Higher order Peregrine breathers solutions to the NLS equation

Abstract : The solutions to the one dimensional focusing nonlinear Schrödinger equation (NLS) can be written as a product of an exponential depending on t by a quotient of two polynomials of degree N (N + 1) in x and t. These solutions depend on 2N − 2 parameters : when all these parameters are equal to 0, we obtain the famous Peregrine breathers which we call PN breathers. Between all quasi-rational solutions of the rank N fixed by the condition that its absolute value tends to 1 at infinity and its highest maximum is located at the point (x = 0, t = 0), the PN breather is distinguished by the fact that PN (0, 0) = 2N + 1. We construct Peregrine breathers of the rank N explicitly for N ≤ 11. We give figures of these PN breathers in the (x; t) plane; plots of the solutions PN (0; t), PN (x; 0), never given for 6 ≤ N ≤ 11 are constructed in this work. It is the first time that the Peregrine breather of order 11 is explicitly constructed.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

Contributeur : Pierre Gaillard <>
Soumis le : samedi 24 janvier 2015 - 19:11:25
Dernière modification le : jeudi 11 janvier 2018 - 06:12:20
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 09:06:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01109143, version 1



Pierre Gaillard. Higher order Peregrine breathers solutions to the NLS equation. 2015. 〈hal-01109143〉



Consultations de la notice


Téléchargements de fichiers