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A framework for the event-triggered stabilization of
nonlinear systems

Romain Postoyan, Paulo Tabua&enior Member, IEEEDragan NeSicFellow, IEEE,and A. Anta

Abstract—Event-triggered control consists of closing the feed-
back loop whenever a predefined state-dependent criterionsi
satisfied. This paradigm is especially well suited for embeated
systems and networked control systems since it is able to rade
the amount of communication and computation resources neetl
for control, compared to the traditional periodic implementation.
In this paper, we propose a framework for the event-triggerel
stabilization of nonlinear systems using hybrid systems s,
that is general enough to encompass most of the existing even
triggered control techniques, which we revisit and generate.
We also derive two new event-triggering conditions which mg
further enlarge the inter-event times compared to the avadéble
policies in the literature as illustrated by two physical examples.
These novel techniques exemplify the relevance of introdireg
additional variables for the design of the triggering law. The
proposed approach as well as the new event-triggering stragies
are flexible and we believe that they can be used to address @th
event-based control problems.

Index Terms—Event-triggered control, hybrid systems,
sampled-data, networked control systems, nonlinear systes.

I. INTRODUCTION

a prefixed bound but rather be based on the current state of the
system, the channel occupancy and the desired performance.
Drawing intuition from this idea, event-triggered contfas
been developed to reduce the need for communication while
guaranteeing satisfactory levels of performance. It wesl
closing the loop whenever a predefined state-dependent trig
gering condition is satisfiede.g., [1], [2], [3], [1]], [29],

[34]. This technique reduces the usage of the communication
bandwidth and of the CPU and provides a high degree of
robustness since the state is continuously monitored.

In this paper, we propose a framework for the event-
triggered stabilization of nonlinear systems using hylssid-
tems tools, and we use it to develop new event-triggering
schemes and to revisit and generalize the techniques3n [
[1€], [20], [28], [34]. We model event-triggered control nonlin-
ear systems as hybrid systems using the formalisn8ofsee
also P, [6] where linear systems are considered). We show
that set stability conveniently describes the desiredilitiab
properties of these systems. This property is establisbedu
a novel Lyapunov theorem which extends the resultS8jrtd

Today’s control systems are frequently implemented ovéite case where the Lyapunov function is locally Lipschitzd(a
networks since these offer many advantages in terms ruft necessarily continuously differentiable), which isesial

flexibility and cost. In this setup, the controllers comnuate

in event-triggered control where Lyapunov functions aftermf

with the sensors and the actuators through the networkpnogiven by the maximum of continuously differentiable fuocts

a continuous fashion but rather at discrete time instanesnwh(which are locally Lipschitz), as we show. In addition, the
the channel is available for the control system. Traditigna Lyapunov theorem relies on a different condition on the flow
the time interval between two successive transmissionssit which weakens the corresponding one in Theorem 3.18

constrained to be less than a fixed constdhtwhich is
called themaximum allowable transmission interv@ATI)

in [8]. We provide sufficient conditions for guaranteeing the
existence of a uniform minimum amount of time between

(see,e.q., [17], [19], [32). In order to achieve a desiredcontrol updates. Although this is not necessary to guaeante
performance.T" is generally chosen asmall as technology stability, this is crucial in practice as the communication
and network load permit. This strategy, although easy f@rdware cannot generate transmissions which are ailyitrar

implement, represents a conservative solution that may wese in time. We also explain how to redesign the triggering
necessarily overload the communication channel. Indeeel, ccondition to enforce the existence of such a minimum amount
would expect that the transmission instants should nogfgati of time between two transmissions when the aforementioned
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conditions are not met because of the behaviour of the so-

ggﬁ(’:\‘élutions near the attractor. Similar results have been ddriv
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The proposed approach is flexible and offers the possibility
to introduce additional variables to construct the trigugr
condition. We emphasize the potential of these extra veasab
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compressor example. This technique is especially wetedui
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for real-time scheduling as we can tune the threshold dycemwill use the following result which corresponds to Propiosit
according to the available resources. The second stratdgy in [1§].

is inspired by 19 where a time-triggered implementation Lemma 1:Consider two continuously differentiable func-
is studied. The idea here is to make the dynamics of thiens U; : R — R andU; : R* — R. Let A :=
clock variable used in19 state-dependent in order to adap{x : Ui(z) > Us(z)}, B := {z : Ui(z) < Uz(z)} and
transmissions to the system state. This strategy is compafe:= {z : U;(z) = Usz(z)}. For anyv € R", the functionU :
with [28] on a van der Pol oscillator. We also show that the — max{U;(x), Uz(x)} satisfiesU°(z;v) = (VU (x),v)
approach is general enough to capture many of the evefur all x € A, U°(z;v) = (VUs(z),v) for all x € B, and
triggering laws available in the literaturéd, [16], [20], [28], U°(z;v) = max{(VU;(x),v),(VUs(x),v)} for all =z € T.
[34]. By doing so, we revisit and generalize these techniques

by relaxing the conditions on which they rely and by allowing The lemma below will be useful for lower bounding
general holding functions. Indeed, the results of the papegrapunov functions. Its proof follows from the fact that
not only apply to zero-order-holds but to various holding(s; + s2) < a(2s1) + «(2s2) for any @ € Koo, 51,82 > 0.

functions such as the model-based one proposed5hfpr Lemma 2:For any oy, € Ko, a1(s1) + aa(sa) >
linear systems. In addition, the proposed new techniques ea(s; + s;) for any s;,so > 0 where a : s
be used as starting points to address other event-basadlcomhin{ (s/2), a2(s/2)} € Koo- O

problems, such as the stabilization of systems with disteith ~ The following technical lemma is an extension of Lemma
sensors and actuators2{]), or the coordination of cyber- 4.3 in [12], which is convenient when designing Lyapunov
physical systems for instance(]]). Note that a related study functions to investigate set stability.

has been independently proposed B6|[ where strategies Lemma 3:Let O C R™ and A C O be non-empty and
similar to those in §] and [31] are investigated. Contrary to compact sets and Iét : O — R be a continuous function
[26], we ensure the existence of a uniform inter-executiomhich is equal to zero only oml. There existo, s € Koo
time for all our strategies, which is essential in practicsuch that

as explained above; furthermore we develop different event

triggering policies and we revisit existing techniques. alzla) < V() = alzla)  VeeO. (1)

The remainder of the paper is organized as followgyhen© is non-empty, closed and unbounded dndends to
Preliminaries are stated in Sectitin Event-triggered control infinity as x4 — oo, (1) holds. O]

systems are modeled as hybrid systems in SedfianThe  \\e recall the definition of the tangent cone to a set at a
analytical tools used to prove stability as well as the exise given point and state a useful lemma.

