), but this
isomorphism switches the role of left and right multiplications.

Lemma 3.6. Morphism (3.7) factors in a unique way through a graded R[~]-algebra
morphism

γ~ : C~ → H•
ǏoGm

(Gr;R).

Proof. There exist natural converging spectral sequences

Epq2 = Hp
Ǧ(O)oGm

(pt;R)⊗R Hq(Gr;R)⇒ Hp+q
Ǧ(O)oGm

(Gr;R),

Epq2 = Hp
ǏoGm

(pt;R)⊗R Hq(Gr;R)⇒ Hp+q
ǏoGm

(Gr;R).

In both cases, the spectral sequence degenerates since the left-hand side vanishes
unless p and q are even. This implies in particular that H•

ǏoGm
(Gr;R) is R[~]-free,

proving the unicity of the factorization. It also follows that the natural morphism

H•
ǏoGm

(pt;R)⊗H•
Ǧ(O)oGm

(pt;R) H•Ǧ(O)oGm
(Gr;R)→ H•

ǏoGm
(Gr;R)

is an isomorphism. Using this, we see that to prove the existence of the factorization
it suffices to prove that the natural algebra morphism

(3.8) O(t∗/W × t∗/W )[~]→ H•
Ǧ(O)oGm

(Gr;R)

defined in a way similar to (3.7) factors through C ′~.
The latter property can be proved as follows.10 Using the same spectral sequence

argument as above, one can check that H•
Ǧ(O)oGm

(Gr;R) is R[~]-free, and that the

natural morphism

R⊗R[~] H•Ǧ(O)oGm
(Gr;R)→ H•

Ǧ(O)
(Gr;R)

is an isomorphism. From these facts we see that it suffices to prove that the mor-
phism

O(t∗/W × t∗/W )→ H•
Ǧ(O)

(Gr;R)

defined as for (3.8) (but with the Gm-equivariance omitted) factors through O(∆).
Now we make the following observation. Let H be a topological group, acting on

a topological space X, and let Y := H ×X. We endow Y with an action of H ×H
via (h1, h2) · (k, x) = (h1kh

−1
2 , h2 · x). Then there exists a natural morphism

(3.9) H•H×H(pt;R)→ H•H×H(Y ;R).

We claim that (3.9) factors through the morphism H•H×H(pt;R) → H•H(pt;R)
induced by restriction to the diagonal copy of H. Indeed one can consider the
composition

(3.10) H•H×H(Y ;R)→ H•H(Y ;R)→ H•H(X;R),

where the first morphism is induced by restriction to the diagonal copy, and the
second morphism by restriction to the H-stable subspace X = {1} × X ⊂ Y .
Since Y identifies with the induced variety (H × H) ×H X (via the morphism
[(h1, h2) : x] 7→ (h1h

−1
2 , h2 · x)), (3.10) is an isomorphism. Since the composition

of (3.9) and (3.10) clearly factors through H•H(pt;R), the same holds for (3.9).

10A similar claim is asserted without details in [BF]. We thank V. Ginzburg for explaining
this proof to one of us.
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We take for H a maximal compact subgroup of Ǧ, so that we have isomorphisms
H•
Ǧ(O)

(pt;R) ∼= H•
Ǧ

(pt;R) ∼= H•H(pt;R). Similarly, using the Künneth formula

(which is applicable here since our cohomology spaces are free over R) we obtain
isomorphisms

O(t∗/W × t∗/W ) ∼= H•
Ǧ(O)×Ǧ(O)

(pt;R) ∼= H•H×H(pt;R),

and one can identify the morphism O(t∗/W × t∗/W )→ O(∆) with the morphism
H•H×H(pt;R)→ H•H(pt;R) considered above.

If ΩH denotes the group of polynomial loops from the unit circle to H, then
as in [G2, §1.2] we have a natural homeomorphism ΩH/H

∼−→ Gr. Writing ΩH =
H ×Ω0H (where Ω0H is the space of based loops, i.e. those sending the base point
of the circle to the identity) we obtain isomorphisms

H•
Ǧ(O)

(Gr;R) ∼= H•H(ΩH/H;R) ∼= H•H×H(H × Ω0H;R).

Hence we are in the setting considered above, with X = Ω0H, and the desired claim
follows from our general observation. �

Using a spectral sequence argument as in the proof of Lemma 3.6, one can check
that the natural morphism

H•
Ǐ
(pt;R)⊗H•

ǏoGm
(pt;R) H•ǏoGm

(Gr;R)→ H•
Ǐ
(Gr;R)

is an isomorphism. We denote by

γ : C → H•
Ǐ
(Gr;R)

the composition of R ⊗R[~] γ~ with this isomorphism. Then γ is a graded algebra
morphism.

Since Gr is the disjoint union of its connected components Gr(ω) (ω ∈ Ω) which

are Ǐ oGm-stable, there exist natural isomorphisms of graded algebras

H•
ǏoGm

(Gr;R) ∼=
∏
ω∈Ω

H•
ǏoGm

(Gr(ω);R), H•
Ǐ
(Gr;R) ∼=

∏
ω∈Ω

H•
Ǐ
(Gr(ω);R).

For any ω ∈ Ω, we denote by

γ
(ω)
~ : C~ → H•

ǏoGm
(Gr(ω);R), resp. γ(ω) : C → H•

Ǐ
(Gr(ω);R)

the composition of γ~, resp. γ, with the projection on the factor parametrized by
ω.

Proposition 3.7. For all ω ∈ Ω, the morphisms Q ⊗R γ
(ω)
~ and Q ⊗R γ(ω) are

isomorphisms.

Proof. It is sufficient to prove the claim for γ
(ω)
~ . Then, by construction of this

morphism, it is sufficient to prove that the similar morphism

C ′~ → H•
Ǧ(O)oGm

(Gr(ω);R)

becomes an isomorphism after applying Q⊗R (−). However, since Q is flat over R,
by Lemma 2.7 we have a natural isomorphism

Q⊗R C ′~
∼= DNCIQ1

(O(t∗Q/W × t∗Q/W )),

where t∗Q := Q ⊗R t∗ and IQ1 is the ideal of the diagonal copy of t∗Q/W . Similarly,
we have

Q⊗R H•
Ǧ(O)oGm

(Gr(ω);R) ∼= H•
Ǧ(O)oGm

(Gr(ω);Q).
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Hence our claim follows from [BF, Theorem 1]. �

Remark 3.8. Unlike for the case of Q, the morphisms γ
(ω)
~ and γ(ω) are not isomor-

phisms. In fact, C~ is a finitely generated R-algebra, whereas H•
ǏoGm

(Gr(ω);R) is

not finitely generated in general, see [YZ].

3.6. “Topological” Bott–Samelson category. Let E be either R or F. Recall
the standard convolution product on the category Db

ǏoGm
(Fl,E), defined by

F ? G := µ∗(F �̃G),

where Fl ×̃Fl is the quotient of (Ǧ(K ) oGm)× Fl by the natural diagonal action

of Ǐ o Gm, µ : Fl ×̃Fl → Fl is defined by µ([g : hǏ]) = ghǏ, and F �̃G is the
“twisted external product” of F and G, i.e. the unique object whose pullback to
(Ǧ(K ) oGm)× Fl is the external product of the pullback of F with G. A similar
construction provides a bifunctor

(−) ? (−) : Db
ǏoGm

(Fl,E)×Db
ǏoGm

(Gr,E)→ Db
ǏoGm

(Gr,E).

We now introduce some “Bott–Samelson objects” in ParityǏoGm
(Gr,E), as fol-

lows. Each connected component Gr(ω) contains a unique 0-dimensional Ǐ-orbit; we

denote by δEω the constant (skyscraper) sheaf on this orbit (with coefficients E). On
the other hand, for any simple reflection s, we have the Ǐ oGm-equivariant parity
complex Es,E := EFls

[1] on Fl. Then, if ω ∈ Ω and if s = (s1, · · · , sr) is a sequence
of simple reflections, we can consider the object

EE(ω, s) := Esr,E ? · · · ? Es1,E ? δEω−1

in Db
ǏoGm

(Gr,E). The arguments in [JMW, §4.1] or in [FW, §5.5] show that EE(ω, s)

belongs to the subcategory ParityǏoGm
(Gr,E). We will denote similarly the images

of this object in ParityǏ(Gr,E) and in Parity(Ǐ)(Gr,E).

We define the category BStop with

• objects: triples (ω, s, i) with ω ∈ Ω, s a sequence of simple reflections
indexed by (1, · · · , n) for some n ∈ Z, and i ∈ Z;
• morphisms:

HomBStop

(
(ω, s, i), (ω′, t, j)

)
:= HomParityǏ(Gr,R)(ER(ω, s)[i], ER(ω′, t)[j]).

Proposition 3.9. The category Parity(Ǐ)(Gr,F) can be recovered from the category

BStop, in the sense that it is equivalent to the Karoubian closure of the additive
envelope of the category which has the same objects as BStop, and morphisms from
(ω, s, i) to (ω′, t, j) which are given by the (j− i)-th piece of the graded vector space

F⊗H•
Ǐ
(pt;R)

(⊕
n∈Z

HomBStop

(
(ω, s, 0), (ω′, t, n)

))
.

Proof. Denote (for the duration of the proof) by A the category which has the
same objects as BStop, and whose morphisms are defined as in the statement of the
proposition. We observe that, if F(−) is the “modular reduction functor” defined
as in §2.1, then we have we have a canonical isomorphism

F
(
ER(ω, s)

) ∼= EF(ω, s)

for any (ω, s) as above. (In fact, this follows from the commutation of the functor
F(−) with ∗-pullback, see [KS, Proposition 2.6.5], and with !-pushforward, see [KS,
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Proposition 2.6.6].) Using these isomorphisms and Lemma 2.2(2), we see that the
assignment (ω, s, i) 7→ EF(ω, s)[i] defines an equivalence of categories from A to the
full subcategory A′ of Parity(Ǐ)(Gr,F) whose objects are of the form EF(ω, s)[i].

Now we observe that, by the results of [JMW], the category Parity(Ǐ)(Gr,F) is
a Krull–Schmidt, Karoubian, additive category, and moreover that any indecom-
posable object in this category is isomorphic to a direct summand of an object of
the form EF(ω, s)[i]. It follows that Parity(Ǐ)(Gr,F) is equivalent to the Karoubian

closure of the additive envelope of A′, which finishes the proof. �

Remark 3.10. More precisely, the results of [JMW, §4.1] imply that if λ ∈ X and if
w−λ = ωs1 · · · sr is a reduced expression for wλ, then Eλ can be characterized (up
to isomorphism) as the unique direct summand of EF(ω, (s1, · · · , sr)) which is not
a direct summand of any object of the form EF(ω′, t)[i] where ω′ ∈ Ω, i ∈ Z, and t
is a sequence of simple reflections of length at most r − 1.

3.7. Equivariant cohomology functors. For any ω ∈ Ω, we define the functor

HǏoGm
: ParityǏoGm

(Gr,R)→ Modgr(C~)

as the composition

(3.11) ParityǏoGm
(Gr,R)

H•
ǏoGm

(Gr,−)
−−−−−−−−−→ Modgr(H•

ǏoGm
(Gr;R))→ Modgr(C~),

where the second functor is the “restriction of scalars” functor associated with the
morphism γ~. We define similarly a functor

HǏ : ParityǏ(Gr,R)→ Modgr(C).

The goal of this subsection is to prove the following.

Proposition 3.11. For any ω ∈ Ω and any sequence s = (s1, · · · , sn) of simple
reflections, there exists a canonical isomorphism of graded C-modules

HǏ(ER(ω, s)) ∼= D(ω, s).

Before proving the proposition, we remark that the same constructions as in §3.5
allow to define graded algebra morphisms

C̃~ → H•
ǏoGm

(Fl;R) and C̃ → H•
Ǐ
(Fl;R),

and then functors

H̃ǏoGm
: ParityǏoGm

(Fl,R)→ Modgr(C̃~), H̃Ǐ : ParityǏ(Fl,R)→ Modgr(C̃).

Lemma 3.12. (1) For any ω ∈ Ω, there exists a canonical isomorphism of
graded C~-modules

HǏoGm
(δRω ) ∼= E~

ω−1 .

(2) For any simple reflection s, there exists a canonical isomorphism of C̃~-
modules

H̃ǏoGm
(Es,R) ∼= D~

s .

Proof. (1) By definition, if ω = tλv (with v ∈W and λ ∈ X) we have

HǏoGm
(δRω ) = H•

ǏoGm
(Gr, δRω ) = H•

ǏoGm

(
zλ · (Ǧ(O) oGm)/Ǧ(O) oGm;R

)
.

We deduce a canonical isomorphism

HǏoGm
(δRω ) ∼= H•

(ǏoGm)×(Ǧ(O)oGm)

(
zλ · (Ǧ(O) oGm);R

)
.
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Now if v̇ is a lift of v in Ǧ, the assignment (a, b) 7→ a·zλv̇·b−1 induces an isomorphism

(Ǐ oGm)× (Ǧ(O) oGm)/K
∼−→ zλ · (Ǧ(O) oGm),

where K = {(a, b) ∈ (Ǐ o Gm) × (Ǧ(O) o Gm) | b = (zλv̇)−1a(zλv̇)}. This group
is isomorphic to (Ǐ o Gm) (through a 7→

(
a, (zλv̇)−1a(zλv̇)

)
); hence we obtain

canonical isomorphisms

HǏoGm
(δRω ) ∼= H•K(pt;R) ∼= H•

ǏoGm
(pt;R).

The right-hand side is isomorphic to O(t∗)[~] (see (3.2)), with the natural ac-
tion of the subalgebra O(t∗)[~] ⊂ C~. And, via this isomorphism, the subalgebra
O(t∗/W )[~] ⊂ C~ acts via the composition of multiplication and the morphism

O(t∗/W )[~] ↪→ O(t∗)[~]
f 7→ω·f−−−−→ O(t∗)[~].

Hence we have constructed a canonical isomorphism of O(t∗/W × t∗)[~]-modules

HǏoGm
(δRω ) ∼= E~

ω−1 .

Since these spaces have no ~-torsion, this isomorphism is automatically an isomor-
phism of C~-modules.

(2) Using Lemma 2.10, one can assume that s is finite, with associated simple
root α∨ ∈ X̌ and associated simple coroot α ∈ X. By definition we have

H̃ǏoGm
(Es,R) ∼= H•

Ť×Gm
(Fls;R)〈−1〉.

Since Fls is isomorphic to P1
C, it is well known (see e.g. [FW]) that the morphism

H•
Ť×Gm

(Fls;R)→ H•
Ť×Gm

(pt;R)⊕H•
Ť×Gm

(pt;R)

induced by restriction to the fixed points Ǐ/Ǐ and s · Ǐ/Ǐ induces an isomorphism

between H•
Ť×Gm

(Fls;R) and

′D~
s := {(a, b) ∈ O(t∗)[~]⊕O(t∗)[~] | a = b mod α∨}.

(Here, the right copy of O(t∗)[~] in C̃~ acts diagonally, while any f in the left copy of

O(t∗)[~] in C̃~ acts by multiplication by (f, s(f)).) Now we consider the morphism
D~
s → ′D~

s defined by f ⊗ g 7→ (fg, s(f)g). By our assumptions on R, there exists
µ̌ ∈ X̌⊗Z R such that 〈µ̌, α〉 = 1. Then our morphism sends the basis of D~

s as an

O(t∗)[~]-module (via the action of the right copy of O(t∗)[~] in C̃~) consisting of
1⊗ 1 and µ̌⊗ 1 to the basis of ′D~

s consisting of (1, 1) and (µ̌, µ̌− α∨); hence it is
an isomorphism.

We have constructed an isomorphism of O(t∗ × t∗)[~]-modules

H̃ǏoGm
(Es,R) ∼= D~

s .

Since both sides have no ~-torsion, this isomorphism is automatically an isomor-

phism of C̃~-modules. �

Proof of Proposition 3.11. The arguments in [JMW, §4.1] imply that for any F
in ParityǏoGm

(Gr,R) and any sequence t = (t1, · · · , tr) of simple reflections, the
convolution

Et1,R ? · · · ? Etr,R ? F
belongs to ParityǏoGm

(Gr,R). Then the same arguments as in the proof of [BY,
Proposition 3.2.1] (using Lemma 2.2(1) instead of [BY, Corollary B.4.2]) imply that
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there exists a canonical isomorphism of graded modules over H•
ǏoGm

(pt;R) ⊗R[~]

H•
Ǧ(O)oGm

(pt;R):

HǏoGm
(Et1,R ? · · · ? Etr,R ? F) ∼=

H̃ǏoGm
(Et1,R)⊗H•

ǏoGm
(pt;R) · · ·⊗H•

ǏoGm
(pt;R) H̃ǏoGm

(Etr,R)⊗H•
ǏoGm

(pt;R)HǏoGm
(F).

