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Abstract

Patterns and textures are key characteristics of many nat-
ural objects: a shirt can be striped, the wings of a butter-
�y can be veined, and the skin of an animal can be scaly.
Aiming at supporting this dimension in image understand-
ing, we address the problem ofdescribing textureswith se-
mantic attributes. We identify a vocabulary of forty-seven
texture terms and use them to describe a large dataset of
patterns collected “in the wild”. The resultingDescribable
Textures Dataset(DTD) is a basis to seek the best represen-
tation for recognizing describable texture attributes in im-
ages. We port from object recognition to texture recognition
the Improved Fisher Vector (IFV) and Deep Convolutional-
network Activation Features (DeCAF), and show that sur-
prisingly, they both outperform specialized texture descrip-
tors not only on our problem, but also in established mate-
rial recognition datasets. We also show that our describable
attributes are excellent texture descriptors, transferring be-
tween datasets and tasks; in particular, combined with IFV
and DeCAF, they signi�cantly outperform the state-of-the-
art by more than 10% on both FMD and KTH-TIPS-2b
benchmarks. We also demonstrate that they produce intu-
itive descriptions of materials and Internet images.

1. Introduction

Recentlyvisual attributeshave raised signi�cant inter-
est in the community [6, 12, 19, 27]. A “visual attribute”
is a property of an object that can be measured visually and
has a semantic connotation, such as theshapeof a hat or the
color of a ball. Attributes allow characterizing objects in far
greater detail than a category label and are therefore the key
to several advanced applications, including understanding
complex queries insemantic search, learning about objects
from textual description, and accounting for the content of
images in great detail. Textural properties have an important
role in object descriptions, particularly for those objects that
are best quali�ed by a pattern, such as a shirt or the wing of
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Figure 1: Both the man-made and the natural world are
an abundant source of richly textured objects. The textures
of objects shown above can be described (in no particular
order) asdotted, striped, chequered, cracked, swirly, hon-
eycombed, andscaly. We aim at identifying these attributes
automatically and generating descriptions based on them.

a bird or a butter�y as illustrated in Fig.1. Nevertheless, so
far the attributes of textures have been investigated only tan-
gentially. In this paper we address the question of whether
there exists a “universal” set of attributes that can describe a
wide range of texture patterns, whether these can be reliably
estimated from images, and for what tasks they are useful.

The study of perceptual attributes of textures has a
long history starting from pre-attentive aspects and group-
ing [17], to coarse high-level attributes [1, 2, 35], to some
recent work aimed at discovering such attributes by au-
tomatically mining descriptions of images from the Inter-
net [3, 13]. However, the texture attributes investigated so
far are rather few or too generic for a detailed description
most “real world” patterns. Our work is motivated by the
one of Bhusan et al. [5] who studied the relationship be-
tween commonly used English words and the perceptual
properties of textures, identifying a set of words suf�cient
to describing a wide variety of texture patterns. While they
study the psychological aspects of texture perception, the
focus of this paper is the challenge of estimating such prop-
erties from images automatically.

Our �rst contribution is to select a subset of 47de-
scribable texture attributes, based on the work of Bhusan
et al., that capture a wide variety of visual properties of
textures and to introduce a correspondingdescribable tex-
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ture datasetconsisting of 5,640 texture imagesjointly an-
notated with the 47 attributes (Sect.2). In an effort to
support directly real world applications, and inspired by
datasets such asImageNet[10] and theFlickr Material
Dataset(FMD) [32], our images are captured “in the wild”
by downloading them from the Internet rather than collect-
ing them in a laboratory. We also address the practical is-
sue of crowd-sourcing this large set of joint annotations ef-
�ciently accounting for the co-occurrence statistics of at-
tributes and for the appearance of the textures (Sect.2.1).