of a minimum amount of time between any two transmissions pefinition 1: [8] The tangent cone to a s& C R™ at a
are stated in SectiotV. In SectionV, we propose new pointz € R, denotedl’s (), is the set of all vectors) € R
triggering rules and we show how several existing everyr which there existr; € S, 7; > 0 with 2; — z, 7; — 0 as

triggering policies can be addressed with the proposed, o such thatw = lim,_, e (2; — ) /7. O
approach. The event-triggering techniques are compareq emma 4:Let f : R* — R" be continuousC = {q :
on illustrative examples in Sectiod| and conclusions are y/(;) > W(z)} and D = {q : V(z) < W(z)} for

proposed in Sectio¥1l . The proofs are given in the AppendiX.gome continuously differentiable functios and W from
R™ to R. For anyz € C N D, f(x) € Te(z) implies that

(VV(2), f(z)) = (VW(z), f(2)). 0
1. PRELIMINARIES
Let R := (—00,00), Rsp := [0,00), Rog = (0,00), [1l. SYSTEM MODELS
Zso = {0,1,2,...}, Z~o = {1,2,...}. A function v : We will write event-triggered control systems as hybrid

R>o — R is of classK if it is continuous, zero at zero andsystems using the formalism ]| like in [5], [6], [26]. Thus,

strictly increasing, and it is of clas§.. if in addition it is we consider systems of the form

unbounded. The notatidhdenotes the identity mapping from .

R>o to R>. Let (z,y) € R"™™, (z,y) stand}]ior[:cl%lfJ yg]T. ¢="F(q) forqed, ¢"=Glg) forgeD, ()

The distance of a vectar to a setA C R" is denoted by whereq € R"s is the state ana, € Z~(. The setsC’ C R

|24 = inf{|z —y| : y € A}. andD c R"« are closed and respectively denote the flow and
The notation f~1(M) for a function f : R* — R™ the jump sets. The vector fields and G are assumed to be

and a setM C R™ stands for{z : f(z) € M}. When continuous orC andD, respectively. The continuity of and

f o+ R* = R, fo'(m) == {& : f(z) < m} and @ together with the closedness of the sétsand D ensure
f=tm) = {= : f(x) > m} for m € R. The notation that the system is ‘well-posed’, see Chapter 68h [
| - | stands for the Euclidean norm. We u$&(z;v) to In event-triggered control, the transmissions occur whene

denote the generalized directional derivative of Clarkeaofa state-dependent criterion is satisfied. The hybrid model
locally Lipschitz functionU at x in the directionv, i.e. (2) is well-equipped to describe these systems. Indeed, a
U®(x;v) := limsupy,_,o+ . (U(y + hv) — U(y))/h, which transmission can be modeled as a jump 2f that occurs
reduces to the standard directional derivativé/ (z), v) when whenever the event-triggering condition is violated, bhic
U is continuously differentiable; sed][for more detail. We corresponds to the fact that the state of syst@mnefters in
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the jump setD. Whengq € C, the system flows and, whenstability, see §]. We will see for instance in Sectiov-E that
g € CN D, the system can either jump or flow, the latter onlyve need to introduce a threshold variable to revisit the vitork
if flowing keepsq in C. [34]. The n-system has for dynamias = h(x,e,n) between

In this paper, the model2) is obtained by following an two successive transmission instants afd = ¢(z,e,n) at
emulation-like approach (see,g.,[17], [19], [28], [32]), i.e. each transmission instant wheieand ¢ are designed by the
a controller is first assumed to be designed without conisiger user.
the resource limitations, afterwards, we take into accen@t  In that way, we obtain systen2) with
effects induced by the latter and we derive an appropriate

-tri i dition to ensure stability for the aibed i f(ze) -

event-triggering con e | Flg)=| glz,e) Glq) = 0

system. _ _ _ - n h(x,e,n) Uz, e,n)
Suppose that there is no resource constraints and consider (8)

the plant wherez = (z,, z.), F andG are assumed to be continuous and

Ty = fplzp,u), (3) flz,e) = (fp(a:p,gc(arc,xp +er,) + ew), felTe, zp + ezp)),
where 2, € R"» is the plant state and. < R" is the
control input, for which a stabilizing dynamic state-feadk .
controller is designed fo(@p, ge(@e, vp+ex,) +€u), fulp, Te, Tp+€ays ge(Te, Tp +

) €r,) +eu) — g—gz(xc, Ty + ez, ) fe(e, op + eIP)S with e,, =

Te :fc(xcaxp)a uzgc(xc,:vp), (4) i.p_xp andeu =0 — .
wherez. € R" is the controller state. Note that when the The main problem in event-triggered control is to define
controller is static, 4) reduces tou = g.(x,). We now take the triggering conditioni.e. the flow and jump set&” and D
into account the digital nature of the communication mediurth (2), (@nd the dynamics of if needed) in order to reduce
At each transmission instdnthe controller receives the plantthe resource usagee. the amount of jumps, while ensuring
measurements, updates its knowledge of it, sends the ton@ymptotic stability properties together with the existerof
input and the actuators update the signal sent to the plant. Auniform minimum inter-execution time.
a consequence, the plant and the controller no longer havdkemark 1:The assumptions allow for triggering rules that
access ta: andz,, respectively. Instead, they only know thedepend both on ande. However, the specific choice of trig-
corresponding sampled versions, @ and;,, which are reset gering rule needs to be done according to the implementation

to the actual values of andz, at each transmission instantscenario. In the case of dynamic controllers, a triggeririg r
ie. depending onx. requires continuous communication between

x; =, at = w. (5) the sensors and the controller. This is difficult to achiave i
practice since sensors do not have, in general, access to the
Between two transmissions, and.i,, are generated by givenstate of the controller. We have chosen to present the proble
holding functions which are respectively implemented & thn a general setting because it allows to recover as paaticul
actuators and at the controller cases the stabilization using a static controller (ad 8, [16],

g(xae) = (fp(xpaxmxp + ezpagc(xcaxp + emp) + eu) -

iz S ;o3 S [20Q), [28], [34] for example) and the cases where only the
Tp = fol@p, Te, By, 1), = fultp, T, 2p, ). (6) plant statesi(e. e = &, — z,,) or the inputs i(e. e = @ — u)
The use of zero-order-hold devices leadfip= 0 and f, = are sampled. O
0. This formulation also allows to consider the model-based
technique in 15], as we show in Sectio-C. We allow f,, IV. ANALYTICAL TOOLS

and f,, to depend on,, ., &,, @ for the sake of generality to By writing general event-triggered control systems as faybr
capture the cases where they depend on a part of these vesystems using the formalism o8][ we can use a wide range
variables. We introduce the sampling-induced error to rhodsf tools to study system2j. In this paper, we focus on set

the impact of the sampling stability, which is a natural property when investigatirveget-
P triggered control systems as we show in the forthcoming
e = < 2 B up > (7) section. We present a new Lyapunov theorem to guarantee

set stability, which extends the corresponding statemants
which is reset td) at each jump in view off). We assume that [g]. This result is used in SectioW to analyse the stability
the dynamics of the controlled)is sufficiently fast compared of various event-triggered control systems. We conclude th
to the transmissions rate so that we can ignore its samplieg Gection with sufficient conditions for the existence of afoimn

to its implementation on a digital platform (as b9, [32 for  amount of time between any two transmissions.