Applying this remark to F = δRω−1 and t = (sn, · · · , s1), and using Lemma 3.12, we
obtain a canonical isomorphism of O(t∗/W × t∗)[~]-modules

HǏoGm
(ER(ω, s)) ∼= D~(ω, s).

Since both sides have no ~-torsion, this isomorphism is automatically an isomor-
phism of C~-modules. Specializing ~ to 0, we deduce the isomorphism of the propo-
sition. �

3.8. Equivalence. The proof of the following proposition (which is independent
of the rest of the section) is postponed to §3.9.

Proposition 3.13. For any ω, ω′ ∈ Ω, any sequences s, t of simple reflections, and
any n ∈ Z, the morphism

HomParityǏ(Gr,R)(ER(ω, s), ER(ω′, t)[n])

→ HomModgr(H•
Ǐ
(Gr;R))(H•Ǐ(Gr, ER(ω, s)),H•

Ǐ
(Gr, ER(ω′, t)[n]))

induced by the functor H•
Ǐ
(Gr,−) is an isomorphism.

Now we define a functor

HBS : BStop → BSalg

as follows. This functor sends an object (ω, s, i) of BStop to the corresponding object

(ω, s, i) of BSalg. Then if (ω, s, i) and (ω′, t, j) are objects of BStop, the morphism

HomBStop

(
(ω, s, i), (ω′, t, j)

)
→ HomBSalg

(
(ω, s, i), (ω′, t, j)

)
is defined as the trivial morphism if ω 6= ω′ (in which case both Hom-spaces are 0),
and as the morphism induced by HǏ if ω = ω′, using the canonical isomorphisms

HǏ(ER(ω, s)[i]) ∼= D(ω, s)〈−i〉, HǏ(ER(ω′, t)[j]) ∼= D(ω′, t)〈−j〉

deduced from Proposition 3.11.
The main result of this section is the following.

Theorem 3.14. The functor HBS is an equivalence of categories.

Proof. The functor HBS clearly induces a bijection on objects. So, what we have to
prove is that if (ω, s, i) and (ω′, t, j) are objects of BStop, then the corresponding
morphism

HomBStop

(
(ω, s, i), (ω′, t, j)

)
→ HomBSalg

(
(ω, s, i), (ω′, t, j)

)
is an isomorphism. This is obvious if ω 6= ω′.

Now, assume that ω = ω′. Then both parity complexes are supported on Gr(ω),
so that our morphism is induced by the composition

ParityǏ(Gr(ω),R)
H•
Ǐ
(Gr(ω),−)

−−−−−−−−→ Modgr
(
H•
Ǐ
(Gr(ω);R)

)
→ Modgr(C),
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where the second arrow is the “restriction of scalars” functor associated with γ(ω).
Now the first functor is fully faithful on objects of the form ER(ω, s) by Proposi-
tion 3.13, and the second functor is fully faithful on objects which are R-free by
Lemma 1.10 and Proposition 3.7. Since the R-modules H•

Ǐ
(Gr(ω), ER(ω, s)) are free

by Lemma 2.2(1), this finishes the proof of the theorem. �

3.9. Proof of Proposition 3.13. The proof below is a simple variant of the main
result of [G1]. The key observation is from [ARd, Theorem 4.1], where it is shown
that the arguments from [G1] involving weights can be replaced in a parity sheaf set-
ting by parity arguments. Another exposition of Ginzburg’s proof in an equivariant
setting appears as [BY, Lemma 3.3.1] (for coefficients in characteristic zero).

To avoid unnecessary notational complications, in this proof we will say that an
object E in ParityǏ(Gr,R) is a Bott–Samelson parity complex if it is isomorphic to
ER(ω, s)[i] for some ω ∈ Ω, s a sequence of simple reflections, and i ∈ Z.

Let us fix an extension of the partial order on X corresponding to the closure
relations among the orbits Grλ to a total ordering v on X, such that (X,v) is
isomorphic (as an ordered set) to Z≥0 with its standard order. Let Grvλ denote
the union of all Grµ where µ v λ, and ivλ : Grvλ → Gr the closed embedding. Let
also Avλ := H•

Ǐ
(Grvλ;R). We define analogously Gr@λ, i@λ, and A@λ.

We begin with a number of preliminary lemmas.

Lemma 3.15. For any λ ∈ X, there exists a canonical exact sequence of Z-graded
R-modules

0→ H•
c,Ǐ

(Grλ;R)→ Avλ → A@λ → 0.

Proof. The lemma can be proved by induction, using the fact that the existence of
the exact sequences for smaller λ’s implies that A@λ is concentrated in even degrees,
and the adjunction triangle

(iλ)!(iλ)∗RGrvλ
→ RGrvλ

→ i@λ∗i
∗
@λRGrvλ

[1]−→,

where iλ : Grλ ↪→ Gr is the inclusion. �

Let again λ ∈ X. To simplify notation, we set Z = Gr@λ, X = Grvλ, U = Grλ,
and denote by i : Z → X, resp. j : U → X, the closed, resp. open, embedding. A
key ingredient we will need is the following lemma.

Lemma 3.16. Let E be a Bott–Samelson parity complex, and let F be either i∗vλE
or i!vλE. Then the adjunction triangles induce short exact sequence of Avλ-modules

0→ H•
Ǐ
(X, j!j

∗F)→ H•
Ǐ
(X,F)→ H•

Ǐ
(X, i∗i

∗F)→ 0,(3.12)

0→ H•
Ǐ
(X, i∗i

!F)→ H•
Ǐ
(X,F)→ H•

Ǐ
(X, j∗j

∗F)→ 0.(3.13)

Proof. For F = i∗vλE , resp. i!vλE , F is either ∗-even or ∗-odd, resp. either !-even

or !-odd, and (3.12), resp. (3.13), is obtained using the long exact sequence of
equivariant cohomology associated with the adjunction triangle j!j

∗F → F →
i∗i
∗F [1]−→, resp. i∗i

!F → F → j∗j
∗F [1]−→, because by induction the various terms

are concentrated either all in even degrees, or all in odd degrees.
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Consider now the sequence (3.13) for F = i∗vλE . In this case it is shown in [FW,

Proposition 5.9]11 that the composition of restriction morphisms

H•
Ǐ
(Gr, E)→ H•

Ǐ
(Grλ, i

∗
λE)→ H•

Ǐ
({Lλ}, ı∗λE)

is surjective, where (as in §1.6) ıλ : {Lλ} ↪→ Gr is the inclusion. Since the sec-
ond morphism is an isomorphism by [FW, Proposition 2.3], the first one is also
surjective. And since this first morphism factors through the morphism

H•
Ǐ
(Grvλ, i

∗
vλE)→ H•

Ǐ
(Grλ, i

∗
λE)

considered in (3.13), the latter morphism is also surjective, which finishes the proof
in this case.

Finally, let us consider the sequence (3.12) for F = i!vλE . In this case, the
arguments are similar to the ones used in the preceding case, using the fact that
the natural morphism

H•
Ǐ
({Lλ}, ı!λE)→ H•

Ǐ
(Gr, E)

is injective. (This fact is shown in the proof of [FW, Proposition 5.9]: in fact this
morphism identifies with the morphism considered in [FW, Proposition 5.8(2)].) �

Since U = Grλ is isomorphic to an affine space, the graded H•
Ǐ
(pt;R)-module

H•
c,Ǐ

(U ;R) is free of rank one. Moreover, the natural morphism

H2 dim(Grλ)

c,Ǐ
(U ;R)→ H2 dim(Grλ)

c (U ;R)

is an isomorphism, and if xλ ∈ H2 dim(Grλ)

c,Ǐ
(U ;R) is the inverse image of a generator

of H2 dim(Grλ)
c (U ;R) ∼= R (as an R-module), then xλ gives a basis of H•

c,Ǐ
(U ;R)

over H•
Ǐ
(pt;R). We still denote by xλ the image of this element in Avλ, under the

injection of Lemma 3.15.

Lemma 3.17. Let E be a Bott–Samelson parity complex, and let F be either i∗vλE
or i!vλE. Then the morphism

H•
Ǐ
(X,F)→ H•+2 dim(Grλ)

Ǐ
(X,F)

given by the action of xλ ∈ Avλ factors as a composition

H•
Ǐ
(X,F)� H•

Ǐ
(X, j∗j

∗F)
∼−→ H•+2 dim(Grλ)

Ǐ
(X, j!j

∗F) ↪→ H•+2 dim(Grλ)

Ǐ
(X,F),

where the first, resp. third, morphism is the morphism appearing in (3.13), resp.
(3.12), and the second one is an isomorphism.

Proof. The element xλ ∈ Avλ acts trivially on H•
Ǐ
(X, i∗i

∗F) and H•
Ǐ
(X, i∗i

!F).

Hence its action on the module H•
Ǐ
(X,F) factors through a morphism

H•
Ǐ
(X, j∗j

∗F)→ H•+2 dim(Grλ)

Ǐ
(X, j!j

∗F).

To show that the latter morphism is an isomorphism, we observe that j∗F is a
direct sum of shifts of constant sheaves RU (since E is a parity complex), and that
our morphism is the corresponding direct sum of shifts of the isomorphism

H•
Ǐ
(U ;R)

∼−→ H•
Ǐ
(pt;R)

∼−→ H•+2 dim(Grλ)

c,Ǐ
(U ;R)

11In [FW], this result (as well as the other results used in this proof) is stated for a coefficient
ring that is a complete local principal ideal domain, but the same proof applies verbatim for
general coefficients.
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determined by our choice of xλ ∈ H2 dim(Grλ)

c,Ǐ
(U ;R). �

Lemma 3.18. Let E1, E2 be Bott–Samelson parity complexes. If φ : H•
Ǐ
(X, i∗vλE1)→

H•
Ǐ
(X, i!vλE2) is a morphism of Avλ-modules, then the composition

(3.14) H•
Ǐ
(X, i∗vλE1)

φ−→ H•
Ǐ
(X, i!vλE2)� H•

Ǐ
(X, j∗j

∗i!vλE2)

(where the second morphism is the surjection appearing in (3.13)) factors uniquely
through a morphism of Avλ-modules

φ′ : H•
Ǐ
(X, j∗j

∗i∗vλE1)→ H•
Ǐ
(X, j∗j

∗i!vλE2).

Moreover, we have φ′ = 0 iff φ factors as a composition

H•
Ǐ
(X, i∗vλE1)� H•

Ǐ
(Z, i∗@λE1)

φ′′−−→ H•
Ǐ
(Z, i!@λE2) ↪→ H•

Ǐ
(X, i!vλE2)

where φ′′ is a morphism of A@λ-modules and the other morphisms are the ones
appearing in (3.12) and (3.13).

Proof. Using Lemma 3.16, we see that the first claim is equivalent to the statement
that the composition

H•
Ǐ
(X, i∗i

!i∗vλE1) ↪→ H•
Ǐ
(X, i∗vλE1)

φ−→ H•
Ǐ
(X, i!vλE2)� H•

Ǐ
(X, j∗j

∗i!vλE2)

vanishes. And using Lemma 3.17, to prove this it suffices to prove that the compo-
sition

H•
Ǐ
(X, i∗i

!i∗vλE1) ↪→ H•
Ǐ
(X, i∗vλE1)

φ−→ H•
Ǐ
(X, i!vλE2)

xλ−−→ H•
Ǐ
(X, i!vλE2)

vanishes. This follows from the fact that φ commutes with the action of xλ, and
that xλ acts trivially on H•

Ǐ
(X, i∗i

!i∗vλE1).
Now we consider the second claim. The “if” direction is easy. Conversely, assume

that φ′ = 0. Then the composition (3.14) vanishes, hence the image of φ is included
in the image of the embedding H•

Ǐ
(Z, i!@λE2) ↪→ H•

Ǐ
(X, i!vλE2) of Lemma 3.16. On

the other hand, using Lemma 3.17, this also implies that the composition of φ with
the action of xλ on H•

Ǐ
(X, i!vλE2) vanishes hence, since φ is a morphism of Avλ-

modules, that φ vanishes on the image of the action of xλ on H•
Ǐ
(X, i∗vλE1). By

Lemma 3.17, we deduce that the composition

H•(X, j!j∗i∗vλE1) ↪→ H•
Ǐ
(X, i∗vλE1)

φ−→ H•
Ǐ
(X, i!vλE2)

vanishes which, in view of Lemma 3.16, proves the existence of a morphism of Avλ-
modules φ′′ : H•

Ǐ
(X, i∗i

∗
@λE1) → H•

Ǐ
(X, i∗i

!
@λE2) as in the lemma. Finally, the fact

that φ′′ is a morphism of A@λ-modules follows from Lemma 3.15. �

Now we are ready to prove Proposition 3.13. We will proceed by induction on λ ∈
X, showing that for any Bott–Samelson parity complexes E1, E2, the cohomology
functor induces an isomorphism of graded vector spaces

(3.15) Hom•Grvλ
(
i∗vλE1, i!vλE2

) ∼−→ HomAvλ

(
H•
Ǐ
(Grvλ, i

∗
vλE1),H•

Ǐ
(Grvλ, i

!
vλE2)

)
.

If λ is minimal, then Grλ is a point and i∗vλE1 and i!vλE2 are also parity. On the
other hand, the cohomology functor induces an equivalence of categories between
ParityǏ(Grλ,R) and the full subcategory of the category of finitely generated graded
Avλ-modules consisting of free modules. Thus (3.15) is indeed an isomorphism in
this case.
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Now fix λ ∈ X, and suppose that (3.15) is an isomorphism for all λ′ @ λ. We
use the same notation as above for X, Z, U , i and j. Note that Lemma 3.18 is
equivalent to the existence of a natural sequence

HomA@λ(H•
Ǐ
(Z, i∗@λE1),H•

Ǐ
(Z, i!@λE2))→

HomAvλ(H•
Ǐ
(X, i∗vλE1),H•

Ǐ
(X, i!vλE2))→

HomH•
Ǐ
(U ;R)(H•Ǐ(U, j

∗i∗vλE1),H•
Ǐ
(U, j∗i!vλE2))

(3.16)

which is exact at the middle term. It is also easy to check (using Lemma 3.16) that
the first morphism is injective.

Consider the adjunction triangle

i@λ∗i
!
@λE2 → i!vλE2 → j∗j

∗i!vλE2
[1]−→

and the long exact sequence

· · · → Homn
Z(i∗@λE1, i!@λE2)→ Homn

X(i∗vλE1, i!vλE2)

→ Homn
U (j∗i∗vλE1, j∗i!vλE2)→ · · ·

obtained by appying the functor HomX(i∗vλE1,−). Parity considerations and [JMW,

Corollary 2.8] imply that the connecting morphisms in this long exact sequence are
trivial, so that the maps form short exact sequences in each degree. Then one can
consider the commutative diagram

Hom•Z(i∗@λE1, i!@λE2)
H•
Ǐ
(Z,−)

//
� _

��

HomA@λ(H•
Ǐ
(Z, i∗@λE1),H•

Ǐ
(Z, i!@λE2))

� _

��
Ext•X(i∗vλE1, i!vλE2)

H•
Ǐ
(X,−)

//

����

HomAvλ(H•
Ǐ
(X, i∗vλE1),H•

Ǐ
(X, i!vλE2))

��
Ext•U (j∗i∗vλE1, j∗i!vλE2)

H•
Ǐ
(U,−)

// HomH•
Ǐ
(U ;R)(H•Ǐ(U, j

∗i∗vλE1),H•
Ǐ
(U, j∗i!vλE2)),

where the right-hand column is the sequence (3.16), and both column are exact at
the middle term. By induction, the upper horizontal arrow is an isomorphism. The
lower one is an isomorphism because the cohomology functor induces an equivalence
of categories between ParityǏ(Grλ,R) and the full subcategory of free modules in the
category of finitely generated graded H•

Ǐ
(Grλ;R)-modules. By the five-lemma, this

implies that the middle horizontal arrow is also an isomorphism, which completes
the induction step.

Remark 3.19. It can be easily checked that the proof of Proposition 3.13 applies to
any ring k of coefficients which is Noetherian and of finite global dimension, and also
in the Ǐ oGm-equivariant setting, or for other partial flag varieties of Kac–Moody
groups. If k is a complete local principal ideal domain, one can also work directly
with the categories ParityǏoGm

(Gr, k) and ParityǏ(Gr, k) instead of restricting to
“Bott–Samelson objects.”

3.10. Graded ranks of Hom spaces. We identify the Z[v, v−1]-module MFl as-
sociated with Fl and its stratification by Ǐ-orbits as in §2.1 with Haff , where ew
corresponds to Tw−1 (for w ∈ Waff). We also identify MGr (where Gr is stratified
by Ǐ-orbits) with Msph, where eλ corresponds to m−λ (for λ ∈ X).

Lemma 3.20. Let E be either F or R.
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(1) For any F , G in ParityǏ(Fl,E), we have

ch!
Fl(F ? G) = ch!

Fl(G) · ch!
Fl(F) and ch∗Fl(F ? G) = ch∗Fl(G) · ch∗Fl(F)

in Haff .
(2) For any G in ParityǏ(Fl,E), we have

ch!
Gr(G ? δE1 ) = m0 · ch!