Our second contribution is to identify a gold stan-
dard texture representationthat achieves state-of-the-art
recognition of the describable texture attributes in chal-
lenging real-world conditions. Texture classi�cation has
been widely studied in the context of recognizing materi-
als supported by datasets such asCUReT[9], UIUC [20],
UMD [42], Outex[25], Drexel Texture Database[26], and
KTH-TIPS[7, 15]. These datasets address material recog-
nition under variable occlusion, viewpoint, and illumination
and have motivated the creation of a large number of spe-
cialized texture representations that are invariant or robust
to these factors [21, 25, 38, 39]. In contrast, generic object
recognition features such as SIFT were shown to work the
best for material recognition in FMD, which, like DTD, was
collected “in the wild”. Our �ndings are similar, but we also
�nd that Fisher vectors [28] computed on SIFT features and
certain color features, as well as generic deep features such
as DeCAF [11], can signi�cantly boost performance. Sur-
prisingly, these descriptors outperform specialized state-of-
the-art texture representations not only in recognizing our
describable attributes, but also in a variety of datasets for
material recognition, achieving an accuracy of 65.5% on
FMD and 76.2% on KTH-TIPS2-b (Sect.3, 4.1).

Our third contribution consists in severalapplications
of the proposed describable attributes. These can serve
a complimentary role for recognition and description in
domains where the material is not-important or is known
ahead of time, such as fabrics or wallpapers. However, can
these attributes improve other texture analysis tasks such as
material recognition? We answer this question in the af�r-
mative in a series of experiments on the challenging FMD
and KTH datasets. We show that estimates of these proper-
ties when used a features can boost recognition rates even
more for material classi�cation achieving an accuracy of
55.9% on FMD and 71.2% on KTH when used alone as
a 47 dimensional feature, and 67.1% on FMD and 77.3%
on KTH when combined with SIFT, simple color descrip-
tors, and deep convolutional network features (Sect.4.2).
These represent more than an absolute gain of 10% in ac-
curacy over previous state-of the-art.Furthermore, these
attributes are easy to describe and can serve as intuitive di-
mensions to explore large collections of texture patterns –
for example product catalogs (wallpapers or bedding sets)

or material datasets. We present several such visualizations
in the paper (Sect.4.3).

2. The describable texture dataset

This section introduces theDescribable Textures Dataset
(DTD), a collection of real-world texture images annotated
with one or more adjectives selected in a vocabulary of 47
English words. These adjectives, ordescribable texture at-
tributes, are illustrated in Fig.2 and include words such as
banded, cobwebbed, freckled, knitted, andzigzagged.

DTD investigates the problem oftexture description,
intended as the recognition of describable texture attributes.
This problem differs from the one ofmaterial recognition
considered in existing datasets such as CUReT, KTH, and
FMD. While describable attributes are correlated with ma-
terials, attributes do not imply materials (e.g. veinedmay
equally apply to leaves or marble) and materials do not im-
ply attributes (not all marbles areveined). Describable at-
tributes can becombinedto create rich descriptions (Fig.3;
marble can beveined, strati�ed and crackedat the same
time), whereas a typical assumption is that textures are
made of a single material. Describable attributes aresubjec-
tive properties that depend on the imaged object as well as
on human judgements, whereas materials are objective. In
short, attributes capture properties of texturesbeyondmate-
rials, supporting human-centric tasks where describing tex-
tures is important. At the same time, they will be shown to
be helpful in material recognition too (Sect.3.2and4.2).

DTD containstextures in the wild, i.e. texture images
extracted from the web rather than begin captured or gen-
erated in a controlled setting. Textures �ll the images, so
we can study the problem of texture description indepen-
dently of texture segmentation. With 5,640 such images,
this dataset aims at supporting real-world applications were
the recognition of texture properties is a key component.
Collecting images from the Internet is a common approach
in categorization and object recognition, and was adopted in
material recognition in FMD. This choice trades-off the sys-
tematic sampling of illumination and viewpoint variations
existing in datasets such as CUReT, KTH-TIPS, Outex, and
Drexel datasets for a representation of real-world variations,
shortening the gap with applications. Furthermore, the in-
variance of describable attributes is not an intrinsic prop-
erty as for materials, but it re�ects invariance in the human
judgements, which should be captured empirically.

