Skip to Main content Skip to Navigation
Journal articles

On a problem of Ivi\'c.

Abstract : Let $\gamma$ denote the imaginary parts of the nontrivial zeros of the Riemann zeta-function $\zeta(s)$. For sufficiently large $T$ and $\varepsilon>0$, Ivi\'c proved that $\sum_{T<\gamma\leq2T} \vert\zeta(\frac{1}{2}+i\gamma)\vert^2 <\!\!\!<_{\varepsilon} (T(\log T)^2\log\log T)^{3/2+\varepsilon},$ where the implicit constant depends only on $\varepsilon$. In this paper, this result is improved by (i) replacing $\vert\zeta(\frac{1}{2}+i\gamma)\vert^2$ by $\max\vert\zeta(s)\vert^2$, where the maximum is taken over all $s=\sigma+it$ in the rectangle $\frac{1}{2}-A/\log T\leq\sigma\leq2,\, \vert t-\gamma\vert\leq B(\log\log T)/\log T$ with some fixed positive constants $A, B,$ and (ii) replacing the upper bound by $T(\log T)^2\log\log T$. The method of proof differs completely from Ivi\'c's approach.
Document type :
Journal articles
Complete list of metadata

Cited literature [8 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01109635
Contributor : Ariane Rolland Connect in order to contact the contributor
Submitted on : Monday, January 26, 2015 - 4:28:56 PM
Last modification on : Thursday, May 7, 2020 - 10:30:04 AM
Long-term archiving on: : Monday, April 27, 2015 - 10:46:40 AM

File

23Article2.pdf
Explicit agreement for this submission

Identifiers

  • HAL Id : hal-01109635, version 1

Collections

`

Citation

K Ramachandra. On a problem of Ivi\'c.. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 2000, 23 (2), pp.10-19. ⟨hal-01109635⟩

Share

Metrics

Record views

425

Files downloads

635