instance). To define the event-triggering law, we may inizd

auxiliary variables which we denote by a single vector \@&a a  pefinitions

n € R"™. Indeed, it is common in the hybrid literature to

use additional variables like clocks to ensure or analyee t\r,uv We recall some definitions related to the hybrid frame-

ork of [8]. A subsetE C Rsg x Z>( is a hybrid time

we suppose that this process occurs in a synchronized mamiewe domainif for all (7,J) € £, EN ([0,T] x {0,...,J}) =

ignore the effects of the induced delays, noting that they beanalyzed by U ([ti,ti+1],4) for some finite sequence of times
following similar lines as in 28]. i€{0,1,...,[—1}
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0 =ty <t; <...<t;. Afunction¢ : F — R" is of R are presented in Sectioh. We use the following result
a hybrid arcif E is a hybrid time domain and if for eachto conclude stability of4 which states thak is required: (i)
Jj € Zso, t — ¢(t,j) is locally absolutely continuous onto be positive definite and radially unbounded with respect t
I’ :={t : (t,j) € E}. The hybrid arcp : dom¢ — R" is a A; (i) to decrease on flows as long @&q) belongs to the
solutionto (2) if: (i) ¢(0,0) € C' U D; (ii) for any j € Z>(, tangent cone of” at ¢ € C (denotedI=(q)) and asq ¢ A;
o(t,j) e C and% (t,j) = F(o(t, 7)) for almost allt € I7; (i) not to increase at jumps. The item (ii) is motivated by
(i) for every (¢,7) € dom¢ such that(t,j + 1) € dom¢, the fact that, whenF'(¢) does not belong td«(¢) (which
o(t,7) € D and ¢(t,j + 1) = G(¢(t,5)). A solution ¢ can only happen at the boundary 6f), a solution which
is maximal when it cannot be extended, and é@mplete would reach this point cannot keep flowing as it would leave
when domp is unbounded. We recall the following invarianceghe setC and a jump will immediately occur or the solution
definition for hybrid systems, see Definition 6.25 Bj.[ will stop to exist. Hence, it is not necessary to requitéo
Definition 2: A set S C R" is strongly forward pre- decrease at such points. The stability 4fis then deduced
invariant if for every solutiong to (2), ¢(¢t,j) € S for by assuming that there exists a minimum amount of time
some (t,j) € dom¢ implies that¢(t',j') € S for any between two jumps. This last condition is sufficient but not
(t',7") € domg with t + j <t/ + j'. 0 necessary to obtain the desired stability result, neviertke
We introduce the definition below to characterize hyit is fundamental when dealing with event-triggered contro
brid systems that generate solutions which have a unifoas the hardware always has a certain latency which prevents
semiglobal minimum amount of time between two jumpghe occurrence of arbitrarily close in time transmissiorise
except, possibly, on a given set of the state space (thetmttratheorem below formalizes these ideas.
in this study). Theorem 1:Consider system?2j and let A be a non-
Definition 3: The solutions to Z) have a uniform empty closed subset dk«. Suppose that there exisf3 :
semiglobal dwell-time outsidel where A C R"« is strongly C'UDUG(D) — R, which is locally Lipschitz on an open
forward pre-invariant for systen®), if for any A > 0, there set containing”, such that the following conditions hold.

exists 7(A) > 0 such that for any solutio to (2) with (i) There existay,@r € Ko such that for anyy € C' U

[¢(0,0)|.4 < Aand any(s, ), (¢, ) € dom¢ with s+i < ¢+, DUG(D)
ot.j)EA = jis(t-s)/r(A)+1. (9) ag(lgla) < R(g) < ar(qla) (10)
The solutions to2) havea uniform semiglobal dwell-timé  (ji) There exists a continuous positive definite functien :
for any A > 0, there existst(A) > 0 such that for any R~ — Rs( such that
solution¢ to (2) with |¢(0,0)| < A and for any(s, i), (¢,7) € . -
dome with s +i <t+j,j—i<(t—s)/r(A)+1. O R°(g; Fq)) < —ar(R(q))
We will see in the following sections that it is natural to for all ¢ € C such thatF'(q) € To(q).

work with set stability when studying event-triggered coht (11)

systems. We consider the definition below which comes frmﬂii) Forall g€ D
Defini_tiqr) 3.6 in 8. . - R(G(q)) < R(q). (12)
Definition 4: The closed setd C R"¢ is uniformly glob- _ _ _ _

ally pre-asymptotically stable (UGpAS)r system P) if the (iv) Solu.tlons to R) have a uniform semiglobal dwell-time

following holds. OUtS'deA-_ _ -

(i) [Uniform global stability There existsy € Ko, such that 1hen the setd is UGPAS. When, in additiod is compact,
for any solutione to (2), [é(t, )4 < a(|6(0,0)|.4) for G(P) C CUD andF(q) € Tc(g) for anyg € C\D, the set
all (¢,7) € domg. A is UGAS. N . O

(i) [Uniform global pre-attractivity For eache, r > 0, there ~ Compared to Proposition 3.27 if|[ the Lyapunov function
existsT > 0 such that for any solutio to (2) with IS not required to be continuously differentiable on an opein

[0(0,0)|a < 7, (t,j) € dome¢ andt + 5 > T imply containingC' but only locally Lipschitz on this set. We wiill
|(t 7j)|A <e ’ - see in SectiorV that the analysis of event-triggered control

We say thatA is uniformly globally asymptotically stable ;ystems often leads to such Lyapunov functions. Moredver,

(UGAS)when, in addition, the maximal solutions t) (are is not required to strictly decrease on the wholeGg#d (see
complete ' ' O item (ii) of Theorem1), but only on a subset af'\.A where

F(q) belongs toT¢(g). This condition appears to be crucial
- in the analyses carried out in Sectivn Finally, no condition
B. Lyapunov conditions is imposed on the persistency of flows in the attractor

As mentioned above, we resort to a locally Lipschitz In all the strategies investigated in this paper (except the
Lyapunov functionR to prove that a given closed set one in SectiorV-E), the attractor is compact. In this case, the
is UG(p)AS for system ). This function R is typically facts that4 is UG(p)AS and that systen2)is well-posed (see
composed of a known Lyapunov function for the closed-loodphapter 6 in §]) ensure that this stability property is robust to
system when ignoring the sampling and extra terms whismall uncertainties on the measurements, the plant dysamic
involve the variables induced by the sampling, the errore and the jump instants, see for more detail Theorem 7.21 in
and the potential additional variablg Explicit constructions [8].
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It has to be noted that the only region of the state spaselutions to 2) have a uniform semiglobal dwell-time outside
where the existence of a uniform semiglobal dwell-time may where A := RZ'(¢) for somes > 0. We modify the flow
not be guaranteed is in the attractdr While it may be and the jumps sets for systei®) @s follows
difficult to ensure that all solutions t@) which lie in A have ~ _ N _

a uniform semiglobal dwell-time4 is typically a subset of’ C=CUR(e), D=DnR(e). (13)
as it is the case for all the event-triggering schemes siuidie In that way, we obtain the result below.