DTD is designed as apublic benchmark, following the
standard practice of providing 10 preset splits into equally-
sized training, validation and test subsets for easier al-
gorithm comparison (these splits are used in all the ex-
periments in the paper). DTD is publicly available on
the web athttp://www.robots.ox.ac.uk/ ˜ vgg/
data/dtd/ , along with standardized code for evaluation
and reproducing the results in Sect.4.

http://www.robots.ox.ac.uk/~vgg/data/dtd/
http://www.robots.ox.ac.uk/~vgg/data/dtd/


banded blotchy braided bubbly bumpy chequered cobwebbed cracked crosshatchedcrystalline dotted �brous

�ecked freckled frilly gauzy grid grooved honeycombedinterlaced knitted lacelike lined marbled

matted meshed paisley perforated pitted pleated polka-dotted porous potholed scaly smeared spiralled

sprinkled stained strati�ed striped studded swirly veined waf�ed woven wrinkled zigzagged

Figure 2: The 47 texture words in thedescribable texture datasetintroduced in this paper. Two examples of each attribute
are shown to illustrate the signi�cant amount of variability in the data.

Related work. Apart from material datasets, there have
been numerous attempts at collecting attributes of textures
at a smaller scale, or in controlled settings. Our work is
related to the work of [24], where they analysed images in
the Outex dataset [25] using a subset of the attributes we
consider; differently from them, we demonstrate that our
DTD attributes generalize to new datasets, for example by
helping to establish state-of-the-art performance in material
recognition.

2.1. Dataset design and collection

This section discusses how DTD was designed and col-
lected, including: selecting the 47 attributes, �nding at least
120 representative images for each attribute, and collecting
all the attribute labels for each image in the dataset.

Selecting the describable attributes.Psychological exper-
iments suggest that, while there are a few hundred words
that people commonly use to describe textures, this vocab-
ulary is redundant and can be reduced to a much smaller
number of representative words. Our starting point is the
list of 98 words identi�ed by Bhusan, Rao and Lohse [5].
Their seminal work aimed to achieve for texture recogni-
tion the same that color words have achieved for describing
color spaces [4]. However, their work mainly focuses on
the cognitive aspects of texture perception, including per-
ceptual similarity and the identi�cation of directions of per-
ceptual texture variability. Since we are interested in the
visual aspects of texture, we ignored words such as “corru-
gated” that are more related to surface shape properties, and
words such as “messy” that do not necessarily correspond to
visual features. After this screening phase we analysed the
remaining words and merged similar ones such as “coiled”,
“spiralled” and “corkscrewed” into a single term. This re-
sulted in a set of47words, illustrated in Fig.2.

Bootstrapping the key images. Given the 47 attributes,
the next step was collecting a suf�cient number (120) of ex-

ample images representative of each attribute. A very large
initial pool of about a hundred-thousand images was down-
loaded from Google and Flickr by entering the attributes
and related terms as search queries. Then Amazon Me-
chanical Turk (AMT) was used to remove low resolution,
poor quality, watermarked images, or images that were not
almost entirely �lled with a texture. Next, detailed annota-
tion instructions were created for each of the 47 attributes,
including a dictionary de�nition of each concept and ex-
amples of correct and incorrect matches. Votes from three
AMT annotators were collected for the candidate images of
each attribute and a shortlist of about200highly-voted im-
ages was further manually checked by the authors to elim-
inate residual errors. The result was a selection of120key
representative imagesfor each attribute.

Sequential join annotations.So far only the key attribute
of each image is known while any of the remaining 46 at-
tributes may apply as well. Exhaustively collecting annota-
tions for 46 attributes and 5,640 texture images is fairly ex-
pensive. To reduce this cost we propose to exploit the corre-
lation and sparsity of the attribute occurrences (Fig.3). For
each attributeq, twelve key images are annotated exhaus-
tively and used to estimate the probabilityp(q0jq) that an-
otherattributeq0could co-exist withq. Then for the remain-
ing key images of attributeq, only annotations for attributes
q0 with non negligible probability – in practice 4 or 5 – are
collected, assuming that the attributes would not apply. This
procedure occasionally misses attribute annotations; Fig.3
evaluates attribute recall by 12-fold cross-validation on the
12 exhaustive annotations for a �xed budget of collecting
10 annotations per image (instead of 47).