Fl(G) and ch∗Gr(G ? δE1 ) = m0 · ch∗Fl(G)

in Msph.

Sketch of proof. The case E = R follows from the case E = F, so we concentrate on
the latter case. Also, in each case, the formula for ch∗ follows from the formula for
ch! using Lemma 2.5(1), so we only consider the latter case.

(1) First we consider the case G = Es,F for some simple reflection s. We let J̌s be

the minimal standard parahoric subgroup of Ǧ(K ) associated with s, and define
Fls := Ǧ(K )/J̌s. We let ps : Fl → Fls be the projection, and set Flsw := ps(Flw)
for w ∈Waff . Then by base change we have

F ? G = F ? Es,F ∼= (ps)
∗(ps)∗F [1],

and ch!
Fl(Es,F) = Ts + v−1. The formula in this case can be checked by a direct

computation, using the fact that

H•(Flsw, (iFl
s

w )!(ps)∗F) = H•(Flw, (iFlw )!F)⊕H•(Flws, (iFlws)!F)

for w ∈ Waff , which can be derived from the base change theorem and [JMW,
Proposition 2.6]. (Here iFl

s

w , iFlw and iFlws are the obvious inclusions.)
The case where G is the sky-scraper sheaf Eω,F at the Ǐ-fixed point given by the

unique point in Flω (for ω ∈ Ω) is easy.
Using these special cases one deduces that the formula holds when G is of the

form

(3.17) Es1,F ? · · · ? Esr,F ? Eω,F[n]

where ω ∈ Ω, n ∈ Z, and s1, · · · , sr are simple reflections. Then one can prove the
formula when G is indecomposable by induction on the dimension of its support,
using the fact that any indecomposable parity complex on Fl appears as a direct
summand of an object of the form (3.17) with r the dimension of the support,
see [JMW, §4.1]. The general case follows.

(2) We have G ? δE1 = p∗G, where p : Fl→ Gr is the natural projection. Then the
lemma can be checked by a direct computation, using the formula

H•(Grλ, (iλ)!p∗G) ∼=
⊕

w∈tλW
H•(Flw, (iFlw )!G)

for all λ ∈ X, which can be derived from the base change theorem and [JMW,
Proposition 2.6]. �

Remark 3.21. Using similar arguments one can show that ch?
Gr(F ? G) = ch?

Gr(G) ·
ch?

Fl(F) for any G in ParityǏ(Gr,E), F in ParityǏ(Fl,E) and ? =! or ∗.

Proposition 3.22. For E = R or F, for any sequence s of simple reflections, and
for any ω ∈ Ω we have

ch!
Gr(EE(ω, s)) = ch∗Gr(EE(ω, s)) = m(ω, s).
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Proof. This follows immediately from Lemma 3.20, using the facts that ch!
Fl(Es,E) =

ch∗Fl(Es,E) = (Ts + v−1) and ch∗Fl(Eω,E) = ch∗Fl(Eω,E) = Tω−1 (where Eω,E is defined
as in the proof of Lemma 3.20(1)). �

The following consequence of Theorem 3.14 will play a crucial role in Section 5.

Corollary 3.23. For any any ω, ω′ ∈ Ω and any sequences s, t of simple reflections,
the graded O(t∗)-module ⊕

n∈Z
HomBSalg

(
(ω, s, 0), (ω′, t, n)

)
is free. Its graded rank is equal to 〈m(ω, s),m(ω′, t)〉.

Proof. The first assertion follows from Theorem 3.14 and Lemma 2.2(2). The second
one follows from Lemma 2.5(2) and Proposition 3.22. �

4. Kostant–Whittaker reduction

In this section and the next one we work with derived categories of equivariant
coherent sheaves, and usual derived functors between them. See [MR, Appendix A]
for a brief reminder of the main definitions and properties of these objects.

4.1. Overview. The goal of this section is to introduce and study the “Kostant–
Whittaker reduction” functor for equivariant coherent sheaves on the Grothendieck
resolution of G. This construction is a mild adaptation of a construction in [BF]; it
relies in a crucial way on geometric results proved in [R3]. A related construction
also appears in [Do]. This functor is used in Section 5 to obtain a description of

the category Tilt(EG×Gm(Ñ )) in terms of “Soergel bimodules.”
After introducing our notation and assumptions in §4.2, we recall the definition

of the “geometric braid group action” of [R1, BR2] in §4.3, and the main results
of [R3] in §4.4. In §4.5 we define our functors. Then, after some preparation in
§4.7, in §4.8 we prove the main result of the section, a certain compatibility property
between Kostant–Whittaker reduction and the geometric braid group action.

4.2. Notation. Let GZ be a group scheme over Z which is a product of split simply
connected quasi-simple groups, and general linear groups GLn,Z. In particular, GZ
is a split connected reductive group over Z. We let BZ ⊂ GZ be a Borel subgroup,
TZ ⊂ BZ be a (split) maximal torus, and B+

Z ⊂ GZ be the Borel subgroup which
is opposite to BZ (with respect to TZ). We denote by r the rank of GZ.

We let N be the product of all the prime numbers which are not very good for
some quasi-simple factor of GZ, and set R := Z[1/N ]. Throughout the section, we
use the letter F to denote an arbitrary geometric point of R. We use the letter E
to denote either R or F.

We let GR, BR, TR, B+
R be the groups obtained from GZ, BZ, TZ, B+

Z by base

change to R, and gR, bR, tR, b+
R be their respective Lie algebras. We also denote

by UR, resp. U+
R, the unipotent radical of BR, resp. B+

R, by nR, resp. n+
R, its

Lie algebra, by W the Weyl group of (GR,TR), and by X := X∗(TR) the weight
lattice.

We also set

GF := Spec(F)×Spec(R) GR,
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denote by gF the Lie algebra of GF, by BF, TF, B+
F , UF, U+

F the base change of

BR, TR, B+
R, UR, U+

R, and by bF, tF, b+
F , nF, n+

F their respective Lie algebras.
Note that we also have X = X∗(TF).

If V is an E-module, we set V ∗ := HomE(V,E). In this section we will consider
the Grothendieck resolution

g̃E := (G×B (g/n)∗)E ↪→ (G/B× g∗)E.

The scheme g̃E is a vector bundle over the flag variety BE := (G/B)E. It is endowed
with an action of GE × Gm,E, where GE acts naturally, and the action of Gm,E is
induced by the action on (g/n)∗E where x ∈ Gm,E acts by multiplication by x−2.
We will consider the derived categories of equivariant coherent sheaves DG×Gm(g̃)E
and DG(g̃)E. We denote by 〈1〉 the functor of tensoring with the free rank one
tautological Gm,E-module, and by

F(−) : DG×Gm(g̃)R → DG×Gm(g̃)F, F(−) : DG(g̃)R → DG(g̃)F

the “modular reduction functors” induced by the functor F⊗LR (−).
For any λ ∈ X we denote by OBE(λ) the line bundle on BE associated naturally

with λ, and by Og̃E(λ) the pullback of OBE(λ) to g̃E.
We will also consider the morphism

ν : g̃E → t∗E

which is defined as follows. Consider the restriction morphism (g/n)∗E → t∗E. It is
easily checked that this morphism is BE-equivariant, where BE acts trivially on t∗E.
Therefore, our morphism defines a morphism (G ×B (g/n)∗)E → t∗E, which is our
morphism ν. There is also a natural morphism

π : g̃E → g∗E

induced by the coadjoint action.
By [R3, Lemma 4.2.3] there exists a GR-invariant symmetric bilinear form on

gR which is a perfect pairing. We fix once and for all such a bilinear form, and
we denote by κ : gR

∼−→ g∗R the induced (GR-equivariant) isomorphism. We denote

similarly the induced isomorphism gF
∼−→ g∗F.

In the case E = F, we let grs
F ⊂ greg

F ⊂ gF be the open subsets consisting of
regular semisimple elements and regular elements respectively (see [R3, §2.3]), let
g∗,rsF ⊂ g∗,reg

F ⊂ g∗F be their image under κ, and let g̃rs
F ⊂ g̃reg

F be the inverse
images in g̃F. Then there exists a natural action of W on g̃reg

F stabilizing g̃rs
F and

commuting with the GF × Gm,F-action, see [BR2, §1.9]. Moreover, the restriction
νreg : g̃reg

F → t∗F is W -equivariant, where W acts naturally on t∗F. (Indeed, this
property is easily checked for the restriction of νreg to g̃rs; then the claim follows
by a density argument.)

4.3. Geometric braid group action. We let X̌ be the lattice of cocharacters of
TR, and denote by Φ ⊂ X, resp. Φ̌ ⊂ X̌, the roots, resp. coroots, of (GR,TR). We
denote by Φ+ the positive roots, i.e. the roots appearing in b+

R. To these data one
can associate the affine Weyl group Waff and the affine braid group Baff as in §2.5.
We will also denote by ρ the half-sum of positive roots.

Let s be a finite simple reflection, associated with a simple root α. Recall the
associated subscheme ZE

s ⊂ (g̃×g∗ g̃)E defined in [BR2, §§1.3–1.5]. (If E = F, then
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ZE
s is the closure of the graph of the action of s on g̃reg

E .) We denote by

Tsg̃, S
s
g̃ : DG×Gm(g̃)E → DG×Gm(g̃)E

the Fourier–Mukai transforms with kernels OZE
s
〈−1〉 and OZE

s
(−ρ, ρ − α)〈−1〉 re-

spectively. (Here, OZE
s
(−ρ, ρ− α) denotes the tensor product of OZE

s
with the line

bundle on g̃ × g̃E which is the pullback of the line bundle OBE(−ρ) �OBE(ρ − α)
on B × BE.) By [BR2, Lemma 1.5.1 & Proposition 1.10.3], these functors are
quasi-inverse equivalences of categories. We will use the same symbols to denote
the similar autoequivalences of the category DG(g̃)E.

By [BR2, Section 1], there exists a right action12 of the group Baff on the category
DG×Gm(g̃)E, resp. DG(g̃)E, where Ts acts by the functor Tsg̃ (for any finite simple

reflection s), and where θλ acts by tensoring with the line bundle Og̃E(λ) (for any
λ ∈ X). (The same remarks as in [MR, §3.3] on the difference with the conventions
of [R1, BR2] apply here: the (right) action considered in the present paper differs
from the (left) action of [R1, BR2] by the composition with the anti-automorphism
of Baff fixing all generators Ts for s a simple reflection and θλ for λ ∈ X.) For
b ∈ Baff , we denote by

IEb : DG×Gm(g̃)E
∼−→ DG×Gm(g̃)E

the action of b. (This functor is defined only up to isomorphism.) It is easily checked
that we have an isomorphism of functors

(4.1) F ◦ IRb ∼= IFb ◦ F

for any b ∈ Baff .
For s a finite simple reflection, associated with a simple root α, we also set

g̃Es := G×Ps (g/(ps)
nil)∗E, where PE

s is the minimal standard parabolic subgroup of
GE associated with s, and (pEs )nil is the Lie algebra of the unipotent radical of PE

s .
There exists a natural morphism π̃s : g̃E → g̃Es . By [R1, Corollary 5.3.2] there exists
natural exact sequences

(4.2) O∆g̃E〈2〉 ↪→ Og̃×g̃s g̃E � OZE
s
, OZE

s
(−ρ, ρ− α) ↪→ Og̃×g̃s g̃E � O∆g̃E

in DG×Gm(g̃× g̃)E, where in each sequence the surjection is induced by restriction
of functions, and where ∆g̃E ⊂ g̃ × g̃E is the diagonal copy. (In fact, in [R1] only
the case E = F is treated, but one can easily check that the same arguments apply
in the case E = R.)

4.4. Reminder on [R3]: Kostant section and universal centralizer. We de-
note by Φs ⊂ Φ the subset of simple roots. As in [R3, §4.3],13 for each α ∈ −Φs we
choose an element eα ∈ gZ which forms a Z-basis of the α-weight space in gZ, and
set

e :=
∑

α∈−Φs

eα ∈ gR.

12Here by a (left) action of a group on a category we mean a group morphism from the given

group to the group of isomorphism classes of autoequivalences of the category. As usual, a right
action of a group is a left action of the opposite group.

13Note that, compared to [R3], we have switched the roles of positive and negative roots. An-
other difference which appears below is that we work with g∗ instead of g, using the identification
κ.
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We will consider the cocharacter λ̌◦ :=
∑
α∈−Φ+ α∨, and the Gm,R-actions on gR

and g∗R defined by

x · y = x−2λ̌◦(x) · y
for x ∈ Gm,R and y either in gR or in g∗R. With these definitions, κ is Gm,R-
equivariant, e is fixed by the action, and b+

R and n+
R are Gm,R-stable.

By [R3, Lemma 4.3.1], the quotient b+
R/[e, n

+
R] is free of rank r; therefore one

can choose a Gm,R-stable R-submodule sR ⊂ b+
R such that b+

R = sR ⊕ [e, n+
R]. We

set

SR := κ(e+ s)R, S̃R := S ×g∗ g̃R.

The Gm,R-action on g∗R defined above stabilizes SR, and contracts it to κ(e) as
t→∞. Similarly, the action on g̃R defined by

x · [g : ξ] = [λ̌◦(x)g : x−2ξ]

(for x ∈ Gm,R, g ∈ GR and ξ ∈ (g/n)∗R) stabilizes S̃R, and is contracting (see [R3,

§3.5] for details). We will denote by SF, resp. S̃F, the scheme obtained from SR,

resp. S̃R, by base change to F.
The following result is proved in [R3, Propositions 3.5.5 & 4.5.2]. Here we con-

sider the Gm,E-action on t∗E where x acts by multiplication by x−2.

Proposition 4.1. The morphism ν : g̃E → t∗E induces a Gm,E-equivariant isomor-
phism of E-schemes

νS : S̃E
∼−→ t∗E.

The following result is proved in [R3, Lemmas 3.5.1 & 4.5.1].

Lemma 4.2. The morphism

a : G× S̃E → g̃E

induced by the GE-action on g̃E is smooth. When E = F, it factorizes through a

surjective morphism G× S̃F → g̃reg
F .

We denote by ĨE the universal centralizer associated with the action of GE on

g̃E, see (2.1). We will also denote by ĨES the restriction of ĨE to S̃E. Then by [R3,

Corollary 3.5.8 & Proposition 4.5.3], ĨES is a commutative smooth group scheme

over S̃E. We denote by ĨES its Lie algebra; it is a locally free sheaf of commutative
OS̃E-Lie algebras (see [R3, §2.1]).

Recall that the quotient t∗E/W is a smooth scheme, isomorphic to an affine space
(see [De, Théorème 3 & Corollaire on p. 296]). We will denote by % : t∗E → t∗E/W

the quotient morphism; then we denote by ηS : S̃E → t∗E/W the composition

S̃E
νS−−→ t∗E

%−→ t∗E/W.

The following result follows from [R3, Theorems 3.5.12 & 4.5.5], using the fact
that the natural morphism SE → t∗E/W is an isomorphism (see [R3, Theorems 3.2.2
& 4.3.3], combined with [R3, Propositions 2.3.2 & 4.2.1]).

Theorem 4.3. There exists a canonical isomorphism of sheaves of commutative
OS̃E-Lie algebras

ĨES
∼= (ηS)∗Ωt∗E/W

.
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For the remainder of this subsection, let us consider the case E = F. First we

recall that there exists a unique smooth commutative group scheme J̃F over t∗F whose

pull-back under νreg is the restriction ĨFreg of ĨF to g̃reg
F , see [R3, Proposition 3.3.9].

Now by [R3, Remark 3.5.9], the composition

CohG(g̃reg)F → Rep(̃IFreg)→ Rep(̃IFS)
∼−→ Rep(J̃F)

is an equivalence of categories, where the first functor is the functor (2.2) in our

particular situation, the second functor is induced by restriction to S̃, and the last
functor is induced by the isomorphism of Proposition 4.1.

Similarly, let s be a finite simple reflection, let Ws := {1, s} ⊂ W , and consider
the natural morphism g̃Fs → t∗F/Ws. Let also g̃F,reg

s ⊂ g̃Fs be the inverse image of

g∗,reg
F under the natural morphism g̃Fs → g∗F, and let ĨFs be the universal stabilizer

associated with the action of GF on g̃Fs . Then the same arguments as in the case of g̃F
(see in particular [R3, Remark 3.5.7]) show that there exists a unique commutative

group scheme J̃F
s on t∗F/Ws whose pull-back under the morphism g̃F,reg

s → t∗F/Ws is

the restriction of ĨFs to g̃F,reg
s ; moreover, as above we have a natural equivalence of

categories CohG(g̃reg
s )F

∼−→ Rep(J̃F
s). There exists a canonical Cartesian diagram

J̃F //

��

J̃F
s

��
t∗F

// t∗F/Ws,

so that the direct and inverse image functors under the quotient morphism t∗F →
t∗F/Ws induce functors Rep(J̃F) → Rep(J̃F

s) and Rep(J̃F
s) → Rep(J̃F) respectively.