this paper (except in SectiotD where the solutions to the  Proposition 2: Consider system2j with the flow and jump
corresponding hybrid system have a uniform semiglobal dwesets defined as inlg8) with ¢ > 0 and suppose the following
time on the whole state space). In that way, for a given initiaolds.

condition in A, there always exists a solution starting from (j) tems (i)-(iii) of Theorem1 hold with R continuously
this point which never jumps. This means that in practice, if differentiable, and4 compact.

solution to system2) reaches4, we can turn off the triggering  (jj) Solutions to @) have a uniform semiglobal dwell-time
mechanism. Further insight about the existence of dweleti outside A.
outside the se#d is given in the following subsection. Then the sefd is UGPAS. When, in additio(D) c CUD
and F(q) € Tg(q) for anyq € C\D, the setA is UGAS.
C. Existence of uniform semiglobal dwell-times Furthermore, in this case, when item (i) of Theorérholds
The following proposition lists a set of requirements fofor all ¢ € C with F(q) € Tz(q), the maximal solutions
the existence of uniform semiglobal dwell times outside theonverge in finite hybrid time ta4, i.e. for any maximal
attractor.A. These conditions are used in SectMrto verify solution ¢ there exists(t*,j*) € dom¢ such that for all

the existence of such times. (t,7) € domg with t* + j* <t + 4, ¢(t,5) € A. O
Proposition 1: Consider systen®j and suppose the follow- Noting that Theorenl ensures the UG(p)AS ol = R~1(0),

ing holds. we see that Propositiok guarantees the same stability prop-
(i) Items (i)-(iii) of Theorem1 hold. erty for the larger seR;l(s) provided that we inflate the flow

(i) For any A > 0 there exists) : S(A) — Rs, where Set and restrict the jump set as ih3]. We emphasize that
S(A) is an open set containin@l;l(A)\Afwhich is Proposition2 still applies whenR is the maximum of a finite

locally Lipschitz and verifies the following: number of continuously differentiable functions (as it lige t
(ii-a) there existsz > 0 such that(G(q)) < a for any €8S€ in Sectiong-A, V-C, V-D for ingtance)._Propositipﬁcan .
g € S(A) N D with G(q) € S(A); be used to relax the conditions which are imposed in Sections
(ii-b) there existsb > a such that for any; € S(A), V to ensure that solutions have a uniform s_e_rmglobal_dwell-
Y(q) < b impliesq € C\D; time outside the attractod. We will only explicitly mention

(ii-c) there exists a continuous non-decreasing functidhiS rélaxation for the event-triggering scheme in Secwe;
X : Rso — R such that for almost alf € S(A) similar conclusions can be drawn for the other techniques fo

(Vi (q), F(q)) < A(®(q)). which A is compact.
Then the solutions to2) have a uniform semiglobal dwell-
time outside.A. In addition, when item (i) holds with4
compact and item (i) is verified withS(A) an open set In this section, we first present two new triggering rules. We
containing RZ'(A), the solutions to Z) have a uniform then revisit and generalize the strategies 16][[16], [20],
semiglobal dwell-time. O [28, [34].

V. MAIN RESULTS

The conditions of Propositiot can be interpreted as fol- A. Using a threshold variable
lows. Item (i) simply states that all the conditions of Th&or  \ve assume that the systein= f(z,e) (see Sectiorlll)

1 are verified except item (iv) which is established using input-to-state stable (ISS) with respect to the sampling

Proposition1. The functiony in item (i) of Propositionl jnqyced errors, like ind8). This is equivalent to the following
is used to guarantee that there exists a uniform m'n'mué@sumption (see Theorem 1 i27]).

amount of time between two successive jumps outsldBY  aAgsumption 1:There exist a continuously differentiable

estimating the time it takes fap to grow froma to b using Lyapunov functionV : R" — R and ay, @y, o,y € Kae
the growth condition in item (ii-c), we are able to obtain thg ,ch that for all: € R -

desired result. Note that does not need to be defined gh

since the purpose of Propositidnis to ensure the existence ay(z]) < V(z) < av(z), (14)
of uniform semiglobal d_well-tlme outsidd. N and for all (z, e) € Rm+ne

For some systems, it may happen that the conditions o
Proposition1 are not met because of the behaviour of the (VV(x), f(z,e)) < —a(V(z)) +v(le]). (15)

solutions to 2) near the setd (as discussed later in Remark
6 for example). In this case, we can modify the triggerin
condition {.e. the setsC and D) to guarantee a weaker
asymptotic stability property for systen®)(than the one
ensured by Theorerfi. Suppose that we can prove that the (VV(x), f(z,e)) < —(I—-o0)oa(V(x)). (16)

U
Brom (15), we deduce thatoa(V (x)) > v(Je|) with o € K
ando(s) < s for s > 0, implies



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

We rewrite the conditiom o o(V (z)) > ~v(le]) as stability property for the origin of the obtained system iaw
_ _ of Proposition2. O

V() = a oo toy(e]) = W(e). (17) Remark 3:In [26€], an event-triggering technique is pro-
In [28], transmissions occur wheli (e¢) > V(z) (see Section posed which combines the ideas @8] and [31]. It essentially
V-C). Here, the triggering condition is derived by defining gonsists in allowingV’ to grow as long as it remains below
threshold on the Lyapunov functidri(z) andW (e). The idea its value at the last jump multiplies by a constant (0, 1),
is similar to what is done ind4], as we will see in Sectiok-E, Which leads to a piecewise constant threshold as opposed to
where a threshold is applied (z) only. Here, we tolerate the continuously decreasing threshold presented aboveél
V(x) to become larger than the threshold (which is not the
case in B4]) which may have the effect of enlarging the inter- . .
execution time as illustrated in Sectidf-A. We define the B. Using a clock variable
threshold variable; € R, as the solution of the following In[19], sampled-data systems with time-triggered execution

differential equation on flows are modeled as a hybrid system similar 8 Py introducing
. a clock variabler. The flow and the jump sets are defined as
o= —on), (18) 7 being smaller or not than a given fixed boufidknown
where § is any locally Lipschitz clas#: function, and at @s the MATI. This constanf’ corresponds to the time it
jumps, takes for the solution of the ordinary differential equatio
o= Wie). (19) ¢ = —2L¢ - v(¢? + 1) to decrease fromp~! to p, where

L and~ are some constants (see (5) I9]) andp € (0,1) is
A natural choice of triggering rule i8/(e) > n. Nevertheless, grpitrarily small. In this subsection, we modify the stgytén
in the case wheréV(e) < V(z), V decreases according 1o[19) by making the ordinary differential equation that defines
(16) and therefore we do not need to close the loop. Thisstate-dependent. This allows us to consider a larger class o
suggests considering the following triggering conditiostead systems and to potentially enlarge the inter-executicerias

W(e) > max{n,V(z)}. (20) compared to19] as the clock velocity depends on the current
- state of the system (see Remadkbelow). We make the
The problem is modeled as follows following assumption.
i = f(z,e) S Assumption 3:There exist locally Lipschitz func_tioan :
¢ =glxe) p geC, et =0 geD, (21) R — R, W : R —>+R and contmuou_s functlo_nsH :
M = —5(77) ,,7+ _ W(e) R™ — RZO, L,G : R"*" — Ry, Qy, Qy, Qy, aw €