A further re�nement is to suggest which attributesq0 to
annotate not just based onq, but also based on the appear-
ance of an imagèi . This was done by using the attribute
classi�er learned in Sect.4; after Platt's calibration [30]
on an held-out test set, the classi�er scorecq0(` i ) 2 R is
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Figure 3:Quality of joint sequential annotations. Each bar shows the average number of occurrences of a given attribute
in a DTD image. The horizontal dashed line corresponds to a frequency of 1/47, the minimum given the design of DTD
(Sect.2.1). The black portion of each bar is the amount of attributes discovered by the sequential procedure, using only
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additional recall obtained by integrating CV in the process.Right: co-occurrence of attributes.The matrix shows the joint
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transformed in a probabilityp(q0j` i ) = � (cq0(`)) where
� (z) = 1 =(1 + e� z ) is the sigmoid function. By con-
struction, Platt's calibration re�ects the prior probability
p(q0) � p0 = 1=47of q0 on the validation set. To re�ect the
probabilityp(q0jq) instead, the score is adjusted as

p(q0j` i ; q) / � (cq0(` i )) �
p(q0jq)

1 � p(q0jq)
�

1 � p0

p0

and used to �nd which attributes to annotated for each im-
age. As shown in Fig.3, for a �xed annotation budged this
method increases attribute recall. Overall, with roughly 10
annotations per images it was possible to recover of all the
attributes for at least 75% of the images, and miss one out
of four (on average) for another 20% while keeping the an-
notation cost to a reasonable level.

3. Texture representations

Given the DTD dataset developed in Sect.2, this section
moves on to the problem of designing a system that can
automatically recognize the attributes of textures. Given a
texture imagè the �rst step is to compute arepresentation
� (`) 2 Rd of the image; the second step is to use a classi�er
such as a Support Vector Machine (SVM)hw; � (`)i to score
how strongly the imagè matches a given perceptual cate-
gory. We propose two such representations: a gold-standard
low-level texture descriptor based on the improved Fisher
Vector or DeCAF features (Sect.3.1) and a mid-level tex-
ture descriptor consisting of the describable attributes them-
selves (Sect.3.2), discussed in detail in Sect.4.

3.1. Texture descriptors

This section describes two texture descriptors that we
port to texture from the object recognition: theImproved
Fisher Vector(IFV) [29] and theDeep Convolutional Ac-
tivation Feature(DeCAF) [11]. Differently from popu-
lar specialized texture descriptors, both representation are

tuned for object recognition. We were therefore somewhat
surprised to discover that these off-the-shelf methods sur-
pass by a large margin the state-of-the-art in several texture
analysis tasks (Sect.4.1).

IFV. Given an imagè , the Fisher Vector(FV) formula-
tion of [28] starts by extracting local SIFT [22] descrip-
tors f d1; : : : ; dn g densely and at multiple scales. It then
soft-quantizes the descriptors by using a Gaussian Mixture
Model (GMM) with K modes. The Gaussian covariance
matrices are assumed to be diagonal, but local descriptors
are �rst decorrelated and optionally dimensionality reduced
by PCA. Theimprovedversion of the descriptor adds signed
square-rooting andl2 normalization. We are not the �rst to
use SIFT or IFV in texture recognition. For example, SIFT
was used in [31], and Fisher Vectors were used in [33].
However, neither work tested the standard IFV formula-
tion [29], which we found to give excellent results.

DeCAF.TheDeCAF features[11] are obtained from an im-
age` as the output of the deep convolutional neural network
of [18]. This network, which alternates several layers of lin-
ear �ltering, recti�cation, max pooling, normalization, and
full linear weighting, is learned to discriminate 1,000 object
classes of the ImageNet challenge. It is used as a texture de-
scriptor by removing the softmax and last fully-connected
layer of the network, resulting in a� (x) 2 R4096 dimen-
sional descriptor vector which isl2 normalized before use
in an SVM classi�er. To the best of our knowledge, we are
the �rst to test these features on texture analysis tasks.