Under the equivalences considered above, these functors correspond to the direct
and inverse image functors under the restriction of π̃s to g̃reg

F , respectively.

4.5. Definition of the functors. Let us denote by T(t∗E/W ) the tangent bundle
of the smooth E-scheme t∗E/W . We consider the Gm,E-action on t∗E/W such that the
corresponding grading on O(t∗E/W ) = O(t∗E)W is obtained by restriction of the grad-
ing on O(t∗E) where the generators tE ⊂ O(t∗E) are in degree 2, so that the morphism
% of §4.4 is Gm,E-equivariant. This action induces a Gm,E-equivariant structure on
Ωt∗E/W

. We consider the Gm,E-action on T(t∗E/W ) such that O(T(t∗E/W )) is the

symmetric algebra of Ωt∗E/W
〈−2〉 as a graded algebra. In other words, the Gm,E-

action on T(t∗E/W ) is the combination of the action induced by the action on t∗E/W ,
with multiplication by x2 in the fibers of the projection T(t∗E/W )→ t∗E/W .

We will consider the bounded derived categories of (equivariant) coherent sheaves
DGm(t∗×t∗/W T(t∗/W ))E and D(t∗×t∗/W T(t∗/W ))E. In this context also we have
“modular reduction functors”

F(−) : DGm(t∗ ×t∗/W T(t∗/W ))R → DGm(t∗ ×t∗/W T(t∗/W ))F,

F(−) : D(t∗ ×t∗/W T(t∗/W ))R → D(t∗ ×t∗/W T(t∗/W ))F.

Now we can explain the construction of the“Kostant–Whittaker reduction” func-
tors

κE : DG×Gm(g̃)E → DGm(t∗ ×t∗/W T(t∗/W ))E,(4.3)

κE : DG(g̃)E → D(t∗ ×t∗/W T(t∗/W ))E.(4.4)
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First, consider the functor

κ′E : CohG(g̃)E → Coh(t∗)E

defined as the pullback functor associated with the embedding S̃E ↪→ g̃E, where we

identify S̃E with t∗E using the isomorphism νS from Proposition 4.1.

Remark 4.4. Consider the closed subvariety Υ̃F ⊂ g̃F defined in [R3, §3.5], and the

analogously defined closed subscheme Υ̃R ⊂ g̃R. Then UE acts freely on Υ̃E, and

ν induces an isomorphism of E-schemes Υ̃/UE
∼−→ t∗E. (In the case E = F, this fact

follows from [R3, Proposition 3.2.1, Theorem 3.2.2 & Proposition 3.5.5]; the case
E = R is similar.) Using this isomorphism, the functor κ′E can be described more

canonically as the composition of restriction to Υ̃E with the natural equivalences

CohU(Υ̃)E
∼−→ Coh(Υ̃/UE) ∼= Coh(t∗E).

Lemma 4.5. The functor κ′E is exact.

Proof. Our functor can be written as the composition

CohG(g̃)E
a∗−→ CohG(G× S̃)E

∼−→ Coh(S̃)E
(νS)∗−−−→
∼

Coh(t∗)E,

where a is the morphism considered in Lemma 4.2, and the middle arrow is the ob-
vious equivalence. Now a is a smooth (in particular, flat) morphism by Lemma 4.2,
which implies exactness. �

Now we can explain the definition of κE. This functor will be induced by an exact
functor CohG(g̃)E → Coh(t∗ ×t∗/W T(t∗/W ))E, which we denote similarly. In fact,

starting from an equivariant coherent sheaf F on g̃E, its restriction to S̃E is naturally

endowed with an action of the universal centralizer ĨES , see §2.2. Differentiating this

action we obtain an action of the Lie algebra ĨES of ĨES . By Theorem 4.3 one can

identify ĨES with (ηS)∗Ωt∗E/W
, considered as a sheaf of commutative Lie algebras on

S̃E. Identifying S̃E with t∗E via νS (see Proposition 4.1), we obtain an action of the
commutative Lie algebra %∗Ωt∗E/W

on κ′E(F), hence also an action of its symmetric

algebra %∗SOt∗E/W
(Ωt∗E/W

). This action defines a coherent sheaf κE(F) on t∗ ×t∗/W

T(t∗/W )E whose direct image under the affine morphism t∗ ×t∗/W T(t∗/W )E → t∗E
is κ′E(F). It follows from Lemma 4.5 that the functor

κE : CohG(g̃)E → Coh(t∗ ×t∗/W T(t∗/W ))E

that we have just defined is exact. Then the functor (4.4) is defined as the induced
functor between bounded derived categories.

The construction of the functor κE is similar, simply keeping track of the appro-

priate Gm,E-actions. More precisely, recall the action of Gm,E on S̃E defined in §4.4.

One can “extend” this action to the group scheme GE × S̃E via

x · (g, y) = (λ̌◦(x)gλ̌◦(x)−1, x · y)

for x ∈ Gm,E, g ∈ GE and y ∈ S̃E. Then the subgroup ĨES is Gm,E-stable, and the

projection ĨES → S̃E is Gm,E-equivariant. This action induces a Gm,E-equivariant

structure of the coherent sheaf ĨES (on S̃E), and it is easily seen that the isomorphism
of Theorem 4.3 is Gm,E-equivariant, where the action on the right-hand side is
induced by the action on T(t∗E/W ) considered at the beginning of this subsection

(see [R3, Proof of Theorem 3.4.2]). Now if F is in CohG×Gm(g̃)E, then the restriction
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of F to S̃E is a Gm,E-equivariant coherent sheaf, and the action of ĨES is compatible
with this structure in the obvious sense, which allows to define the exact functor

κE : CohG×Gm(g̃)E → CohGm(t∗ ×t∗/W T(t∗/W ))E

by the same recipe as for κE. Then the functor (4.3) is defined as the induced
functor between bounded derived categories.

The proof of the following lemma is easy, and left to the reader.

Lemma 4.6. There exist canonical isomorphisms of functors

F ◦ κR ∼= κF ◦ F, F ◦ κR ∼= κF ◦ F,
where, in both equations, the functor F on the left-hand side is the modular reduction
functor on the R-scheme (t∗×t∗/W T(t∗/W ))R, and the functor F on the right-hand
side is the similar functor on g̃R. �

4.6. Another geometric braid group action. The goal of this subsection is to
define a “geometric” (right) action of the group Baff on the category DGm(t∗×t∗/W

T(t∗/W ))E. We begin by defining an action of Waff .
First, there exists a natural action of W on the E-scheme (t∗ ×t∗/W T(t∗/W ))E,

induced by the action on t∗E. For w ∈W , we denote by

′KE
w : DGm(t∗ ×t∗/W T(t∗/W ))E

∼−→ DGm(t∗ ×t∗/W T(t∗/W ))E

the pullback functor associated with the morphism given by the action of w.
Then, let λ ∈ X. To define the functor associated with tλ we will identify

DGm(t∗ ×t∗/W T(t∗/W ))E with the derived category of finitely generated graded

modules over the commutative O(t∗E)-Lie algebra
(
O(t∗)⊗O(t∗/W ) Ω(t∗/W )

)
E. We

define a module FE
λ for this Lie algebra as follows. As an O(t∗E)-module, FE

λ is free of
rank one. Then to define the action of the commutative Lie algebra O(t∗)⊗O(t∗/W )

Ω(t∗/W )E it is enough to define a morphism of O(t∗E)-modules

(4.5)
(
O(t∗)⊗O(t∗/W ) Ω(t∗/W )

)
E → O(t∗E).

In order to do so, we interpret the left-hand side as the module of sections of the
projection

(4.6) (t∗ ×t∗/W T∗(t∗/W ))E → t∗E,

where T∗(t∗E/W ) is the cotangent bundle of the smooth E-scheme t∗E/W . The mor-
phism % : t∗E → t∗E/W defines a natural morphism

d∗% : (t∗ ×t∗/W T∗(t∗/W ))E → T∗(t∗E).

Now since t∗E is an affine space, the right-hand side is canonically isomorphic to
t∗E × tE. Hence, starting with a section σ of (4.6) the composition of σ with

(t∗ ×t∗/W T∗(t∗/W ))E
d∗%−−→ T∗(t∗E) ∼= t∗ × tE � tE

dλ−→ E

defines an element in O(t∗E). This construction provides the definition of (4.5),
hence also of the module FE

λ . It is clear that if λ, µ ∈ X and w ∈ W we have
canonical isomorphisms of

(
O(t∗)⊗O(t∗/W ) Ω(t∗/W )

)
E-modules

(4.7) FE
λ ⊗O(t∗E) F

E
µ
∼= FE

λ+µ and ′KE
w(FE

λ ) = FE
w−1λ.

(In the first isomorphism, the left-hand side is endowed with the natural action on
the tensor product).
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With this definition at hand, we define the functor

′KE
tλ

: DGm(t∗ ×t∗/W T(t∗/W ))E
∼−→ DGm(t∗ ×t∗/W T(t∗/W ))E

as the functor of tensoring (over O(t∗E)) with the module FE
λ .

Using (4.7) one can easily check that we have canonical isomorphisms

′KE
v ◦ ′KE

w
∼= ′KE

wv,
′KE

tλ
◦ ′KE

tµ
∼= ′KE

tλ+µ
, ′KE

w ◦ ′KE
tλ
∼= ′KE

tw−1λ
◦ ′KE

w

for all v, w ∈ W and λ, µ ∈ X. In other words, these functors define a right action
of the group Waff on the category DGm(t∗ ×t∗/W T(t∗/W ))E. For w ∈ Waff , we

denote by ′KE
w the functor giving the action of w.

Now we “renormalize” this action as follows. For w ∈W and λ ∈ X, we set

KE
Tw := ′KE

w〈−`(w)〉, KE
θλ

:= ′KE
tλ
〈λ(λ̌◦)〉.

Then these functors extend to a right action of Baff on DGm(t∗ ×t∗/W T(t∗/W ))E.

For any b ∈ Baff , we denote by KE
b the action of b. Note that if b is the image of b

under the canonical surjection Baff �Waff , then there exists n(b) ∈ Z such that

(4.8) KE
b
∼= ′KE

b
〈n(b)〉.

Note also that if ω ∈ Ω then we have necessarily

(4.9) n(Tω) = 0.

(Indeed, if the claim is known for a power of ω then it follows for ω. Now this claim
is obvious if ω = tλ for some λ ∈ X such that λ(α∨) = 0 for all α ∈ Φ. Since the
quotient of Ω by the subgroup consisting of such elements is finite, this suffices to
imply the claim for all ω ∈ Ω.)

4.7. Kostant–Whittaker reduction of line bundles. The goal of this subsec-
tion is to prove the following result (whose proof is quite technical, even though the
statement is very natural).

Proposition 4.7. For any λ ∈ X, there exists an isomorphism

κE(Og̃E(λ)) ∼= FE
λ 〈λ(λ̌◦)〉.

We start with two preliminary results. The first lemma is a generalization of a
lemma in [GK].

Lemma 4.8. If g ∈ GF and ξ ∈ (g/n)∗F are such that g · ξ ∈ SF, then g ∈ U+
F ·BF.

Proof. Our assumption ensures that [g : ξ] ∈ S̃F. Recall the contracting Gm,F-

actions on SF and S̃F defined in §4.4. We have limx→∞ x · [g : ξ] = [1 : κ(e)],
hence limx→∞ λ̌◦(x)gBF = 1BF. Since 1BF belongs to the λ̌◦-stable open subset
U+

F BF/BF ⊂ BF, we deduce that gBF also belongs to U+
F BF/BF, which finishes

the proof. �

Lemma 4.9. Let λ ∈ X. Let M be an object of CohGm(t∗ ×t∗/W T(t∗/W ))R
which is flat over R, and whose direct image to t∗R is coherent. Assume that
for any geometric point F of R there exists an isomorphism F ⊗R M ∼= F F

λ in

CohGm(t∗ ×t∗/W T(t∗/W ))F. Then there exists an isomorphism M ∼= FR
λ .
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Proof. In this proof we identify the category CohGm(t∗ ×t∗/W T(t∗/W ))R with the
category of finitely generated graded O(t∗×t∗/W T(t∗/W ))R-modules, and similarly
for F.

First we construct an isomorphism of graded O(t∗R)-modules O(t∗R)
∼−→ M . In

fact, if M0 denotes the degree 0-part of M (a free R-module of finite rank), our
assumption ensures that dimC(C ⊗R M0) = 1; we deduce that M0 has rank 1.
Choosing any basis for this module, we obtain a morphism of graded O(t∗R)-modules

φ : O(t∗R)→M.

Our assumption implies that the induced morphism O(t∗F) → F ⊗R M is an iso-
morphism for all F. Since all graded pieces in O(t∗R) and M are free R-modules of
finite rank, we deduce that φ is an isomorphism.

We claim that φ induces an isomorphism of graded O(t∗ ×t∗/W T(t∗/W ))R-

modules FR
λ
∼−→ M . In fact, it is enough to prove that for all ω ∈ Ω(t∗R/W ) we

have ω · φ(1) = (dλ)(ω′) · φ(1), where ω′ is the image of ω in Ω(t∗R) = tR ⊗R O(t∗R)
as in §4.6 (and we still write dλ for the morphism (dλ)⊗1: tR⊗RO(t∗R)→ O(t∗R)).
However, the embedding

EndModgr(O(t∗×t∗/WT(t∗/W ))C)(F
C
λ ) ↪→ EndModgr(O(t∗C))(F

C
λ )

is an isomorphism, since the right-hand side is reduced to scalars. Hence C ⊗R φ
induces an isomorphism of O(t∗ ×t∗/W T(t∗/W ))C-modules FC

λ
∼−→ C ⊗R M . We

deduce that the image of ω · φ(1)− (dλ)(ω′) · φ(1) in C⊗R M is 0; it follows that
this element is zero, which finishes the proof. �

Proof of Proposition 4.7. Using Lemmas 4.6 and 4.9, it is enough to prove the iso-
morphism in the case E = F. For simplicity, in the proof we omit the subscripts
“F.”

We denote by g̃� the inverse image in g̃ of the open subset U+B/B ⊂ B; more
concretely we have g̃� = U+B ×B (g/n)∗. This open subset is stable under the
action of Gm obtained by restricting the action of G × Gm along the embedding

Gm → G×Gm sending x to (λ̌◦(x), x). Moreover, by Lemma 4.8, we have S̃ ⊂ g̃�.
First, we claim that there exists a canonical isomorphism of Gm-equivariant line

bundles (in other words a canonical trivialization)

(4.10) Og̃(λ)|g̃�
∼−→ Og̃�〈λ(λ̌◦)〉.

In fact, consider the variety X := G ×U (g/n)∗. This variety is endowed with a
(free) action of T defined by t · [g : ξ] = [gt−1 : t · ξ], and g̃ is the quotient of X
by this action. It is also endowed with a natural action of G × Gm, such that the
quotient morphism q : X → g̃ is G×Gm-equivariant. Moreover, it follows from the
definition that we have

Og̃(λ) = (q∗OX )T,−λ

as G×Gm-equivariant line bundles, where on the right-hand side we mean sections
on which T acts by the character −λ. Consider now the following commutative
diagram:

T×U+ × (g/n)∗
∼ //

q���

U+B×U (g/n)∗

��

� � // X
q
��

U+ × (g/n)∗
∼ // U+B×B (g/n)∗

� � // g̃.
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Here q� is the projection, the right horizontal arrows are the natural (open) embed-
dings, and the left arrows are defined by (t, u, ξ) 7→ [ut−1 : t · ξ] and (u, ξ) 7→ [u : ξ]
respectively. All the maps in this diagram are Gm-equivariant, if Gm acts on X and
g̃ via the morphism Gm → G × Gm considered above, and on T ×U+ × (g/n)∗,
resp. U+ × (g/n)∗, via

x · (t, u, ξ) = (t · λ̌−1
◦ (x), λ̌◦(x)uλ̌−1

◦ (x), x−2λ̌◦(x) · ξ),
resp. x · (u, ξ) = (λ̌◦(x)uλ̌−1

◦ (x), x−2λ̌◦(x) · ξ).

We deduce an isomorphism of Gm-equivariant line bundles

Og̃(λ)|U+×(g/n)∗
∼−→
(
(q�)∗OT×U+×(g/n)∗

)T,−λ
.

Now we have (q�)∗OT×U+×(g/n)∗
∼= F[T] ⊗F OU+×(g/n)∗ , and the subsheaf where

T acts by −λ is (Fλ)⊗F OU+×(g/n)∗ . We deduce (4.10).
Using (4.10) we obtain a canonical isomorphism of Gm-equivariant Ot∗ -modules

(4.11) κ(Og̃(λ)) ∼= Ot∗〈λ(λ̌◦)〉.