Kso, 0 € K such that the foIIowing_conditions holds:
whereq = (z,¢,7), and

aw(le]) < W(e) <aw(le]) Ve € R
C ={q : max{V(z),n} > W(e), n >0} (22) (VW (e),g(x,e)) < L(xz,e)W(e)+ H(x)
D = {q : max{V(z),n} < W(e), n >0}. a.a.c € R Vg € Rne
To guarantee the existence of a uniform semiglobal minimu ay(lz]) < V(z) <av(|z]) Vo € R
interval of time between two transmissions outside theiogig | (VV(2), f(z,¢)) < —o(|z]) — o(le|) — H?(x)
the following conditions are assumed to hold like 28] +G(z,e)W(e)* a.a.x € R™, Ve € R™.
Assumption 2:For any compact sef C R"=*" there (24)

O
In [19], L and G are supposed to be constant that implies
[f(z,e)| < La(jz| + le]), ay'oW(e) < Lalel, (23) that systemi = f(z,e) is Lo-gain stable froml to H.
lg(x, e)| < Ls(|z| + le|). Making L and G state-dependent allows us to enlarge the
7 Studied class of systems and to eventually obtain less oamse

The following theorem ensures the stability of syste)( tive upper bounds in the second and the fourth inequalifies o

exist Ly, Lo, Ls € R>( such that for all(z,e) € S

lts proof is an application of Theorert with R(q) = Assumption3 that will help to enlarge the inter-event intervals.
max{V (z), W(e), n}. Note that Assumptior8 does not necessarily imply that the

Theorem 2:Consider system2(), (22), let A = {q : systemi = f(z,e) is ISS with respect te. An example
(z,e,n) = 0}, and suppose Assumptiors2 hold with of nonlinear systems which verifies Assumpti®iis given in
W continuously differentiable. The solutions t81j have a SectionVI-B. Model (2) becomes here
uniform semiglobal dwell-time outsidd and.A is UGAS. i = flze)

Remark 2:In Theorem2, W is required to be continu- o = g(z’e) gcC
ously differentiable. When it is not the case, we can always STy 2

\ . e . = —2nL(z,e) —n* - G(z,e)

upper-bound it by a clask-, function which is continuously o= (25)
differentiable onR~, (see Lemma B.1.2. in9]) and define et = 0 SqeD
the triggering condition using this upper-bound instead of nt o= ¢ ’

W (e). When the differentiability ofi¥ (or its upper-bound)
is not guaranteed at the origin, the triggering conditionba whereq = (z,¢,7), 0 < ¢ < ¢ are design parameters and
modified as in {3) to ensure a uniform practical asymptotia) plays the role of¢ mentioned above and is called a clock
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variable. The set§’ and D are

C={q:neld} D={q:n=c}.

Note that, instead of letting) to decrease fronp~! to p
like in [19), we consider any constants < ¢ < ¢ This

(26)

based on an estimate of the plant state between two suceessiv
transmissions, which is generated using a copy of the plant d

namics. Assume the control law applied to the plant dynamics
ip = fp(wp,u) is static,i.e. u = gc(#,). In this case;,
fo(Zp, 9c(2,)) on flows andi;} = x,, at jumps. Recalling that

gives more flexibility and may help generating larger inter = x, ande = &, — x, in this case, we obtain the model

execution intervals. The following theorem ensures thbilsta

(27 With f(z,¢) = fo(wp. gelitp)) = fy(wps gelary + €)) and

ity of system 5) and the existence of uniform semiglobal(z,e) = fp(Zp, ge(Zp))—fp(Tp, 9e(p)) = fp(Tpte, ge(p+

dwell-times. It follows from Theorenl using the Lyapunov
function R(q) = V(z) + nW (e)?.

Theorem 3:Consider system?26), (26) and suppose As-
sumption 3 holds. The solutions to26) have a uniform
semiglobal dwell-time and the sett = {q (z,e) =
0 andn € [¢, €|} is UGAS . O

Remark 4:Suppose thal(r,e) < L andG(z,e) < G for
any (x,e) € R*%=+n< and someL > 0, G > 1. Then, the
event-triggering condition in26) will generate longer inter-
transmission intervals than the corresponding time-tigd
one in [L9 with L = L and~+? = G in (9), (10) in 19,
respectively. Indeed, transmissions are triggered 8 Wwhen
the solution to{ = —2L¢ — y(¢2 + 1) with ¢(0) = p~' is
equal top for somep € (0,1). By selectinge = p~! and
¢ = p, we deduce from the comparison principle tijatvill
be equal top~! beforen becomes equal to, which results
in smaller inter-transmission intervals for the time-gréging
rule. O

C. Strategy in 2§
The systemz

e)) — fp(zp, gc(zp + €)). The conclusions of Theorerhthen
apply whenf, andg. are locally Lipschitz and are equal to
zero at the origin. We make this observation about the model-
based approach explicit for this event-triggering tecbaidut
it can also be done for the other strategies studied in thpspa
Remark 5:The conditionW(e) < V(z) is selected to
ensure thatlV always decreases. We could thus have de-
fined the setsC' and D for system 27) as in [6], [26]:
C = {qg : (V@) fz,e) < ~1~0)oalV(x)}
D ={q : (VV(a), f(z,e)) > —(I—0) oa(V(x))}. The
conclusions of Theorem immediately apply in this casd.]
Remark 6:We explain how Propositior2 can be used
to relax the assumptions of Theorednat the price of a
weaker stability property. Instead of the first inequality(23),
suppose that for any > 0 and any compacf C R"=*7e,
there existd; € R>( such that for anyz,e) € S, |f(z,e)| <
L1(|z| + le]) + . This is the case for instance whé¢ris equal
to zero at the origin and is locally Lipschitz everywhereeptc
at zero. We can apply Propositiéhto conclude that the set
RZ'(e) is UGAS, wheres = ag(fu) for any # > 0 and
a@r comes from the satisfaction of item (i) of Theorenfor

f(z,e) is assumed to be input-to—stateR(q) = max{V (z), W(e)}. Indeed, letu = 6~ ay'(c) > 0,

stable (ISS) with respect to the sampling-induced erroh& Tg ~ Rn.+n. pe compact and fixX; € Rso. Let (z,¢) €

model @) is here

z = f(z,e) ==z
ézg(x,e)}qec’ :O}qu’

whereq = (z,e). From @6), (17), we have thal’(z) > W (e)
implies

(VV(2), f(z,e)) (28)

The triggering rule in 28] corresponds tdV (e) > V(z) and
leads to the following flow and jump sets f&7)

C={q:W(e)<V()}, D={q:W()=> V(a:)}( )
29
The following result is derived by applying Theorelnwith
R(q) = max{V(z), W(e)}. The proof is omitted as it follows
similar lines as the proof of Theoretk
Theorem 4:Consider system2(7), (29), let A = {q :
(x,e) = 0} and suppose Assumptiors2 hold with W
is continuously differentiabfe The solutions to Z7) have a
uniform semiglobal dwell-time outsidd and.A is UGAS. [

xt

. (27)