3.2. Describable attributes as a representation

The main motivation for recognizing describable at-
tributes is to support human-centric applications, enriching
the vocabulary of visual properties that machines can un-
derstand. However, once extracted, these attributes may
also be used as texture descriptors in their own right. As
a simple incarnation of this idea, we propose to collect



Kernel
Local descr. Linear Hellinger add-� 2 exp-� 2

MR8 15.9� 0.8 19.7� 0.8 24.1� 0.7 30.7� 0.7
LM 18.8� 0.5 25.8� 0.8 31.6� 1.1 39.7� 1.1
Patch3� 3 14.6� 0.6 22.3� 0.7 26.0� 0.8 30.7� 0.9
Patch7� 7 18.0� 0.4 26.8� 0.7 31.6� 0.8 37.1� 1.0
LBPu 8.2� 0.4 9.4� 0.4 14.2� 0.6 24.8� 1.0
LBP-VQ 21.1� 0.8 23.1� 1.0 28.5� 1.0 34.7� 1.3
SIFT 34.7� 0.8 45.5� 0.9 49.7� 0.8 53.8� 0.8

Table 1: Comparison of local descriptors and kernels on the
DTD data, averaged over ten splits.
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SIFT IFV on DTD mAP: 64.52

Figure 4: Per-class AP of the 47 describable attribute clas-
si�ers on DTD using the IFVSIFT representation and linear
classi�ers.

the response of attribute classi�ers trained on DTD in a
47-dimensional feature vector� (`) = ( c1(`); : : : ; c47(`)) .
Sect.4 shows that this very compact representation achieves
excellent performance in material recognition; in particular,
combined with IFV (SIFT and color) and/or DeCAF it sets
the new state-of-the-art on KTH-TIPS2-b and FMD. In ad-
dition to the contribution to the best results, our proposed
attributes generate meaningful descriptions of the materi-
als from KTH-TIPS,e.g. aluminium foil: wrinkled; bread:
porous.

4. Experiments

4.1. Object descriptors for textures

This section demonstrates the power of IFV and DeCAF
(Sect.3.1) as a texture representation by comparing it to es-
tablished texture descriptors. Most of these representations
can be broken down into two parts: computing local image
descriptorsf d1; : : : ; dn g and encoding them into a global
image statistics� (`).

In IFV the local descriptors d i are 128-dimensional
SIFTfeatures, capturing a spatial histogram of the local gra-
dient orientations; here spatial bins have an extent of6 � 6
pixels and descriptors are sampled every two pixels and at
scales2i= 3; i = 0 ; 1; 2; : : : . We also evaluate as local de-

scriptors theLeung and Malik(LM) [ 21] (48-D) andMR8
(8-D) [14, 39] �lter banks, the3 � 3 and7 � 7 raw image
patches of [38], and thelocal binary patterns(LBP) of [25].

Encoding maps image descriptorsf d1; : : : ; dn g to a
statistics � (`) 2 Rd suitable for classi�cation. En-
coding can be as simple as averaging (sum-pooling) de-
scriptors [23], although this is often preceded by a high-
dimensional sparse coding step. The most common cod-
ing method is to vector quantize the descriptors using an
algorithm such asK -means [21], resulting in the so-called
bag-of-visual-words(BoVW) representation [8]. Variations
include soft quantization by a GMM in FV (Sect.3.1),
soft quantization with a kernel in KCB [37], Locality-
constrained Linear Coding (LLC) [41], or specialized quan-
tization schemes, such as mapping LBPs touniform pat-
terns [25] (LBPu ; we use the rotation invariant multiple-
radii version of [24] for comparison purposes). For LBP,
we also experiment with a variant (LBP-VQ) where stan-
dard LBPu2 is computed in8 � 8 pixel neighborhoods, and
the resulting local descriptors are further vector quantized
usingK -means and pooled as this scheme performs signif-
icantly better in our experiments.

For each of the selected features, we experimented
with severalSVM kernels K (x0; x00): linear, Hellinger's,
additive-� 2, and exponential-� 2 kernels sign-extended as
in [40]. The � parameter of the exponential kernel [40] is
selected as one over the mean of the kernel matrix on the
training set. The data is normalized so thatK (x0; x00) = 1
as this is often found to improve performance. Learning
uses a standard non-linear SVM solver and validation to se-
lect the parameterC. When multiple features are used, the
corresponding kernels are averaged.