To conclude we have to identify the action of Ω(t∗/W ) on κ(Og̃(λ)).
In order to do so we can restrict to the open subset t∗,rs ⊂ t∗ (the complement

of the coroot hyperplanes). Note that we have ν−1(t∗,rs) = g̃rs. To compute the
action we will use another, more elementary section of the restriction of ν to g̃rs.
Namely, we set

Σrs := {1B} × κ(trs) ⊂ g̃rs ⊂ G/B× g∗,

where trs := grs ∩ t. Clearly, ν restricts to an isomorphism Σrs ∼−→ t∗,rs. Hence, if

S̃rs := g̃rs ∩ S̃, we have canonical identifications S̃rs ∼−→ t∗,rs
∼←− Σrs. In fact, since

the restriction of Ĩ to g̃reg is the pullback of the group scheme J̃ on t∗, we also

obtain a canonical identification of the corresponding restrictions of Ĩ, and then of
their Lie algebras:

(4.12)

Lie(̃Irs
S )

∼ //

��

Lie(J̃rs)

��

Lie(̃Irs
Σ)

∼oo

��
S̃rs ∼ // t∗,rs Σrs.

∼oo

(Here, for A a smooth group scheme over a scheme X, Lie(A) denotes the vector
bundle whose sections are the Lie algebra of A, considered as an OX -module; the

superscript “rs” means restriction to the regular semisimple locus, and Ĩrs
Σ is the

restriction of Ĩ to Σrs.)
Using the notation we have just introduced, Theorem 4.3 defines an isomorphism

Lie(̃Irs
S )

∼−→ S̃rs×SrsT∗(Srs). In fact, since the morphism S̃rs → Srs is étale (because
the restriction of % : t∗ → t∗/W to t∗,rs is étale, see [R3, Proof of Lemma 3.5.3]),

this can be rewritten as an isomorphism Lie(̃Irs
S )

∼−→ T∗(S̃rs). Now we clearly have

Ĩrs
Σ = T× Σrs ⊂ G× Σrs, hence Lie(̃Irs

Σ) = t× Σrs ∼−→ T∗(Σrs), where we identify t
with κ(t)∗ = g/(n+ ⊕ n) in the natural way. We claim that the following diagram
commutes, where the horizontal isomorphisms are induced by the identifications
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in (4.12) and the vertical isomorphisms are the ones we have just defined:

(4.13)

Lie(̃Irs
S )

∼ //

o ��

Lie(̃Irs
Σ)

o
��

T∗(S̃rs)
∼ // T∗(Σrs).

In fact, let y ∈ κ(trs), and let z̃ the point of S̃rs corresponding to ỹ = (1B, y) ∈ Σrs

under the identification in (4.12). Let us also fix g ∈ G such that z̃ = g · ỹ. Then,
unravelling the various definitions (see in particular [R3, Remark 3.3.4]), we see
that the fiber over z̃ ↔ ỹ of (4.13) can be described as

gg·y
adg−1

∼ //
� _

��

gy

g

����

t

o
��

κ(s)∗ goooo [g, g · y]⊥? _oo
adg−1

∼
//

∼
vv UZ_di

[g, y]⊥
� � //

∼
((j d _ Z U

g // // κ(t)∗.

Now we have gg·y = [g, g · y]⊥ and gy = [g, y]⊥, so the commutativity is obvious.
With this comparison at hand, we can now identify the restriction of κ(Og̃(λ))

to t∗,rs with Og̃(λ)|Σrs , endowed with the action of Irs
Σ , identified with t ⊗ OΣrs as

above. But the restriction of Og̃(λ) to {1B} × (g/n)∗ is O(g/n)∗ ⊗F Fλ (where Fλ
is the one-dimensional B-module defined by λ), and we finally deduce that (4.11)
defines an isomorphism κ(Og̃(λ)) ∼= Fλ〈λ(λ̌◦)〉, as desired. �

4.8. Kostant–Whittaker reduction and geometric actions. The main result
of this subsection is the following.

Proposition 4.10. (1) For any b ∈ Baff , there exists an isomorphism of func-
tors

KF
b ◦ κF ∼= κF ◦ IFb .

(2) Let b ∈ Baff , and let F be an object of DG×Gm(g̃)R such that κR(F) is
concentrated in degree 0, and R-free. Then κR ◦ IRb (F) is concentrated in
degree 0 and R-free, and moreover there exists an isomorphism

KR
b ◦ κR(F) ∼= κR ◦ IRb (F)

in DGm(t∗ ×t∗/W T(t∗/W ))R.

Remark 4.11. It is probably true that there exists an isomorphism of functors
KR
b ◦ κR ∼= κR ◦ IRb . The weaker statement in Proposition 4.10(2) will be sufficient

for our purposes.

Before proving this result we need a preliminary lemma. In this lemma we fix
a finite simple reflection s, and consider the morphism ZE

s → g̃E induced by the
second projection.

Lemma 4.12. (1) The Cartesian square

(S̃ ×g̃ Zs)E
� � //

��

ZE
s

��
S̃E �
� // g̃E

is tor-independent in the sense of [Li, Definition 3.10.2].
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(2) The embedding ZE
s ↪→ (g̃× g̃)E identifies (S̃ ×g̃Zs)E with a closed subscheme

of (S̃ × S̃)E. Then, identifying S̃E with t∗E via the isomorphism of Propo-

sition 4.1, (S̃ ×g̃ Zs)E identifies with the graph of the action of s on t∗E.

Proof. (1) We decompose our Cartesian square into two squares:(
S̃ ×g̃ Zs

)
E
� � //

��

G×
(
S̃ ×g̃ Zs

)
E

//

��

ZE
s

��
S̃E �
� // (G× S̃)E

a // g̃E.

Here the left arrows are induced by the embedding Spec(E) ↪→ GE given by the
identity. The left-hand hand square is obviously Cartesian and tor-independent
(since GE is flat over Spec(E)), and the right-hand square is Cartesian by GE-
equivariance, and tor-independent since a is flat (see Lemma 4.2). The claim follows.

(2) The first claim is a consequence of the definition of S̃E and of the fact that
ZE
s is included in (g̃×g∗ g̃)E. Now we consider the second claim.
In the case E = F, the claim follows from the definition of ZF

s , using the facts

that S̃F is included in g̃reg
F (see [R3, Equation (3.1.1)]), and that the morphism νreg

is W -equivariant (see §4.2).
Now, let us deduce the case E = R. It follows in particular from the first claim

that (S̃ ×g̃ Zs)R is an affine scheme. Since GR × (S̃ ×g̃ Zs)R is flat over ZR
s (see

the proof of (1)), which is itself flat over R, and since R is a direct summand in

O(GR), the scheme (S̃ ×g̃ Zs)R is also flat over R.

Let us denote by f the morphism (S̃ ×g̃ Zs)R → S̃R induced by the first projec-
tion. We claim that f is an isomorphism. In fact, consider the morphism

f∗ : O(S̃R)→ O(S̃ ×g̃ Zs)R.

Since f is projective, the right-hand side is finite over O(S̃R). Moreover, the mor-
phism F⊗R (f∗) is an isomorphism for any geometric point F of R, by the case of
fields treated first. Using [BR2, Lemma 1.4.1] we deduce that f∗ is an isomorphism,
which finishes the proof of the claim.

Now, consider the morphism τs : S̃R → S̃R defined as the composition of the

inverse of f with the natural projection (S̃ ×g̃ Zs)R → S̃R. The induced morphism

S̃C → S̃C coincides with the action of s (via the identification S̃C
∼−→ t∗C). It follows

that the morphism τs itself coincides with the action of s, finishing the proof. �

Proof of Proposition 4.10. In each case, it is sufficient to prove the claim when
b = Ts for s a finite simple reflection, or when b = θλ for some λ ∈ X.

First, assume that b = θλ. Since κE is compatible with tensoring with a line
bundle, Proposition 4.7 implies that there exists an isomorphism of functors KE

θλ
◦

κE ∼= κE ◦ IEθλ , which proves the claims in (1) and (2) in this case.

Now we consider the case b = Ts. In this case we have IETs
∼= R(ps)∗ ◦L(qs)

∗〈−1〉,
where ps, qs : ZE

s → g̃E are induced by the first and second projections, respectively.
Let κ′E be the composition of κE with the direct image under the (affine) morphism
ς : (t∗ ×t∗/W T(t∗/W ))E → t∗E. (In other words, κ′E is the composition of restriction

to S̃E with the functor (νS)∗.) By Lemma 4.12(1) and the base-change theorem
(see [Li, Theorem 3.10.3]), we have κ′E ◦ IETs ∼= R(p′s)∗ ◦ L(q′s)

∗ ◦ κ′E〈−1〉, where
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p′s, q
′
s : (S̃ ×g̃Zs)E → t∗E are the compositions of νS with the morphisms obtained by

restriction from ps, qs. Using Lemma 4.12(2), we deduce a canonical isomorphism

(4.14) κ′E ◦ IETs ∼= (τ ′s)
∗ ◦ κ′E〈−1〉,

where τ ′s : t∗F → t∗F is the action of s.

In the case E = F, since the automorphism τs : S̃F
∼−→ S̃F is the restriction of a

GF ×Gm,F-equivariant automorphism of g̃reg
F , isomorphism (4.14) is induced by an

isomorphism of functors

KF
Ts ◦ κF ∼= κF ◦ IFTs ,

which finishes the proof of (1). Then the case E = R follows from the case E = C:
indeed by (4.14) we have an isomorphism

(4.15) ς∗
(
KR
Ts ◦ κR(F)

) ∼= ς∗
(
κR ◦ IRTs(F)

)
.

Hence if κR(F) is concentrated in degree 0 and R-free, the same is true for κR ◦
IRTs(F). And in this case, since the image of (4.15) under C⊗R (−) is O(t∗ ×t∗/W

T(t∗/W ))C-linear, we deduce that (4.15) is O(t∗ ×t∗/W T(t∗/W ))R-linear, which
finishes the proof of (2). �

We finish this section with the following variant of Lemma 4.12, to be used later.
In this lemma we consider the morphism (g̃ ×g̃s g̃)E → g̃E induced by the second
projection.

Lemma 4.13. (1) The Cartesian square(
S̃ ×g̃ (g̃×g̃s g̃)

)
E
� � //

��

(g̃×g̃s g̃)E

��
S̃E �
� // g̃E

is tor-independent in the sense of [Li, Definition 3.10.2].

(2) Identifying S̃E with t∗E via the isomorphism of Proposition 4.1, the fiber

product
(
S̃ ×g̃ (g̃×g̃s g̃)

)
E identifies with the closed subscheme of (t∗ × t∗)E

given by (t∗ ×t∗/Ws
t∗)E.

Proof. The proof of (1) is identical to the proof of Lemma 4.12(1). The case E = F
of (2) follows from the observation that the intersection of (g̃×g̃s g̃)F with g̃reg

F × g̃
reg
F

is the union of the diagonal copy of g̃reg
F and the graph of the action of s. Now, let

us deduce the case E = R.
By the same arguments as in the proof of Lemma 4.12(2), the fiber product(
S̃ ×g̃ (g̃×g̃s g̃)

)
R

is a flat R-scheme, and a closed subscheme of the affine scheme

(S̃ × S̃)R. Consider the algebra

A := O
(
S̃ ×g̃ (g̃×g̃s g̃)

)
R
.

We claim that A is R-free. Indeed, consider the contracting Gm,R-action on S̃R
considered in §4.4. The diagonal action on (S̃ × S̃)R stabilizes the subscheme

(S̃ ×g̃ (g̃×g̃s g̃))R, so that A is endowed with a Z-grading. Each graded piece of A
is finite over R, and flat, hence free, which proves our claim.

Now, consider the surjection

O(t∗ × t∗)R � A.
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For any x ∈ O(t∗R)s, the image of x ⊗ 1 − 1 ⊗ x in A becomes zero in C ⊗R A, by
the case E = C. Since A is R-free, this implies that this image is 0, hence that our
morphism factors through a surjection(

O(t∗)⊗O(t∗)s O(t∗)
)
R
� A.

This surjection is compatible with the Z-gradings, and on both sides the graded
pieces are free of finite rank over R. (In fact, this property has been proved above
for A. For the left-hand side, we have O(t∗R) = O(t∗R)s ⊕O(t∗R)s · δ, where δ ∈ tR
is any element such that 〈δ, α〉 = 1 – see e.g. [EW, Claim 3.9] – which implies our
claim.) Hence to conclude we only have to prove that the induced morphism

F⊗R

(
O(t∗)⊗O(t∗)s O(t∗)

)
R
� F⊗R A

is an isomorphism for all geometric points F of R.
Using again the case E = F treated above, we only have to prove that the natural

morphism

F⊗R

(
O(t∗)⊗O(t∗)s O(t∗)

)
R
→
(
O(t∗)⊗O(t∗)s O(t∗)

)
F

is an isomorphism. In turn, this follows easily from the decompositions O(t∗E) =
O(t∗E)s ⊕O(t∗E)s · δ for E = R and F (where δ is as above, and we denote similarly
its image in tF). �

5. Tilting exotic sheaves

In this section we use the same notation as in Section 4.

5.1. Overview. In this section we give a description of the category of tilting

objects in EG×Gm(Ñ ) in terms of “Soergel bimodules.” This description is based
on a “Bott–Samelson type” description of these tilting objects, due to Dodd [Do] in
the case p = 0 and generalized to the modular setting in [MR], and on the use of
the “Kostant–Whittaker reduction” of Section 4.

In §5.2 we review the basic definitions and results on Bezrukavnikov’s exotic
t-structure, and in §5.3 we introduce and study some variants of the associated
“standard” and “costandard” objects. In §5.4 we recall the “Bott–Samelson” de-

scription of tilting objects in EG×Gm(Ñ ). In §5.5 we compute the graded ranks of
Hom-spaces between our “Bott–Samelson objects.” Finally, in §§5.6–5.8 we obtain
the desired description in terms of Soergel bimodules.

5.2. Reminder on the exotic t-structure. In this section we will consider the
Springer resolution

ÑE := (G×B (g/b)∗)E ↪→ BE × g∗E,

a sub-vector bundle of the Grothendieck resolution g̃E studied in Section 4. We

denote by i : ÑE ↪→ g̃E the inclusion. For λ ∈ X we denote by OÑE
(λ) the restriction

of Og̃E(λ) to ÑE. We will consider the derived categories of equivariant coherent

sheaves DG×Gm(Ñ )E and DG(Ñ )E.
By [BR2, Section 1], the geometric braid group actions considered in §4.3 “re-

strict” to the categories DG×Gm(Ñ )E and DG(Ñ )E in the following sense. For
s a finite simple reflection, associated with a simple root α, we define Z ′Es :=

ZE
s ∩ (ÑE × ÑE), and denote by

TsÑ , S
s
Ñ : DG×Gm(Ñ )E → DG×Gm(Ñ )E
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the Fourier–Mukai transforms with kernels OZ′Es 〈−1〉 and OZ′Es (−ρ, ρ− α)〈−1〉 re-

spectively. We use the same symbols for the analogous endofunctors of DG(Ñ )E.
(Here OZ′Es (−ρ, ρ−α) is defined by the same recipe as for OZE

s
(−ρ, ρ−α) in §4.3.)

Then Ts
Ñ

and Ss
Ñ

are quasi-inverse equivalences of categories, and there exists a

right action of the group Baff on the categories DG×Gm(Ñ )E and DG(Ñ )E such
that Ts acts by Ts

Ñ
for any finite simple reflection s, and θλ acts by tensoring with

OÑE
(λ) for any λ ∈ X.

For b ∈ Baff , we denote by

JEb : DG×Gm(Ñ )E
∼−→ DG×Gm(Ñ )E

the action of b. Then there exist isomorphisms of functors

(5.1) IEb ◦ Ri∗ ∼= Ri∗ ◦ JEb , Li∗ ◦ IEb ∼= JEb ◦ Li∗

and

(5.2) F ◦ JRb ∼= JFb ◦ F.

Recall the elements wλ ∈Waff defined in §2.5. We set

∇λÑ ,E := JETwλ
(OÑE

), ∆λ
Ñ ,E := JE(T

w
−1
λ

)−1(OÑE
).

By (5.2), these objects satisfy

(5.3) F(∇λÑ ,R) ∼= ∇λÑ ,F, F(∆λ
Ñ ,R) ∼= ∆λ

Ñ ,F.

Remark 5.1. For any w ∈ W we have JETw(OÑE
) ∼= OÑE

〈−`(w)〉. (See [MR, Equa-

tion (3.10)] for the case E = F; the case E = R can be deduced using the arguments
in the proof of [BR2, Proposition 1.4.3], or proved along the same lines.) Therefore,
as in [MR], for any w ∈Wtλ we have

∇λÑ ,E
∼= JETw(OÑE

)〈−`(wλ) + `(w)〉, ∆λ
Ñ ,E
∼= JE(Tw−1 )−1(OÑE

)〈−`(w) + `(wλ)〉.