S _(]I—O')OOL(V(«I)),

SRS (e), | f(x,e)l < La(|a]+]e)+0~"aR' (e) < Li(lz|+
le) +0-1a5 (R(g)) < L (2] + [e]) + 0~ (@r(|(z. e)]))-
Hence |f(z,e)| < Li(|z| + le]) + 67 (z,e)] < (L1 +
0=1)(|z| + |e]). We use Propositiod with ¥ (q) = |‘i| when
Mle| < |z| and(q) = M~! otherwise for some\l > 0
(which is well-defined and locally Lipschitz on an open set
containingRZ"'(A)\RZ"(¢)) like in the proof of Theoren®,
to derive that the solutions t®7) with the flow and jump
sets modified as in1@) have a uniform semiglobal dwell-time
outside R_*(¢). We then apply Propositio@ to obtain the
desired result. It is interesting to note that the Bet' (¢) can
be rendered as small as desired by decreagiiny this case
(at the price of shorter minimum inter-transmission times)

D. Strategies in 13], [16], [ 20]

We suppose that Assumptidnis satisfied. The idea is to
constrain the erroe to remain less than a given constant. In
that way, transmissions are triggered whenever the comditi

When the controller is implemented using zero-order-hoRflOW is satisfied

devices as in48], g(x,e) = —f(x,e) in (27) and the third
condition of Assumptior2 coincides with the first one ir2@).

(lel)

where p > 0 is a design parameter ang is defined in

> p (30)

Theoreml can also be used to analyse the implementati%sumptionl. We obtain the following hybrid model
of the controller using the model-based technique proposed

in [15]. In this setup, the control input applied to the plant is

2See Remarl2.

xt
et

T

} qeC,

g } qe D,
(31)
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whereq = (z,¢) and to (35 have a uniform semiglobal dwell-time outside the
origin and.A is UGpAS. O
¢= {q 2 (lel) < p} D= {q +(Jef) = p}' (32) Remark 7:The satisfaction of Assumption 2.1-2.2 i84]
The following result is an application of Theorefnwith implies the satisfactioh of Assumptions1-2 (when using
R(q) = max{V(z)—a~1(2p),0} +max{vy(|e|) — p,0} where zero-order-hold devices) but the opposite is not true. idenc
«a comes from Assumptiof. Theoremé6 relies on weaker conditions than Theorem 3.3 in
Theorem 5:Consider system3(), (32) and suppose As- [34] (when task delays are ignored); see SecNd+A for an
sumption1 holds ande — ~(Je|) is continuously differen- example where the Lyapunov functidn is quadratic which

tiable. The solutions to3@) have a uniform semiglobal dwell- is not allowed by 34]. O
time and the setd = {q : V(z) < a™(2p) andv(le|) < p} Remark 8:Similar results can be obtained for the policy
is UGAS. 0 proposed in 33], see Section V.A inZ3]. O

E. Strategy in B4] VI. ILLUSTRATIVE EXAMPLES

The main idea of 34] is to construct the event-triggering We compare the event-triggering techniques presented in

condition such that a known Lyapunov functidn for the Sectionsv-A-V-B with those in Section¥-C andV-E on two

closed-loop system in the absence of sampling remains belgiysical examples.

a designed threshold which decreases to the origin. In thgat w

the convergence of the plant state to the origin is immeljiate .

guaranteed and the functidnis not forced to decrease all theA' Jet engine compressor

time contrary to 28], which may reduce the need for control We borrow the model from14]: &, = —z, — 327 — a7,

updates. We revisit this idea by introducing a variable talelo <2 = u, Wherex; represents the mass flow, is the pressure

the threshold. rise andu is the throttle mass flow. In this model the origin
We assume that the controller is designed to ensure A¥s been translated to the desired equilibrium point, and

sumption1. The threshold variable is denoted hye R, the objective is to steefz;,z;) to zero. The control law

and it has the following dynamics on flows u = 4dxy — 4zy — J2% — 327 is designed to stabilize the
) origin. This controller is then implemented using zeroesrd
no= -0 (3 hold devices and is connected to the two sensors measuring

wheres is a designed continuous and positive definite functioht andz. through a network. The objective is to stabilize the
such thati(s) < o o a(s) for any s > 0, with « is defined System while limiting the number of control inputs in order
in Assumption1 and o is any classk., function such that to reduce the usage of the communication channel (and not
o(s) < s for any s > 0. The selection of§ depends on nhecessarily of the processor time) as well the actuatorggner
the desired performances in terms of the convergence of g@sumption. Thus, it is more convenient to work with the
Lyapunov functionV. The dynamics in 33) generalizes the sampling-induced error on the control inputi.e. e = 4 — v,
corresponding one in3#] as the threshold is only required towhich means that we compute all the timeand trigger
asymptotically (and not necessarily exponentially) daseeto transmission according to the selected event-triggeroigy

the origin. At jumps;) takes the value of/ (x), i.e. The system under sampling-induced constraints is

nt = V(). (34) i1 =—xp— 2% — 12}, do=u+te (37)

Following [34], the triggering condition is designed such thaiVe want to compare the results given by the strategy pregente
V(x) is always below; (except potentially at the initial time in SectionV-A and those obtained with2§] and [34]. We

instant) which leads to the hybrid model below first need to verify that the required conditions are satisfie
i = flze) PR Assumption 1 hc;lds_ witht V() zz%x% + $(zg — 31)?,
¢ = glz,e) b geC, et =0 geD, ay(s) - 0.045s ,4av(s) = 5.4255 , als) iy 2s, y(s) =
0= —6(n) nt = V(z) 5.2591s +_3.5797s —0.0032626s .4—4.60865 for s > 0. We
(35) have obtainetii (¢) = 1.62~"¢? with o(s) = 0.9s for s > 0
whereq = (z,e,7) and which is directly computed to ensurég). Assumptior? holds

as f anda—' o W are locally Lipschitz and are equal to zero

C= %q 1 V(x) <n,n >0}, at the origin. As a consequence, the conditions of Theogms

D=1q:V(z) 20,120, (VV(x), f(z,e)) > _a(V(CC(%)g)- 4 and6 are verified (adV is continuously differentiable). We

can therefore apply the three corresponding event-tringer
olicies. It has to be noted that we cannot apply the teclniqu
[34] as the conditions (7) and (9) irBf] are not satisfied.

The condition(VV (z), f(z,e)) > —a(V (x)) is needed in the
definition of D to avoid the Zeno behaviour. Indeed, after
jump n = V(z) but it is not necessary to jump again since
V(x) will decrease faster than in view of Assumptionl 3Assumptionl generalizes Assumption 2.1 i134]. Equation (6) in B4

and the ways is designed in 33). The theorem below is an corresponds to the first inequality i83) and (7)-(9) in B4] ensure the second

i~ati ; _ inequality in 3) holds; noting thatx o a; *(s) > as for s > 0 is used in
apphcatlon Of_ Theo_reni with R(q) maX{V(x), 77}' the proof of Theorem 3.3 in3M] instead 0% (9) in 4], which guarantees that
Theorem 6:Consider system3(), (36), let A = {q : the corresponding function—" in (15) is locally Lipschitz.