Local descriptor comparisons on DTD. This experi-
ment compares local descriptors and kernels on DTD
(Tab.1). All comparison use the bag-of-visual-word pool-
ing/encoding scheme usingK -means for vector quantiza-
tion the descriptors. The DTD data is used as a benchmark
averaging the results on the ten train-val-test splits.K was
cross-validated, �nding an optimal setting of 1024 visual
words for SIFT and color patches, 512 for LBP-VQ, 470
for the �lter banks. Tab.1 reports the mean Average Pre-
cision (mAP) for 47 SVM attribute classi�ers. In these ex-
periments, only the key attribute labels for each image are
used; joint annotations are evaluated as DTD-J in Tab.2,
with similar results. As expected, the best kernel is exp-
� 2, followed by additive� 2 and Hellinger, and then linear.
Dense SIFT (53.8% mAP) outperforms the best specialized
texture descriptor on the DTD data (39.7% mAP for LM).
Fig. 4 shows AP for each attribute: concepts likechequered
achieve nearly perfect classi�cation, while others such as
blotchyandsmearedare far harder.

Encoding comparisons on DTD.Having established the
excellent performance of SIFT in texture recognition, this



Dataset SIFT
DeCAF

IFV +
Previous Best

Source Splits Metric IFV BoVW VLAD LLC KCB DeCAF
CUReT 20 acc. 99.5� 0.4 98.1� 0.9 98.8� 0.6 97.1� 0.4 97.7� 0.6 97.9� 0.4 99.8� 0.1 99.4� n/a [36]
UMD 20 acc. 99.2� 0.4 98.1� 0.8 99.3� 0.4 98.4� 0.7 98.0� 0.9 96.4� 0.7 99.5� 0.3 99.7� 0.3 [34]
UIUC 20 acc. 97.0� 0.9 96.1� 2.4 96.5� 1.8 96.3� 0.1 91.4� 1.4 94.2� 1.1 99.0� 0.5 99.4� 0.4 [34]
KT 20 acc. 99.7� 0.1 98.6� 1.0 99.2� 0.8 98.1� 0.8 98.5� 0.8 96.9� 0.9 99.8� 0.2 99.4� 0.4 [34]
KT-2a� 4 acc. 82.2� 4.6 74.8� 5.4 76.5� 5.2 75.7� 5.6 72.3� 4.5 78.4� 2.0 84.7� 1.5 73.0� 4.7 [33]
KT-2b� 4 acc. 69.3� 1.0 58.4� 2.2 63.1� 2.1 57.6� 2.3 58.3� 2.2 70.7� 1.6 76.2� 3.1 66.3 [36]
FMD 14 acc. 58.2� 1.7 49.5� 1.9 52.6� 1.5 50.4� 1.6 45.1� 1.9 60.7� 2.0 65.5� 1.3 57.1 
 [31]
DTD 10 acc. 61.2� 1.0 55.5� 1.1 59.7� 1.1 54.7� 1.1 53.2� 1.6 54.8� 0.9 66.7� 0.9 –
DTD 10 mAP 63.5� 1.0 54.9� 0.9 61.3� 0.8 54.3� 1.0 52.5� 1.3 55.0� 1.1 69.4� 1.2 –
DTD-J � 10 mAP 63.5� 0.9 56.1� 0.8 61.1� 0.7 54.8� 1.0 53.2� 0.8 48.9� 1.1 68.9� 0.9 –

Table 2: Comparison of encodings and state-of-the-art texture recognition methods on DTD as well as standard material
recognition benchmarks (in boldface results on par or better than the previous state-of-the-art). All experiments use a linear
SVM. � : three samples for training, one for evaluation;� : one sample for training, three for evaluation.
 : with ground
truth masks ([31] Sect. 6.5); our results do not use them.� : DTD considers only the key attribute label of each texture
occurrence and DTD-J includes the joint attribute annotations too (Sect.2.1), reporting mAP.

experiment compares three encodings: BoVW, VLAD [16],
LLC, KCB, and IFV (�rst �ve columns of Tab.2). VLAD
is similar to IFV, but usesK -means for quantization and
stores only �rst-order statistics of the descriptors. Dense
SIFT is used as a baseline descriptor and performance is
evaluated on ten splits of DTD in Tab.2. IFV (256 Gaussian
modes) and VLAD (512K -means centers) performs simi-
larly (61-63% mAP) and signi�cantly better than BoVW
(54.9% mAP). For BoVW we considered a vocabulary size
of 4096 words, while for LLC and KCB we used vocab-
ularies of size 10k. As we will see next, however, IFV
signi�cantly outperforms VLAD in other texture datasets.
We also experimented with the state-of-the-art descriptor of
[34] which we did not �nd to be competitive with IFV on
FMD (41.4% acc.) and DTD (40.3% acc.).