In the case E = F, the objects ∇λ
Ñ ,F and ∆λ

Ñ ,F were studied in [MR] (see in

particular [MR, Proposition 3.7]). In fact, if we denote by D≤0, resp. D≥0, the

subcategory of DG×Gm(Ñ )F generated under extensions by the objects ∆λ
Ñ ,F〈n〉[m]

with n ∈ Z and m ∈ Z≥0, resp. by the objects∇λ
Ñ ,F〈n〉[m] with n ∈ Z and m ∈ Z≤0,

then the pair (D≤0, D≥0) constitutes a bounded t-structure on DG×Gm(Ñ )F, called

the exotic t-structure. We denote by EG×Gm(Ñ )F the heart of this t-structure.

By [MR, Corollary 3.10], the objects ∆λ
Ñ ,F and ∇λ

Ñ ,F belong to EG×Gm(Ñ )F.

Let us fix an order ≤′ on X as in [MR, §2.5]. Then by [MR, §3.5], the category

EG×Gm(Ñ )F is a graded highest weight category with weight poset (X,≤′), standard
objects {∆λ

Ñ ,F, λ ∈ X} and costandard objects {∇λ
Ñ ,F, λ ∈ X}. In particular, it

makes sense to consider the tilting objects in EG×Gm(Ñ )F, i.e. the objects which
admit both a standard filtration (i.e. a filtration with subquotients of the form
∆λ
Ñ ,F〈m〉 with λ ∈ X and m ∈ Z), and a costandard filtration (i.e. a filtration

with subquotients of the form ∇λ
Ñ ,F〈m〉 with λ ∈ X and m ∈ Z). The subcategory

consisting of such objects will be denoted by Tilt(EG×Gm(Ñ )F).
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If X admits a standard filtration, resp. a costandard filtration, we denote by (X :
∆λ
Ñ ,F〈m〉), resp. (X : ∇λ

Ñ ,F〈m〉), the number of times ∆λ
Ñ ,F〈m〉, resp. ∇λ

Ñ ,F〈m〉, ap-

pears in a standard, resp. costandard, filtration ofX. (This number does not depend
on the filtration.) The general theory of graded highest weight categories implies
that for any λ ∈ X there exists a unique (up to isomorphism) indecomposable

object T λ in Tilt(EG×Gm(Ñ )F) which satisfies

(T λ : ∆λ
Ñ ,F) = 1 and (T λ : ∆µ

Ñ ,F
〈m〉) 6= 0⇒ µ ≤′ λ.

Moreover, every object in Tilt(EG×Gm(Ñ )F) is a direct sum of objects of the form
T λ〈m〉 for some λ ∈ X and m ∈ Z. (See e.g. [AR2, Appendix A] for references on
this subject.)

Recall also from [MR, Equation (2.3)] that we have

(5.4) HomDG×Gm (Ñ )F
(∆λ
Ñ ,F,∇

µ

Ñ ,F
〈n〉[m]) =

{
F if λ = µ and n = m = 0;

0 otherwise.

Remark 5.2. One can easily check that none of our constructions depends on the
choice of the order ≤′.

5.3. More “standard” and “costandard” objects. If H is an affine group
scheme over a ring k, we denote by InvHk the functor of derived H-invariants;
see [MR, §A.3].

Lemma 5.3. For any F ,G in DG×Gm(Ñ )R, the complex of R-modules

RHomDG×Gm (Ñ )R
(F ,G)

is bounded, and has finitely generated cohomology modules.

Proof. By [MR, Proposition A.6], we have a natural isomorphism

RHomDG×Gm (Ñ )R
(F ,G) ∼= InvGR

R ◦ InvGm,R

R

(
RHomDb Coh(ÑR)(F ,G)

)
.

Since the natural morphism ÑR → g∗R (the restriction of the morphism π from §4.2)
is projective, by [Ha, Theorem III.8.8] RHomDb Coh(ÑR)(F ,G) is a bounded com-

plex of finitely generated O(g∗R)-modules, which implies that the complex of R-

modules Inv
Gm,R

R (RHomDb Coh(ÑR)(F ,G)) is bounded, and has finitely generated

cohomology modules. Hence the claim follows from the fact that if M is a GR-
module which is finitely generated over R, then InvGR

R (M) is a bounded complex
of finitely generated R-modules, see [J1, Lemma II.B.5 and its proof]. �

Proposition 5.4. For λ, µ ∈ X and n,m ∈ Z we have

HomDG×Gm (Ñ )R
(∆λ
Ñ ,R,∇

µ

Ñ ,R
〈n〉[m]) =

{
R if λ = µ and n = m = 0;

0 otherwise.

Moreover, the natural morphism

F⊗R HomDG×Gm (Ñ )R
(∆λ
Ñ ,R,∇

µ

Ñ ,R
〈n〉[m])→ HomDG×Gm (Ñ )F

(∆λ
Ñ ,F,∇

µ

Ñ ,F
〈n〉[m])

is an isomorphism.
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Proof. By the same arguments as in [MR, Proof of Lemma 4.11], there exists a
canonical isomorphism of complexes of F-vector spaces

F
L
⊗R RHomDG×Gm (Ñ )R

(∆λ
Ñ ,R,∇

µ

Ñ ,R
〈n〉) ∼−→ RHomDG×Gm (Ñ )F

(∆λ
Ñ ,F,∇

µ

Ñ ,F
〈n〉).

By (5.4), the right-hand side is isomorphic to F if λ = µ and n = 0, and is 0
otherwise. Using Lemma 5.3, we deduce the claim. �

As in [MR, §4.1], for λ ∈ X, we set

∇λg̃,E := IETwλ
(Og̃E), ∆λ

g̃,E := IE(T
w
−1
λ

)−1(Og̃E).

Then by (4.1) we have

F(∇λg̃,R) ∼= ∇λg̃,F, F(∆λ
g̃,R) ∼= ∆λ

g̃,F,

and by (5.1) we have

(5.5) Li∗(∇λg̃,E) ∼= ∇λÑ ,E, Li∗(∆λ
g̃,E) ∼= ∆λ

Ñ ,E.

Recall that for F ,G in DG×Gm(g̃)E the morphism⊕
n∈Z

HomDG×Gm (g̃)E(F ,G〈−n〉)→ HomDG(g̃)E(F ,G)

induced by the forgetful functor is an isomorphism. In particular, this isomorphism
endows the right-hand side with a natural Z-grading.

Proposition 5.5. For λ, µ ∈ X and m ∈ Z there exists an isomorphism of graded
O(t∗E)-modules

HomDG(g̃)E(∆λ
g̃,E,∇

µ
g̃,E[m]) =

{
O(t∗E) if λ = µ and m = 0;

0 otherwise.

Moreover, the natural morphisms

E⊗O(t∗E) HomDG(g̃)E(∆λ
g̃,E,∇

µ
g̃,E[m])→ HomDG(Ñ )E

(∆λ
Ñ ,E,∇

µ

Ñ ,E
[m])

(induced by Li∗ via isomorphisms (5.5)) and

F⊗R HomDG(g̃)R(∆λ
g̃,R,∇

µ
g̃,R

[m])→ HomDG(g̃)F(∆
λ
g̃,F,∇

µ
g̃,F[m])

are isomorphisms.

Proof. As in [MR, Lemma 4.11], for F ,G in DG(g̃)E we have a canonical isomor-
phism

E
L
⊗O(t∗E) RHomDG(g̃)E(F ,G) ∼= RHomDG(Ñ )E

(Li∗F , Li∗G).

Choosing F = ∆λ
g̃,E and G = ∇µ

g̃,E and using (5.5), we deduce an isomorphism

E
L
⊗O(t∗E) RHomDG(g̃)E(∆λ

g̃,E,∇
µ
g̃,E) ∼= RHomDG(Ñ )E

(∆λ
Ñ ,E,∇

µ

Ñ ,E
).

Using Proposition 5.4, the right-hand side is concentrated in degree 0, and isomor-
phic either to E (when λ = µ) or to 0 (when λ 6= µ). By Lemma 2.8(2), this implies
the first claim, and the first isomorphism.

The proof of the second isomorphism is similar to the proof of the corresponding
claim in Proposition 5.4. �
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5.4. “Coherent”Bott–Samelson objects. As in [MR, §4.2], if s is a finite simple
reflection, we denote by

ΞE
s : DG×Gm(g̃)E → DG×Gm(g̃)E

the Fourier–Mukai transform associated with the kernel O(g̃×g̃s g̃)E〈−1〉 (see §4.3 for

the notation). We also make a similar definition for s0 an affine simple reflection:
by Lemma 2.10 we can choose (once and for all) a finite simple reflection t and an
element b ∈ Baff such that Ts0 = bTtb

−1, and set ΞE
s0 := IEb−1 ◦ ΞE

t ◦ IEb . One can
easily check that for any simple reflection s ∈Waff there exists an isomorphism

(5.6) F ◦ ΞR
s
∼= ΞF

s ◦ F.

For s = (s1, · · · , sn) a sequence of simple reflections and ω ∈ Ω, we set

ME(ω, s) := ΞE
sn ◦ · · · ◦ ΞE

s1 ◦ I
E
Tω (Og̃E).

By (4.1) and (5.6), these objects satisfy

F(MR(ω, s)) ∼=MF(ω, s).

Our interest in the objects ME(ω, s) comes from the following result, which is
proved in [MR, Corollary 4.2].

Proposition 5.6. For any sequence s of simple reflections and ω ∈ Ω, the ob-

ject Li∗
(
MF(ω, s)

)
is in EG×Gm(Ñ )F, and is tilting. Moreover, any indecompos-

able object of Tilt(EG×Gm(Ñ )F) is a direct summand in an object of the form
Li∗
(
MF(ω, s)

)
〈n〉 with (ω, s) as before and n ∈ Z. �

The properties of Hom-spaces between objects of the form ME(s, ω) are sum-
marized in the following proposition.

Proposition 5.7. For any sequences s and t of simple reflections, for ω, ω′ ∈ Ω,
and for k ∈ Z, we have

HomDG(g̃)E(ME(ω, s),ME(ω′, t)[k]) = 0

and HomDG(Ñ )E
(Li∗(ME(ω, s)), Li∗(ME(ω′, t))[k]) = 0

unless k = 0. Moreover, the graded O(t∗E)-module

HomDG(g̃)E(ME(ω, s),ME(ω′, t))

is graded free, and the functor Li∗ induces an isomorphism

E⊗O(t∗E) HomDG(g̃)E(ME(ω, s),ME(ω′, t))
∼−→ HomDG(Ñ )E

(Li∗(ME(ω, s)), Li∗(ME(ω′, t))).

Finally, the functor F(−) induces isomorphisms of graded F-vector spaces

F⊗R HomDG(g̃)R(MR(ω, s),MR(ω′, t))
∼−→ HomDG(g̃)F(MF(ω, s),MF(ω′, t))

and

F⊗R HomDG(Ñ )R
(Li∗(MR(ω, s)), Li∗(MR(ω′, t)))

∼−→ HomDG(Ñ )F
(Li∗(MF(ω, s)), Li∗(MF(ω′, t))).
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Proof. By [MR, Lemma 4.1], the objects of the formME(ω, s) belong to the subcat-
egory of DG×Gm(g̃)E generated under extensions by the objects ∇λg̃,E〈m〉 for λ ∈ X

and m ∈ Z, and also to the subcategory generated under extensions by the objects
∆λ

g̃,E〈m〉 for λ ∈ X and m ∈ Z. (In [MR] only the case E = F is considered, but the

same proof applies in the case E = R; in fact this proof relies on the existence of the
exact sequences (4.2).) Then the claims follow from Propositions 5.4 and 5.5. �

5.5. Graded ranks of Hom-spaces. Recall the Haff -module Msph of §2.5. If F is

an object of EG×Gm(Ñ )F which admits a standard filtration, we define

ch∆(F) :=
∑
λ∈X
n∈Z

(F : ∆λ
Ñ 〈n〉) · v

n ·mλ ∈Msph.

Similarly, if G is an object of EG×Gm(Ñ )F which admits a costandard filtration, we
define

ch∇(G) :=
∑
λ∈X
n∈Z

(G : ∇λÑ 〈n〉) · v
−n ·mλ ∈Msph.

One can easily check that for F ,G tilting objects in EG×Gm(Ñ )F we have

(5.7) grkF
(
HomDG(Ñ )F

(F ,G)
)

= 〈ch∆(F), ch∇(G)〉.

Proposition 5.8. For any sequence s of simple reflections and any ω ∈ Ω we have

ch∆(Li∗MF(ω, s)) = ch∇(Li∗MF(ω, s)) = m(ω, s).

Proof. We only consider the case of ch∆; the case of ch∇ is similar. For any w ∈Waff

we set

∆w
Ñ ,F := J(Tw−1 )−1(OÑF

), ∆w
g̃,F := I(Tw−1 )−1(Og̃F)

and mw := m0 · Tw ∈ Msph. Then ∆w
Ñ ,F is a standard object in EG×Gm(Ñ )F, and

we have

ch∆(∆w
Ñ ,F) = mw.

Indeed, the formula holds by definition if w is minimal in Ww. For a general
w ∈Waff , write w = uv with u ∈W and v minimal in Ww. Then Tw−1 = Tv−1Tu−1 ,
so that we have

∆w
Ñ ,F = J(Tw−1 )−1(OÑF

) = J(Tu−1 )−1·(Tv−1 )−1(OÑF
)

= J(Tv−1 )−1 ◦ J(Tu−1 )−1(OÑF
) = J(Tv−1 )−1(OÑF

)〈`(u)〉

(see Remark 5.1), so that

ch∆(∆w
Ñ ,F) = v`(u) ch∆(∆v

Ñ ,F) = v`(u)mv = mw.

Using this fact and the proof of [MR, Lemma 4.1], one can check that for all w ∈
Waff and all simple reflections s, the object Li∗(ΞF

s(∆
w
g̃,F)) belongs to EG×Gm(Ñ )F

and admits a standard filtration, and that moreover we have

ch∆

(
Li∗(ΞF

s(∆
w
g̃,F))

)
= mw · (Ts + v−1) = ch∆

(
Li∗(∆w

g̃,F)
)
· (Ts + v−1).

Then one deduces that for any object F in the subcategory of DG×Gm(g̃)F generated
under extensions by the objects ∆λ

g̃,F〈n〉 (λ ∈ X, n ∈ Z), the object Li∗(ΞF
s(F))
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belongs to EG×Gm(Ñ )F and admits a standard filtration, and that moreover we
have

ch∆

(
Li∗(ΞF

s(F))
)

= ch∆(Li∗(F)) · (Ts + v−1).

Since, for ω ∈ Ω, we have

ch∆

(
Li∗(IFTω (Og̃F))

)
= ch∆

(
JF(Tω−1 )−1(OÑF

)
)

= ch∆(∆ω
Ñ ,F) = mω = m0 · Tω,

the formula follows. �

Proposition 5.9. Let s, t be sequences of simple reflections, and let ω, ω′ ∈ Ω.
Then the graded O(t∗R)-module

HomDG(g̃)R(MR(ω, s),MR(ω′, t))

is graded free, of graded rank 〈m(ω, s),m(ω′, t)〉.

Proof. The first assertion follows from Proposition 5.7. For the second assertion,
we observe that, by Proposition 5.7 again, the graded rank under consideration is
equal to the graded dimension of the graded F-vector space

HomDG(Ñ )F

(
Li∗(MF(ω, s)), Li∗(MR(ω′, t))

)
(where F is any geometric point of R). Then the formula follows from (5.7) and
Proposition 5.8. �

5.6. “Coherent” Bott–Samelson category. We define a “coherent” category of
Bott–Samelson objects BScoh as follows. The objects in this category are the triples
(ω, s, n) as in §3.6. The morphisms are given by

HomBScoh

(
(ω, s, n), (ω′, t,m)

)
= HomDG×Gm (g̃)R(MR(ω, s)〈−n〉,MR(ω′, t)〈−m〉).

Proposition 5.10. The category Tilt(EG×G(Ñ )F) can be recovered from the cate-

gory BScoh, in the sense that it is equivalent to the Karoubian closure of the additive
envelope of the category which has the same objects as BScoh, and morphisms from
(ω, s, n) to (ω′, t,m) which are given by the (m − n)-th piece of the graded vector
space

F⊗O(t∗R)

(⊕
k∈Z

HomBScoh

(
(ω, s, 0), (ω′, t, k)

))
.

Proof. Consider the category which has the same objects as BScoh, and whose
morphisms are defined as in the statement of the proposition. By Proposition 5.7,

this category is equivalent to the full subcategory A of DG×Gm(Ñ )F whose objects
are of the form Li∗(MF(ω, s)). It follows from Proposition 5.6 that the category

Tilt(EG×Gm(Ñ )F) is equivalent to the Karoubian closure of the additive envelope
of A; the claim follows. �

5.7. Kostant–Whittaker reduction and Bott–Samelson objects. Let us con-
sider the constructions of §§3.3–3.4, with X now defined as X∗(TR). Then the space
t∗ of Section 3 coincides with the space denoted t∗R in the present section, and we

can define the algebra C and the category BSalg of “Bott–Samelson” C-modules
with the present data. We use the same notation as in §3.4 for the modules Ew and
Ds.
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Lemma 5.11. There exists a natural W -equivariant isomorphism of graded alge-
bras

C
∼−→ O

(
t∗ ×t∗/W T(t∗/W )

)
R
.