(z,n) = 0}, and suppose Assumptiof2 hold. The solutions  4SOSTools (25]) was used to compute, v and W .
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We therefore consider the results in Sectisi. We take the [28 — S§ C:t'olrz)v'BE — 1000
same scalar field for the strategies of SectionsA andV-E, 0.0350 0.0622 0.0727 _ 0.0847
namely(s(S)- = 0 © OL(S) : 1.8s for S Z 0. ) TABLE Il
We consider 100 initial conditions for thesystem, which  AVERAGE INTER-TRANSMISSION TIME FOR50 INITIAL CONDITIONS FOR
are uniformly distributed on the circle centered at the iarig A SIMULATION TIME OF 5.

and of radiusl0. We compare the average inter-transmission

times generated by each event-triggering condition forausi ¢ verify Assumptionl, we choose not to use the same
lation time of 100 seconds in Tablé and for the time it takes Lyapunov function as above because it would typically lead
for V(x) to become less thah01V (x(0,0)), which we denote {5 conservative estimates of and ~ in (15), which would
T~ in Tablell. We see that the strategy in SectidhA can give rise to many transmissions. Instead, we takeo be
lead to less transmissions and that playing with, 0) allows V(z) = 0.005867922 4+ 0.00407912125 + 0.0063684232 for
to trade pgrfprmancé.(e.time T* in this case) for the number e strategy in28] which ensures Assumptichwith a(s) =
of transmissions. 0.5s, 7(s) = 0.01s? for s > 0. The functionW in (17) is

It has to be emphasized that the results obtained in thigferent from the one used in AssumptiBniV (¢) = 2.222¢>
section depend on the considered Lyapunov functicand on for »(s) = 0.9s for s > 0. In that way, the conditions of

the parameters of the event-triggering mechanisms. M@eovrheoremd4 are verified.

each of the presented event-triggering techniques ensures The obtained average inter-transmissions times for each
different asymptotic stability property. That is the reasehy  strategies are summarized in Tablle where 50 initial condi-

we cannot assess whether one method is better than anofagis for thex-system have been taken uniformly on the circle
in general. Nevertheless, we have seen that the propoggdhe center the origin and of radiu§. We notice that the
technique in SectioW-A exhibits great potential for real-time policy in SectionV-B may allow to reduce the usage of the
scheduling, since its parameters can be designed accdaingetwork by adjusting the parameterlt has to be noted that
the available resources. For instance, functioms (18) with e could not compare these results with the time-triggered

slow increasing slopes could be chosen in case of overloadiiup of L9 as we were not able to show that the required
the network or in the processor executing the controller f@pnditions hold.

example.
VIl. CONCLUSION

B. van der Pol oscillator We have investigated the event-triggered stabilization of
nonlinear systems using the hybrid formalism @&.[This
approach allows to capture in a unified manner many event-
triggering conditions available in the literaturEs], [16], [20],

is designed to exponentially stabilize the origin of theteys [28l: [34]. Moreover, two new policies have been presented
We envision the scenario where a network is used to clod@ich both make use of additional variables. They have
the feedback loop. As in Sectionl-A, we consider the error been shown to potentially reduce the amount of transmission

induced on the control input = @ — u, we thus obtain the compared to 28], [34] on two physical examples. All the
system below stud|_ed stra?e_gles are guarantged to ensure the eX|_sténce 0
a uniform minimum amount of time between any two jumps.
T1 = o, Lo = —x1 — Lo + €. (38) The envisioned setup requires the continuous evaluation of
_ ) ) ) ) the triggering condition. In practice, the triggering maoctsm
We either use the event-triggering policy of SectitfB g tynically implemented on a digital platform, hence the
or the oné in [28. We first need to verify that the re-yangmission criterion is only periodically evaluatecading
quired condmgns are satisfied. Fpr the technique in Sectig, a periodic event-triggered control paradigrsee,e.g.,[1],
V-B, Assumption3 is ensured with V(z) = 1.38152 + |10, The results of this paper can be combined with those in
1434923, + 3.6869x123 + 1.928z{a3 + 4.71972%75 +  [27] 1o derive triggering strategies which take into accoust th
0.834322% +4.05421 23 — 19823712 +2.27122054+ 3473323, hardware sampling. On the other hand, throughout the paper,
ay(s) = 055 ay(s) = 10(s* + 5?! W(e) = lel, we have focused on the so-called one packet transmission
aw(s) = aw(s) = s, L(xe) = [o7 — 2|, H(z) = problem as all the states are sent together in a single packet
| = af — 2%y + 20123 + 221 + 225, G(x,e) = 8.001 and This generally implies the collocation of all sensors a, f
o(s) = 0.001s for s > 0. In that way, the conditions of itiple-input control systems, collocation of all aciort as
Theorem3 are verified. We have heuristically selectesmall, \ye|| The extension of this work to distributed event-teged

¢ = 0.001, and we take different values farin order to study control would be an interesting direction to follow. Preiirary
its impact on the amount of transmissions. results are presented ia4].

We consider the forced van der Pol oscillatés = x5,
ig = (1—2%)xg—x1+u, Wherez = (x1,x2) € R? is the state
andu is the control input. The controller = —z5 —(1—2%)z2

5We do not compare the results with those given by the eviygetring
technique in SectionV-E, because different Lyapunov functions will be ACKNOWLEDGMENT
designed to verify Assumptions and3, adding to this the flexibility of the — Romain Postoyan would like to thank Luca Zaccarian for
triggering condition in SectioV-E in terms of the choice of the dynamics of . . o .
n and its initial condition render fair comparisons difficult his help on Theorem and Constantin Ma@rescu for fruitful

6S0STools (@5]) was used to comput®’, W, L, G, o, v, « . discussions.
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SectionV-A [28] SectionV-E
1(0,0) = V(@(0,0))  7(0,0) = max V(z) 1(0,0) = 10*
x| <10
0.5472 0.5645 0.6199 0.5030 0.4750
TABLE |
AVERAGE INTER-TRANSMISSION TIME FOR A SIMULATION TIME OF 100s.
SectionV-A [28] SectionV-E
7(0,0) = V(@(0,0))  7(0,0) = max V(z) n(0,0) = 10*
x —
T* 1.7563 1.9805 2.0103 1.8549 1.0572
Number of transmissions 32.02 19.87 7.68 34.32 12.37
TABLE Il

AVERAGE VALUES OFT™ AND OF THE NUMBER OF TRANSMISSIONS

VIII. A PPENDIX

Proof of Lemma 3. We only consider the case wher@

is non-empty, closed and unbounded. The proof follow'é
Let

similar lines when O is non-empty and compact.