State-of-the-art material classi�cation. This experi-
ments evaluates the encodings on several texture recog-
nition benchmarks: CUReT [9], UMD [42], UIUC [20],
KTH-TIPS [15], KTH-TIPS2 (a and b) [7], and material
– FMD [32]. Tab. 2 compares with the existing state-of-
the-art [33, 34, 36] on each of them. For saturated datasets
such as CUReT, UMD, UIUC, KTH-TIPS the performance
of most methods is above to 99% mean accuracy and there
is little difference between them. IFV performs as well or
nearly as well as the state-of-the-art, but DeCAF is not as
good. However, in harder datasets the advantage of IFV and
DeCAF becomes evident: KTH-TIPS-2a (+5%/5% resp.),
KTH-TIPS-2b (+3%/4.3%), and FMD (+1%/+3.6%). Re-
markably, DeCAF and IFV appear to capture complemen-
tary information as their combination results in signi�cant
improvements over each descriptor individually,substan-
tially outperforming any other descriptorin KTH (+11.7%
on the former state-of-the-art), FMD (+9.9%), and DTD
(+8%). In particular, while FMD includes manual segmen-
tations of the textures, these are not used when reporting

our results. Furthermore, IFV and DeCAF are conceptually
simpler than the multiple specialized features used in [33]
for material recognition.

4.2. Describable attributes as a representation

This section evaluates the 47 describable attributes as a
texture descriptor for material recognition (Tab.3). The at-
tribute classi�ers are trained on DTD using the various rep-
resentations such as IFVSIFT, DeCAF, or combinations and
linear classi�ers as in the previous section. As explained in
Sect.3.2, these are then used to form 47-dimensional de-
scriptors of each texture image in FMD and KTH-TIPS2-b.
We call this as DTDfeat

method, denoting the choice of the �nal
classi�er (method) and underlying features (feat) used for
DTD attribute estimation.

The best results are obtained when IFVSIFT + DeCAF
features are used as the underlying representation for pre-
dicting DTD attributes. When combined with a linear SVM
classi�er DTDIFV + DeCAF

LIN
1, results are promising: on KTH-

TIPS2-b, the describable attributes yield 71.2% mean accu-
racy and 55.9% on FMD outperforming the aLDA model
of [31] combining color, SIFT and edge-slice (44.6%).
While results are not as good as the IFVSIFT + DeCAF
representation directly, the dimensionality of this descrip-
tor is three orders of magnitude smaller. For this rea-
son, using an RBF classi�er with the DTD features is rel-
atively cheap. Doing so improves the performance by 1–
2% (DTDIFV + DeCAF

RBF ). DTD descriptors constructed out of
IFV alone are also quite competitive achieving 62.9% and
49.8% on KTH-2b and FMD respectively. They also show
a 2–3% improvement when combined with RBF kernels.
Combining the DTD RBF kernels obtained from IFVSIFT

and IFVSIFT + DeCAF improves performance further.
We also investigated combining multiple IFV features

1Note: we drop SIFT in IFVSIFT for brevity



with DTD descriptors: DTDIFV
RBF with IFVSIFT and IFVRGB.

IFVRGB computes the IFV representation on top of all the
3 � 3 RGB patches in the image in the spirit of [38]. The
performance of IFVRGB is notable given the simplicity of
the local descriptors; however, it is not as good as DTDIFV

RBF
which is also 26 times smaller. The combination of IFVSIFT

and IFVRGB is already notably better than the previous state-
of-the-art results and the addition of DTDIFV

RBF improves by
another signi�cant margin. Similarly the DTDIFV

RBF descrip-
tors also provide a signi�cant improvement over DeCAF
features alone.

Overall, our best result on KTH-TIPS-2b is77.3% acc.
(vs. the previous best of 66.3) and on FMD of67.1% acc.
(vs. 57.1) on FMD, an improvement of more than10% in
both cases over the previous state of the art.