Proof. By definition, the algebra C is generated by O(t∗R) and the images of the
elements of the form ~−1(f ⊗ 1− 1⊗ f) ∈ C~ for f ∈ O(t∗R)W . On the other hand,
the algebra O

(
t∗ ×t∗/W T(t∗/W )

)
R

is the symmetric algebra (over O(t∗R)) of the
module (

O(t∗)⊗O(t∗)W Ω(t∗/W )
)
R
.

(Note that this module is free of finite rank since t∗R/W is an affine space, see
Lemma 3.1.) One can easily check that the assignment

~−1(f ⊗ 1− 1⊗ f) 7→ d(f)

induces a morphism of graded O(t∗R)-algebras C → O
(
t∗ ×t∗/W T(t∗/W )

)
R

, and
that this morphism is a W -equivariant isomorphism. �

From now on we identify the two algebras in Lemma 5.11 via the isomorphism
constructed in its proof. Then one can consider the functor κR of §4.5 as a functor
taking values in Db Modgr(C).

Proposition 5.12. For any sequence s of simple reflections, any ω ∈ Ω, and any
n ∈ Z, there exists an isomorphism

κR
(
MR(ω, s)〈n〉

) ∼= D(ω, s)〈n〉 in Db Modgr(C).

Before proving the proposition we begin with a lemma.

Lemma 5.13. Let s be a finite simple reflection. Let F be an object of DG×Gm(g̃)R
such that κR(F) is concentrated in degree 0, and R-free. Then κR ◦ ΞR

s (F) is
concentrated in degree 0 and R-free, and moreover there exists an isomorphism of
graded C-modules

κR ◦ ΞR
s (F) ∼= κR(F)⊗O(t∗R) Ds.

Proof. The proof is very similar to the proof of the case b = Ts of Proposi-
tion 4.10(2). In fact, using the same notation as in this proof, by Lemma 4.13
and the base change theorem (and using also (3.6)) we have a canonical isomor-
phism of functors

(5.8) κ′E ◦ ΞE
s (−) ∼= κ′E(−)⊗O(t∗E) (E⊗R Ds)

for E = R or F. (Note that Ds is free over O(t∗R) – see the proof of Lemma 4.13(2)
– so that the tensor product on the right-hand side makes sense in the derived
category.)

When E = F, using the fact that ΞF
s
∼= L(π̃s)

∗◦R(π̃s)∗ (see [R1, Proposition 5.2.2])
and the remarks at the end of §4.4, one can check that this isomorphism is induced
by an isomorphism of functors

κF ◦ ΞF
s(−) ∼= κF(−)⊗O(t∗F ) (F⊗R Ds)

(where the tensor product on the right-hand side is defined a similar way as in the
case of R). Then we can come back to the case E = R: if κR(F) is concentrated
in degree 0 and R-free, (5.8) shows that the same holds for κR ◦ ΞR

s (F). And the
final claim follows from the case E = C treated above. �
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Proof of Proposition 5.12. We remark that the statement of Lemma 5.13 also holds
when s is an affine simple reflection, by definition of Ξs in this case and Proposi-
tion 4.10(2) (see also (4.8)). This observation reduces the proof of Proposition 5.12
to the proof that

κR(IRTω (Og̃R
)) ∼= Eω

when ω ∈ Ω. However by Proposition 4.10 (see also (4.8) and (4.9)) we have

κR(IRTω (Og̃R
)) ∼= ′KR

ω (Ot∗R
),

where t∗R is identified with the zero section in t∗ ×t∗/W T(t∗/W )R. Now writing
ω = vtλ (with v ∈W and λ ∈ X) we have

′KR
ω (Ot∗R

) ∼= ′KR
tλ
◦ ′KR

v (Ot∗R
) ∼= ′KR

tλ
(Ot∗R

) ∼= FR
λ .

Similarly we have Eω ∼= Etλ , and one can check that FR
λ and Etλ are isomorphic

under our identification C ∼= O
(
t∗ ×t∗/W T(t∗/W )

)
R

. �

5.8. Equivalence. Let us fix isomorphisms as in Proposition 5.12, for all s and ω.
Then the functor κR induces a functor

κBS : BScoh → BSalg.

The main result of this section is the following.

Theorem 5.14. The functor κBS is an equivalence of categories.

Before proving the theorem we first establish a lemma. In this statement, we

identify quasi-coherent sheaves on S̃R with O(S̃R)-modules, and denote by Rep(ĨRS )

the abelian category of representations of the commutative O(S̃R)-Lie algebra ĨRS .

Lemma 5.15. The natural functor

Rep(̃IRS )→ Rep(ĨRS )

defined by differentiating the action is fully faithful on representations which are

free over O(S̃R).

Proof. The group scheme ĨRS is smooth over S̃R (see §4.4), hence it is infinitesimally

flat as an O(S̃R)-group scheme (in the sense of [J1, §I.7.4]) by [SGA6, Exposé VII,

Proposition 1.10]. This group scheme is also integral, since it is flat over S̃R and its

pullback to S̃C∩g̃rs
C is irreducible. (In fact, it can be deduced from [R3, Lemma 2.3.3]

that the restriction of ĨC to g̃rs
C identifies with T × g̃rs

C .) Using [J1, Lemma I.7.16]

we deduce that, if we denote by Dist(̃IRS ) the distribution algebra of this group
scheme, the natural functor

Rep(̃IRS )→ Mod
(
Dist(̃IRS )

)
is fully faithful on representations which are projective over O(S̃R).

Now, consider the natural algebra morphism

UO(S̃R)(Ĩ
R
S )→ Dist(̃IRS ),

where the left-hand side is the universal enveloping algebra of ĨRS , see [J1, §I.7.10].

If K denotes the fraction field of O(S̃R), we claim that this morphism induces an
isomorphism

(5.9) K⊗O(S̃R) UO(S̃R)(Ĩ
R
S )

∼−→ K⊗O(S̃R) Dist(̃IRS ).
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Indeed, the left-hand side is isomorphic to UK(K ⊗O(S̃R) Ĩ
R
S ) and, if we set ĨK :=

Spec(K)×S̃R ĨRS , by [R3, Lemma 2.1.1] and [J1, §I.7.4, Equation (1)] respectively,
there are natural isomorphisms

K⊗O(S̃R) Ĩ
R
S
∼= Lie(̃IK), K⊗O(S̃R) Dist(̃IRS ) ∼= Dist(̃IK),

so that (5.9) gets identified with the natural morphism

UK(Lie(̃IK))→ Dist(̃IK).

Since K is a field of characteristic zero, the latter morphism is an isomorphism
by [J1, §I.7.10, Equation (1)], which finishes the proof of our claim.

Now that the claim is established, the lemma follows from Lemma 1.10. �

Proof of Theorem 5.14. By definition, κBS is essentially surjective. Hence what we
have to prove is that for any sequences s, t of simple reflections and any ω, ω′ ∈ Ω,
the morphism

HomDG(g̃)R(MR(ω, s),MR(ω′, t))→ HomC(D(ω, s), D(ω′, t))

induced by κR (via the isomorphisms of Proposition 5.12) is an isomorphism. By
Corollary 3.23 and Proposition 5.9, both sides are graded free over O(t∗R), of the
same graded rank. Hence, using Lemma 2.9, to finish the proof it suffices to prove
that the image of our morphism under the functor O(t∗,rsF ) ⊗O(t∗R) (−) is injective

for any geometric point F of R. Then, using the definition of κR (see §4.5) and
Lemma 5.15, it suffices to prove that the morphism

O(t∗rs,F)⊗O(t∗R) HomDG(g̃)R(MR(ω, s),MR(ω′, t))

→ O(t∗,rsF )⊗O(t∗R) HomRep(̃IRS )(MR(ω, s)|S̃R ,MR(ω′, t)|S̃R)

induced by restriction to S̃R is injective. And finally, to prove this injectivity it
suffices to prove that the natural morphism

O(t∗,rsF )⊗O(t∗R) HomDG(g̃)R(MR(ω, s),MR(ω′, t))

→ HomCoh(S̃rs
F )(MF(ω, s)|S̃rs

F
,MF(ω′, t)|S̃rs

F
)

is injective.
Consider the following chain of isomorphisms:

O(t∗,rsF )⊗O(t∗R) HomDG(g̃)R(MR(ω, s),MR(ω′, t))

∼= O(t∗,rsF )⊗O(t∗F )

(
F⊗R HomDG(g̃)R(MR(ω, s),MR(ω′, t))

)
∼= O(t∗,rsF )⊗O(t∗F )

(
HomDG(g̃)F(MF(ω, s),MF(ω′, t))

)
∼= HomCohG(g̃rs)F(MF(ω, s)|g̃rs

F
,MF(ω′, t)|g̃rs

F
).

Here the second isomorphism follows from Proposition 5.7, and the other ones are
easy. (Observe that, on the last line, the objectsMF(ω, s)|g̃rs

F
andMF(ω′, t)|g̃rs

F
are

concentrated in degree 0, i.e. equivariant coherent sheaves.) Using these identifica-
tions, the morphism under consideration is the morphism

HomCohGF (g̃rs
F )

(
MF(ω, s)|g̃rs

F
,MF(ω′, t)|g̃rs

F

)
→ HomCoh(S̃rs)F

(
MF(ω, s)|S̃rs

F
,MF(ω′, t)|S̃rs

F

)
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induced by restriction to S̃rs
F . Then injectivity follows from the observation that

the functor CohG(g̃rs)F → Coh(S̃rs)F is faithful, since it can be written as the
composition

CohG(g̃rs)F → CohG(G× S̃rs)F
∼−→ Coh(S̃rs)F

where the first functor is the inverse image under the natural morphism ars : GF ×
S̃rs
F → g̃rs

F (which is faithful since ars is smooth and surjective, see Lemma 4.2), and
the second functor is the natural equivalence. �

6. Proofs of the main results

In this section (except in §6.5) we come back to the assumptions of §1.1: G is
a product of simply-connected quasi-simple groups and general linear groups over
F, and the characteristic p of F is very good for each quasi-simple factor of G.
Such a group can be obtained by base change to F from a split connected reductive
group scheme GZ over Z, and we set GR = Spec(R) ×Spec(Z) GZ, where R is the
localization of Z at all the prime numbers which are not very good for a quasi-
simple factor of G. These data satisfy the assumptions of Sections 4–5, and we use
the same notation as in these sections. (The only exception is that we drop the
subscripts “F,” since the geometric point will not vary anymore.)

We let also Ǧ be the complex Langlands dual group. This group and R satisfy
the assumptions of Section 3, and we also use the notation of this section. (Note
a slight conflict of notation: t denotes X̌ ⊗Z R in Section 3, while in the present
section it will denote X̌ ⊗Z F.) We assume that the roots of B̌ with respect to Ť
are the coroots of B with respect to T.

6.1. Proof of Theorem 1.1. Combining Theorem 3.14 and Theorem 5.14 we
obtain an equivalence of categories

(6.1) BStop ∼−→ BScoh

which is the identity morphism on objects. Then using Proposition 3.9 and Propo-
sition 5.10 we deduce the desired equivalence of additive categories

Θ: Parity(Ǐ)(Gr,F)
∼−→ Tilt(EG×Gm(Ñ )).

By construction, this equivalence satisfies

(6.2) Θ
(
EF(ω, s)

) ∼= Li∗MF(ω, s)

for any sequence s of simple reflections and any ω ∈ Ω, and Θ ◦ [1] ∼= 〈−1〉 ◦Θ. It
also satisfies property (3), by (6.2) and a standard argument based on induction on
`(wλ) (see in particular Remark 3.10 and [MR, Remark 4.3]).

Finally we prove property (2). In fact, this property can be expressed as the
following equalities for any E in Parity(Ǐ)(Gr,F):

(6.3) ch∗Gr(E) = ch∆(Θ(E)); ch!
Gr(E) = ch∇(Θ(E)).

However these formulas hold when E = EF(ω, s) by Proposition 3.22, Proposi-
tion 5.8, and (6.2). And one can easily check that if they hold for E then they hold
for E [1]. Using these observations one can prove, by standard arguments, that the
formulas (6.3) hold when E = Eλ[i] for some λ ∈ X and i ∈ Z, by induction on
`(wλ). The general case follows.
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6.2. Proof of Theorem 1.2. We construct the equivalence Φ as the composition

Dmix
(Ǐ)

(Gr,F) := Kb Parity(Ǐ)(Gr,F)
Kb(Θ)−−−−→
∼

Kb Tilt(EG×Gm(Ñ ))
∼−→ DG×Gm(Ñ ),

where the last equivalence is provided by [MR, Proposition 3.11]. Then it follows
from this construction and the properties of Θ proved in Theorem 1.1 that we have

Φ ◦ 〈1〉 ∼= 〈1〉[1] ◦ Φ and Φ(Emix
λ ) ∼= T −λ.

It remains to prove that

Φ(∆mix
−λ ) ∼= ∆λ

Ñ and Φ(∇mix
−λ ) ∼= ∇λÑ

for any λ ∈ X. We explain the proof of the first isomorphism; the proof of the
second one is similar.

Our proof is similar to the proof of a similar claim in [AR2, Lemma 5.2]. Namely,
we prove the isomorphism by induction on `(wλ). If `(wλ) = 0, then we have
∆mix
−λ
∼= Emix
−λ and ∆λ

Ñ
∼= T λ, hence our claim is clear. For a general λ, we consider

a non-zero morphism ∆λ
Ñ
→ T λ (which is unique up to an invertible scalar), and

the associated triangle

(6.4) ∆λ
Ñ → T

λ → N
[1]−→ .

Then N belongs to the triangulated subcategory of DG×Gm(Ñ ) generated by the

objects ∆µ

Ñ
〈m〉 with m ∈ Z and µ ∈ X which satisfies Gr−µ ⊂ Gr−λ and µ 6= λ

(see Theorem 1.1(2)–(3)). In particular, using induction we deduce that Φ−1(N) is

supported on Gr−λ r Gr−λ.
Using again induction we also observe that

HomDmix
(Ǐ)

(Gr,F)(Φ
−1(∆λ

Ñ ),∆mix
−µ 〈m〉[n]) = 0

for all n,m ∈ Z and µ ∈ X such that Gr−µ ⊂ Gr−λ and µ 6= λ. Hence the triangle

Φ−1(∆λ
Ñ )→ Emix

−λ → Φ−1(N)
[1]−→

obtained from (6.4) satisfies the two properties which characterize uniquely the
triangle whose first arrow is the unique (up to scalar) non-zero morphism ∆mix

−λ →
Emix
−λ . In particular, we deduce the wished-for isomorphism Φ−1(∆λ

Ñ
) ∼= ∆mix

−λ .

Remark 6.1. The equivalenceKb Tilt(EG×Gm(Ñ ))
∼−→ DG×Gm(Ñ ) used in the proof

of Theorem 1.2 is the composition

(6.5) Kb Tilt(EG×Gm(Ñ )) ↪→ KbEG×Gm(Ñ )
real−−→ DG×Gm(Ñ )

where real is the functor constructed in [BBD, Lemme 3.1.11]. On the other hand

it follows from [MR, Corollary 4.16] that the objects in Tilt(EG×Gm(Ñ )) are con-
centrated in degree 0, so that one can also construct such an equivalence as the
composition

(6.6) Kb Tilt(EG×Gm(Ñ )) ↪→ Kb CohG×Gm(Ñ )
can−−→ DG×Gm(Ñ ),

where can is the canonical functor. We claim that (6.5) and (6.6) are isomor-
phic. Indeed, it is clear that can coincides with the realization functor from [BBD,

Lemme 3.3.11] associated with the tautological t-structure on DG×Gm(Ñ ). Then
the claim follows from the observation that if C and C ′ are the hearts of two
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bounded t-structures on DbA for some abelian category A , then the following
diagram commutes up to isomorphism:

Kb(C ∩ C ′) �
� //

� _

��

KbC

real
��

KbC ′
real′ // DbA .

