Vector ordering and multispectral morphological image processing

Abstract : This chapter illustrates the suitability of recent multivariate ordering approaches to morphological analysis of colour and multispectral images working on their vector representation. On the one hand, supervised ordering renders machine learning no-tions and image processing techniques, through a learning stage to provide a total ordering in the colour/multispectral vector space. On the other hand, anomaly-based ordering, automatically detects spectral diversity over a majority background, al-lowing an adaptive processing of salient parts of a colour/multispectral image. These two multivariate ordering paradigms allow the definition of morphological operators for multivariate images, from algebraic dilation and erosion to more advanced techniques as morphological simplification, decomposition and segmentation. A number of applications are reviewed and implementation issues are discussed in detail.
Type de document :
Chapitre d'ouvrage
Vector Ordering and Multispectral Morphological Image Processing, 11, pp.223-239, 2014, Advances in Low-Level Color Image Processing, 〈10.1007/978-94-007-7584-8_7〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01110207
Contributeur : Santiago Velasco-Forero <>
Soumis le : mardi 27 janvier 2015 - 16:34:14
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : mardi 28 avril 2015 - 11:11:03

Fichier

Chapter_Book.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Santiago Velasco-Forero, Jesus Angulo. Vector ordering and multispectral morphological image processing. Vector Ordering and Multispectral Morphological Image Processing, 11, pp.223-239, 2014, Advances in Low-Level Color Image Processing, 〈10.1007/978-94-007-7584-8_7〉. 〈hal-01110207〉

Partager

Métriques

Consultations de la notice

112

Téléchargements de fichiers

269