Finally, we compared the semantic attributes of [24] with
DTDIFV

LIN on the Outex data. Using IFVSIFT as an underlying
representation for our attributes, we obtain 49.82% mAP on
the retrieval experiment of [24], which is is not as good as
their result with LBPu (63.3%). However, LBPu was de-
veloped on the Outex data, and it is therefore not surpris-
ing that it works so well. To verify this, we retrained our
DTD attributes with IFV using LBPu as local descriptor,
obtaining a score of 64.5% mAP. This is remarkable consid-
ering that their retrieval experiment contains the data used
to train their own attributes (target set), while our attributes
are trained on a completely different data source. Tab.1
shows that LBPu is not competitive on DTD.

4.3. Search and visualization

Fig. 5 shows an excellent semantic correlation between
the ten categories in KTH-TIPS-2b and the attributes in
DTD. For example, aluminium foil is found to bewrinkled,
while bread is found bebumpy, pitted, porousand�ecked.

As an additional application of our describable texture
attributes we compute them on a large dataset of 10,000
wallpapers and bedding sets fromhouzz.com . The 47
attribute classi�ers are learned as explained in Sect.4.1us-
ing the IFVSIFT representation and them apply them to the
10,000 images to predict the strength of association of each
attribute and image. Classi�ers scores are re-calibrated on
the target data and converted to probabilities by examin-
ing the extremal statistics of the scores. Fig.6 shows some
example attribute predictions, selecting for a number of at-
tribute an image that would score perfectly (excluding im-
ages used for calibrating the scores), and then including ad-
ditional top two attribute matches. The top two matches
tend to be very good description of each texture or pattern,
while the third is a good match in about half of the cases.

5. Summary

We introduced a large dataset of 5,640 images collected
“in the wild” jointly labelled with 47 describable texture

Feature KTH-2b FMD
DTDIFV

LIN 62.9� 3.849.8� 1.3
DTDIFV

RBF 66.0� 4.352.4� 1.3
DTDIFV + DeCAF

LIN 71.2� 0.655.9� 2.3
DTDIFV + DeCAF

RBF 72.0� 0.558.0� 1.8
DTDIFV

RBF + DTDIFV + DeCAF
RBF 73.8� 1.361.1� 1.4

DeCAF 70.7� 1.660.7� 2.1
IFVRGB 58.8� 2.547.0� 2.7
IFVSIFT + IFVRGB 67.5� 3.363.3� 1.9
DTDIFV

RBF + IFVSIFT 70.2� 2.460.1� 1.6
DTDIFV

RBF + IFVRGB 70.9� 3.561.3� 2.0
Combined 74.6� 3.065.4� 2.0
IFVSIFT + DTDIFV

RBF 70.2� 2.460.0� 1.9
IFVSIFT + DTDIFV + DeCAF

RBF 75.6� 1.865.5� 1.2
DeCAF + DTDIFV

RBF 75.4� 1.864.6� 1.6
DeCAF + DTDIFV + DeCAF

RBF 73.7� 1.864.1� 1.5
IFVSIFT +DeCAF + DTDIFV

RBF 77.3� 2.366.7� 1.7
IFVSIFT +DeCAF + DTDIFV + DeCAF

RBF 76.4� 2.866.9� 1.6
Combined 77.1� 2.467.1� 1.5
Prev. best 66.3 [36] 57.1 [31]

Table 3: DTD for material recognition. Combined with
IFVSIFT and IFVRGB, the DTDIFV

RBF features achieve a signi�-
cant improvement in classi�cation performance on the chal-
lenging KTH-TIPS-2b and FMD compared to published
state of the art results. See the text for the details on the
notation and the methods.

attributes and used it to study the problem of extracting se-
mantic properties of textures and patterns, addressing real-
world human-centric applications. Looking for the best rep-
resentation to recognize such describable attributes in natu-
ral images, we have ported IFV and DeCAF, object recog-
nition representations, to the texture domain. Not only
they work best in recognizing describable attributes, but
they also outperform specialized texture representations on
a number of challenging material recognition benchmarks.
We have shown that the describable attributes, while not be-
ing designed to do so, are good predictors of materials as
well, and that, when combined with IFV, signi�cantly out-
perform the state-of-the-art on FMD and KTH-TIPS2-b.
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