6.3. Proof of Theorem 1.4. Before considering the proof of Theorem 1.4, we
need some preliminary results.

First, recall that we use the same notation for the indecomposable objects in
ParityǏ(Gr,F) and in Parity(Ǐ)(Gr,F), see §3.2. We define the additive subcategory

Tilt of DG×Gm(g̃) as the Karoubian closure of the additive envelope of the subcat-
egory generated by the objects MF(ω, s) for s a sequence of simple reflections and
ω ∈ Ω. Using (6.1) it is not difficult to construct an equivalence of categories

(6.7) ParityǏ(Gr,F)
∼−→ Tilt

sending EF(ω, s)[n] to MF(ω, s)〈−n〉.
This equivalence shows that the category Tilt is Krull–Schmidt, and that one can

transfer the known classification of indecomposable objects in ParityǏ(Gr,F) proved
in [JMW] to deduce a classification of the indecomposable objects in Tilt. Namely,
for any λ ∈ X, if wλ = ωs1 · · · sr is a reduced decomposition, then there exists a

unique indecomposable factor T̃ λ ofMF(ω, (s1, · · · , sr)) which is not isomorphic to
any object of the form MF(ω′, t)〈m〉 where m ∈ Z, ω′ ∈ Ω, and t is a sequence of
simple reflections of length at most r−1. This object does not depend on the choice
of the reduced decomposition up to isomorphism. Moreover, any indecomposable

object in Tilt is isomorphic to some T̃ λ〈m〉 for some λ ∈ X and m ∈ Z. Finally,

the image of E−λ under (6.7) is T̃ λ.

The following lemma implies that the objects T̃ λ are“deformations”of the tilting
exotic sheaves T λ.

Lemma 6.2. For any λ ∈ X we have Li∗(T̃ λ) ∼= T λ.

Proof. The result easily follows if we can prove that Li∗(T̃ λ) is indecomposable.

However, since T̃ λ is a direct summand in an object of the form MF(ω, s), it
follows from Proposition 5.7 that the functor Li∗ induces an isomorphism

F⊗O(t∗) EndDG(g̃)(T̃ λ)
∼−→ EndDG(Ñ )

(
Li∗(T̃ λ)

)
.

Then the proof proceeds as for Lemma 2.4. �

Lemma 6.3. The subcategory Tilt generates DG×Gm(g̃) as a triangulated category.

Proof. Looking at the proof of [MR, Corollary 4.2], one can check that the trian-
gulated subcategory generated by Tilt coincides with the triangulated subcategory
generated by the objects ∆λ

g̃〈m〉 for λ ∈ X and m ∈ Z. By [BR2, Lemma 1.11.3(2)],

for w ∈W we have ITw(Og̃) ∼= Og̃〈−`(w)〉. We deduce (as in Remark 5.1) that we
have

∆λ
g̃
∼= I(Tt−λ )−1(Og̃)〈−`(tλ) + `(wλ)〉.

Then, using [MR, Lemma 2.3] and [BR2, Lemma 1.11.3], one can check that the
triangulated subcategory generated by the object ∆λ

g̃〈m〉 coincides with the trian-

gulated subcategory generated by the objects Og̃(λ)〈m〉 for λ ∈ X and m ∈ Z.
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Hence the claim of the lemma is equivalent to the claim that DG×Gm(g̃) is gener-
ated by this collection of objects, which can be proved by the same arguments as

the corresponding claim for Ñ in [A1, Corollary 5.8]. �

Lemma 6.4. There exists an equivalence of triangulated categories

KbTilt
∼−→ DG×Gm(g̃)

commuting with 〈1〉 and sending T̃ λ to T̃ λ for any λ ∈ X.

Proof. It follows from [MR, Corollary 4.16] that the complexes T λ are concentrated
in degree 0. Using Lemma 6.2 and Lemma 2.8(2) (over an affine open covering of g̃)

we deduce that the complexes T̃ λ are also concentrated in degree 0. We construct
the functor of the lemma as the composition

KbTilt→ Kb CohG×Gm(g̃)→ DG×Gm(g̃).

It follows from standard arguments, using Proposition 5.7 and Lemma 6.3, that
this functor is an equivalence of categories. �

Proof of Theorem 1.4. We define Ψ as the composition

Dmix
Ǐ

(Gr,F) := Kb ParityǏ(Gr,F)
(6.7)−−−→
∼

KbTilt
Lemma 6.4−−−−−−−→

∼
DG×Gm(g̃).

By construction, this equivalence satisfies Ψ ◦ 〈1〉 ∼= 〈1〉[1] ◦ Ψ and Ψ(Emix
−λ ) ∼= T̃ λ.

The isomorphisms involving standard and costandard objects can be proved using
the same arguments as for their counterparts in Theorem 1.2. �

6.4. Compatibility. In this subsection we prove that the functors Φ and Ψ as
constructed in §§6.2–6.3 are compatible in the natural way. We will denote by
For: Dmix

Ǐ
(Gr,F) → Dmix

(Ǐ)
(Gr,F) the “forgetful functor” induced by the forgetful

functor ParityǏ(Gr,F)→ Parity(Ǐ)(Gr,F).

Proposition 6.5. The following diagram commutes up to isomorphisms of func-
tors:

Dmix
Ǐ

(Gr,F)
Ψ
∼

//

For
��

DG×Gm(g̃)

Li∗

��
Dmix

(Ǐ)
(Gr,F)

Φ
∼

// DG×Gm(Ñ ).

Proof. It is clear from construction that the diagram

ParityǏ(Gr,F) ∼
(6.7) //

For
��

Tilt

Li∗

��
Parity(Ǐ)(Gr,F) ∼

(1.1) // Tilt(EG×Gm(Ñ ))

commutes. Hence to conclude we only have to prove that the diagram

KbTilt
∼ //

Kb(Li∗)
��

DG×Gm(g̃)

Li∗

��
Kb Tilt(EG×Gm(Ñ ))

∼ // DG×Gm(g̃)
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commutes, where the horizontal arrows are the functors considered in §6.3 and §6.2
respectively. The latter fact follows from Remark 6.1 and the fact that the objects
in Tilt, considered as equivariant coherent sheaves, are acyclic for the functor i∗

(see Lemma 2.8(2)). �

6.5. Proof of Corollary 1.6. We begin with an easy lemma. Let k be a field,
and X =

⊔
s∈S Xs be an algebraic variety endowed with an algebraic stratification,

where Xs is simply connected for any s ∈ S . We denote by DX the Grothendieck–
Verdier duality functor.

Lemma 6.6. Let F be an object in Db
S (X,k) which satisfies DX(F) ∼= F and

Hom(F ,F [n]) = 0 for any n ∈ Z<−1. Then F is perverse.

Proof. Assume that F is not perverse, and let N = max{n ∈ Z>0 | pHn(F) 6= 0}.
Then since DX(F) ∼= F , N is also the largest integer such that pH−N (F) 6= 0, and
we have H−N (F) ∼= DX(HN (F)). In particular, we deduce that top(HN (F)) ∼=
DX(soc(H−N (F))). Under our assumptions each simple S -constructible perverse
sheaf on X is stable under DX , hence we deduce that there exists an isomor-
phism top(HN (F)) ∼= soc(H−N (F)); in particular there exists a non-zero morphism
φ : HN (F)→ H−N (F). Now consider the following morphism (where the first and
third morphisms come from the appropriate perverse truncation triangles):

ψ : F → HN (F)[−N ]
φ[−N ]−−−−→ H−N (F)[−N ]→ F [−2N ].

Then pHN (ψ) 6= 0, hence ψ is a non zero element in Hom(F ,F [−2N ]), contradicting
our assumption. �

Proof of Corollary 1.6. By standard reductions (see e.g. [JMW2, Lemma 3.6]) one
can assume that G is a product of simply connected quasi-simple groups not of type
A and general linear groups. Then G and F satisfy the assumptions of Theorem 1.1.

Using Lemma 6.6, to prove our claim it suffices to prove that for λ ∈ −X+ and
n < −1 we have

HomParity(Ǐ)(Gr,F)(Eλ, Eλ[n]) = 0.

However we have Θ(Eλ) ∼= T −λ by Theorem 1.1(3), hence Θ(Eλ) ∼= T(−λ) ⊗ OÑ
by [MR, Corollary 4.8]. We deduce that

HomParity(Ǐ)(Gr,F)(Eλ, Eλ[n]) ∼= HomDG×Gm (Ñ )(T(−λ)⊗OÑ ,T(−λ)⊗OÑ 〈−n〉).

Now by [MR, Proposition A.6] the right-hand side is isomorphic to

H0
(
InvG ◦ InvGm(T(−λ)∗ ⊗ T(−λ)⊗RΓ(Ñ ,OÑ )〈−n〉)

)
∼= H0

(
InvG

(
T(−λ)∗ ⊗ T(−λ)⊗ InvGm(RΓ(Ñ ,OÑ )〈−n〉)

))
.

Now, using the same arguments as in [BR2, Lemma 1.4.2] one can check that

InvGm(RΓ(Ñ ,OÑ )〈−n〉) = 0

unless n ∈ 2Z≥0. The claim follows. �
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6.6. Proof of Proposition 1.8. By [MR, Corollary 4.8], for any λ ∈ X+ we have
T λ ∼= T(λ)⊗OÑ , hence Θ(E−λ) ∼= T(λ)⊗OÑ . Now we observe that, by the same

arguments as in the proof of Corollary 1.6 and since InvGm
(
RΓ(Ñ ,OÑ )

)
= F, the

functor

Tilt(G)→ DG×Gm(Ñ ) : V 7→ V ⊗OÑ
is fully faithful. Hence Θ induces an equivalence

(6.8) PParity(Ǧ(O))(Gr)
∼−→ Tilt(G)

sending Eλ = Ew0λ to T(−w0λ) for all λ ∈ X+.
Now by [MV, Proposition 2.1] the categories of Ǧ(O)-constructible and Ǧ(O)-

equivariant perverse sheaves on Gr are canonically equivalent. Using this property
and the antiautomorphism of Ǧ(K ) defined by g 7→ g−1, one can construct an
autoequivalence of PParity(Ǧ(O))(Gr) sending Eλ to E−w0λ. Composing this equiv-

alence with (6.8) provides the equivalence SF.
Formula (1.2) follows from the following chain of equalities for λ, µ ∈ X+:∑

k∈Z
dim

(
Hk−dim(Grµ)(ı∗µEλ)

)
· vk =

∑
k∈Z

dim
(
Hk−dim(Grw0µ

)(Grw0µ, i
∗
w0µEw0λ)

)
· vk

=
∑
k∈Z

(T −w0λ : ∆−w0µ

Ñ
〈k〉) · vk

=
∑
ν∈X+

(T(−w0λ) : M(ν)) · M−w0µ
ν (v−2)

=
∑
ν∈X+

(
T(λ) : N(−w0ν)

)
· M−w0µ

ν (v−2).

Here the second equality follows from Theorem 1.1(2), the third one follows from the
formula for ch∆(T(−w0λ)⊗OÑ ) provided by [MR, Proposition 4.6], and the last one
from the fact that (T(−w0λ) : N(ν)) = (T(λ) : M(−w0ν)) (since T(λ)∗ ∼= T(−w0λ)).

6.7. Proof of Proposition 1.9. Before giving the proof of the proposition, we

start with a lemma describing the objects T̃ λ introduced in §6.3 in the case λ ∈ X+.

Lemma 6.7. For λ ∈ X+, we have T̃ λ ∼= T (λ)⊗Og̃ in DG×Gm(g̃).

Proof. Recall that, by [MR, Corollary 4.8], we have T λ ∼= T(λ) ⊗ OÑ . Using this
fact, the isomorphisms

Li∗(T̃ λ) ∼= T λ, Li∗(T(λ)⊗Og̃) ∼= T(λ)⊗OÑ
(see Lemma 6.2), and the same arguments as in the proof of Proposition 5.5, one can

check that the graded O(t∗)-modules HomDG(g̃)(T̃ λ,T(λ)⊗Og̃), HomDG(g̃)(T(λ)⊗
Og̃, T̃ λ), EndDG(g̃)(T̃ λ) and EndDG(g̃)(T(λ)⊗Og̃) are free, and that the morphisms

F⊗O(t∗) HomDG(g̃)(T̃ λ,T(λ)⊗Og̃)→ HomDG(Ñ )(T
λ,T(λ)⊗OÑ ),

F⊗O(t∗) HomDG(g̃)(T(λ)⊗Og̃, T̃ λ)→ HomDG(Ñ )(T(λ)⊗OÑ , T
λ),

F⊗O(t∗) EndDG(g̃)(T̃ λ)→ EndDG(Ñ )(T
λ),

F⊗O(t∗) EndDG(g̃)(T(λ)⊗Og̃)→ EndDG(Ñ )(T(λ)⊗OÑ )
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induced by Li∗ are isomorphisms. Since EndDG(Ñ )(T(λ)⊗OÑ ) ∼= EndDG(Ñ )(T
λ)

is concentrated in non-negative degrees (see the proof of Corollary 1.6), we deduce
that the morphisms

EndDG×Gm (g̃)(T̃ λ)→ EndDG×Gm (Ñ )(T
λ),

EndDG×Gm (g̃)(T(λ)⊗Og̃)→ EndDG×Gm (Ñ )(T(λ)⊗OÑ )

induced by Li∗ are isomorphisms.
Choose a pair of inverse isomorphisms f : T λ ∼−→ T(λ)⊗OÑ and g : T(λ)⊗OÑ

∼−→
T λ in DG×Gm(Ñ ). Then by the preceding observations there exist morphisms

f ′ : T̃ λ → T(λ)⊗Og̃ and g′ : T(λ)⊗Og̃ → T̃ λ in DG×Gm(g̃) such that Li∗(f ′) = f ,
Li∗(g′) = g. And these observations also show that the fact that g ◦ f = id,
resp. f ◦ g = id, implies that g′ ◦ f ′ = id, resp. f ′ ◦ g′ = id. �

Proof of Proposition 1.9. First we prove (1). It follows from the construction of our
equivalence (6.7) that the following diagram commutes:

ParityǏ(Gr,F) ∼
(6.7) //

H•
Ǐ
(Gr,−) **TTT

TTTT
TTT

Tilt

κvvmmm
mmm

mmm

Modgr(O(t∗)).

(In both downward arrows, we omit the forgetful functor from graded C-modules
to graded O(t∗)-modules.) It is clear that κ(T(λ) ⊗Og̃) ∼= T(λ) ⊗O(t∗), with the
grading indicated in the statement of the proposition. On the other hand, we have

H•
Ǐ
(Gr, Eλ) ∼= H•

Ǐ
(pt;F)⊗H•

Ǧ(O)
(pt;F) H•Ǧ(O)

(Gr, Eλ)

∼= H•
Ǐ
(pt;F)⊗H•

Ǧ(O)
(pt;F) H•Ǧ(O)

(Gr, E−w0λ) ∼= H•
Ǐ
(Gr, E−λ).

(Here we use the autoequivalence considered in §6.6 and the fact that the two natu-
ral morphisms H•

Ǧ(O)
(pt;F)→ H•

Ǧ(O)
(Gr;F) coincide, see the proof of Lemma 3.6.)

These observations prove the second isomorphism in (1). The first one follows,
using Lemma 2.2(1).

Now we prove the first isomorphism in (2). By adjunction, for m ∈ Z we have

Homm
Dmix

(Ǐ)
(Gr,F)(∆

mix
−µ , Emix

−λ 〈−m〉)

∼= HomDmix
(Ǐ)

(Gr−µ,F)(FGr−µ
{dim(Gr−µ)}, (i−µ)!Emix

−λ {m}).

(Here, as in [AR2], {1} = 〈−1〉[1] is the autoequivalence of the triangulated cate-
gory Dmix

(Ǐ)
(Gr−µ,F) = Kb Parity(Ǐ)(Gr−µ,F) induced by the cohomological shift in

Parity(Ǐ)(Gr−µ,F).) By [AR2, Remark 2.7], (i−µ)!Emix
−λ is the complex whose 0-th

term is the parity complex (i−µ)!E−λ, and whose other terms vanish. We deduce
that

HomDmix
(Ǐ)

(Gr−µ,F)(FGr−µ
{dim(Gr−µ)}, (i−µ)!Emix

−λ {m})

∼= Hm−dim(Gr−µ)(Gr−µ, (i−µ)!E−λ).
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Finally, using the same considerations as in §6.6 (or as in the proof of (1)), we
deduce a canonical isomorphism

Homm
Dmix

(Ǐ)
(Gr,F)(∆

mix
−µ , Emix

−λ 〈−m〉) ∼= Hm−dim(Grµ)(ı!µEλ).

On the other hand, using the equivalence Φ we obtain that

Homm
Dmix

(Ǐ)
(Gr,F)(∆

mix
−µ , Emix

−λ 〈−m〉) ∼= HomDG×Gm (Ñ )(∆
µ

Ñ
, T λ〈−m〉).

Using [MR, Equation (4.10)] and the fact that T λ ∼= T(λ)⊗OÑ , we deduce that

Homm
Dmix

(Ǐ)
(Gr,F)(∆

mix
−µ , Emix

−λ 〈−m〉) ∼=
(
T(λ)⊗ Γ(Ñ ,OÑ (−w0µ))m

)G
,

where the subscript “m” denotes the m-th graded part. This finishes the proof.
The proof of the second isomorphism in (2) is similar, using Lemma 6.7 and

replacing Dmix
(Ǐ)

(Gr,F) by Dmix
Ǐ

(Gr,F), ordinary cohomology by equivariant coho-

mology, Φ by Ψ, and Ñ by g̃. �
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