Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

Abstract : We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm−2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm−2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different datasets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2 year dataset, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
Complete list of metadatas

Cited literature [65 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01109442
Contributor : Catherine Cardon <>
Submitted on : Monday, December 28, 2015 - 1:13:26 PM
Last modification on : Friday, January 10, 2020 - 3:42:30 PM
Long-term archiving on: Tuesday, March 29, 2016 - 11:01:41 AM

File

amt-8-2417-2015.pdf
Publisher files allowed on an open archive

Identifiers

Citation

F. Tack, F. Hendrick, Florence Goutail, C. Fayt, A. Merlaud, et al.. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations. Atmospheric Measurement Techniques, European Geosciences Union, 2015, 8, pp.2417-2435. ⟨10.5194/amt-8-2417-2015⟩. ⟨hal-01109442⟩

Share

Metrics

Record views

329

Files downloads

274