Yo s inf  V(z) which is well-defined onR>.
|z| Aa>s,2€0 -

Indeed, the sefz € O

unbounded ass — oo in view of the assumptions ofy.
Furthermore, for any € O, ¥(|z]|4) < V(z). The functiony
is a priori neither continuous nor strictly increasing, lewer
we can always construet; € K., such thata;(s) < ¥(s)

foranys > 0. Let x : s — sup
lz|a<s, 2€0

|z| 4 > s} is non-empty and closed

for any s > 0 (as.A is a compact subset of the unbounded
set 0), furthermoreV is non-negative and continuous. The i i
function v is positive definite, non-decreasing and grows

V(z). Like above,

We proceed by contradiction and suppose that
limy, o V(”hf(z))jlw(”hf(”)) < 0. Sincer; > 0 and
— 0 asi — oo,
limy, o (z+hf(r));W(z+'hf(r))
= lim;_, o, Y@ ATif @)W (zt7if ()
T (V<m+nf’(z))lvv<m+nf<m>>
4 V(@)= Wizi) _ V(CM)—W(CM)) (41)

= lim; .o 7‘/(“);"‘/(“)
S TE ST
- W(I+Tif(7_ﬂi))—W(Ii)

wherez;, i € Z>( are defined above. Sindé is continuously
differentiable, it is locally Lipschitz. Consequentlyette exists
L > 0 such that

V(zi)

— 11m1_>

this function is well-defined oiR>(, non-decreasing, grows

unbounded and such th&t(z) < x(|z|4) for any z € O.
We need to ensure that is continuous at) in order to
be able to upper-bound it by a clas; function a,. Let
e > 0, there existsd > 0 such that|z — y| < § implies
[V(z) — V(y)| < e by continuity of V' . Let n € [0,4],
x(n) = sup V(z) = V(y) for somey € O with
|z|a<n, z€O
lyla <, asV is continuous and the s¢t: € O : |z|4 <7}
is compact. Becaused is closed, there existz € A
such thatly — z| = |yla < n < 4. By continuity of V,
V(y) —V(z) = V(y) — 0 < e. Hencex(n) < e for any
n € [0,0] which proves the continuity ofy at 0. As a
consequence, we can always construgt € K., which
upper-boundy. O

Proof of Lemma 4. Let x € C' N D with f(z) € To(z).

Vetnf@)Ved| <y, pleectn@)]

=0

(42)
since f(z) = lim;,(x; — x)/7. By applying the same
arguments onlim;_, W(””f(rf))_w(“), we derive from
(41) that

(VV (@), F(2)) = (VW (@), f(2)) = lim;_, o LWL
(43)
Sincex; € C for anyi € Z>o, V(z;) > W(z;). Hence

0 < —
V(w+hf(w));W(w+hf(w))

< limpo

(44)

which contradicts limj,_,q L& @) W(zthf(z) -

According to the definition of the tangent cone (see Def|n|t|0Hence (VV(2), f(z)) > (VW(z) f(Z:)> in view of (40)

1), there exist sequence{s;z}lez>0 and {7’1}1€Z>0 with z; €
C andr; > 0 for anyi € Z>g andz; — x, 7; — 0 asi — oo,
such thatf(z) = lim; , (z; — x)/7;. On the other hand,

(VV(2), f(x)) = (VW (), f(2))

limy,_,o LEHALEN V)W (@ thf () +W ()
(39)
which simplifies to, ad/(z) = W(z) sincex € C N D,
\%
WV, 1)) - \</ ( lf(w)&W( ) (40)

= limy,_, 5

which concludes the proof. O

We need the lemma below in the proof of Theorgém

Lemma 5:Let ¢ be a solution to Z), it holds that
4(t,5) € {F(@(t.1)} N Te(é(t,4)) for all j € Zsq and
almost allt € 17, wherel’ = {t : (t,j) € domg}. O
Proof. The proof follows the same lines as the proof of the
necessity of (a) in Lemma 5.26 i8][ which we recall. Since
is a solution to 2) andC is closedg(t, j) € C forall j € Z>g
andt ¢ I7. Furthermore%¢(t,j) exists and belongs to
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{F(¢(t,7))} for all j € Z>, and almost alk € I according
to (6.1) in 8] (note that system?) satisfies Assumption 6.5
in [8]). Hence for anyj € Z>, and almost allt € 17, for
any sequencét; }icz., with t; > 0, t; — 0 asi — oo, and
t+t € I, Lo(t,j) = lim e (ot + ti, ) — &(t,5))/t.
By definition of the tangent cone (see Definitidl), as
ot + ti,j) € C foranyi € Zwo (@st +t; € IY),
lim; oo (@(t + ti,7) — @(t,4))/t: € Te(P(t,7)). Hence, we
have proved that>¢(t,7) € {F(o(t,5))} N Tc(o(t,5)) for
all j € Z>o and almost alk € 1. O

Proof of Theorem 1. Let ¢ be a solution to2), (¢, j) € dom¢
and0 =1ty <t <...<tj4 =1 satisfy

dom¢ N ([0,#] x {0,...,5}) U |

[ti, tiva] x {3}

(45)
For eachi € {0,...,j} and almost alk € [t;, t;+1], ¢(s,i) €
C and L ¢(s,i) € {F(¢(s,i))} N Te(d(s,4)) (according to

Lemmab). Hence, 11) implies that, for each € {0,...,;}
and for almost alls € [¢;,t;11],
Ro(d’(svl)v %d’(svl)) < _aR(R(¢(SaZ))) (46)

As a consequence, sinde is locally Lipschitz, it holds that
(see p. 99 in 30)),

ER(H(s,0) < RO((5,4); 5 (5,9))- (47)

In view of (46) and @7), for eachi € {0,...,j} and for
almost alls € [t;, t;11],

LR(#(s,0) < —ar(R(¢(s,i)))- (48)

We derive that the sefd is uniformly globally stable by

11

(t1,0), (t1,1) € dome and (ts, 1), (t2,2) € dome; otherwise
the solution never jumps or jumps only once and the desired
result trivially holds. Suppose also thaft,1) ¢ A for all

t € [t1,t2]; otherwise the solution enters in the attraciér
and remains in it for all future times as this set is strongly
forward pre-invariant for systen®?) (see Definition2) since

it is closed and uniformly globally stable in view of the pfoo
of Theorem1. Hence¢(t,1) € S(A) for all t € [ti,t].
We also have that(t;,0) belongs toRZ'(A) and to D
(by definition of ¢;), however it does not belong tgl as
otherwise ¢(¢;,1) € A by strong forward pre-invariance
of A. In other words,é(t1,0) € S(A) N D. Consider the
function ¢ from item (ii) of Propositionl which is defined
on an open set containing(A). Since¢(t;,0) € S(A)N D
and ¢(t1,1) € S(A), ¥(¢(t1,1)) < a according to item
(i-a) of Proposition1. By continuity of ¢ — ¢(¢,1) on
[t1,t2) and of ¢» on S(A), we deduce that the next jump
instant cannot occur beforg(¢(¢,1)) becomes equal to
b in view of item (ii-b) of Propositionl. For almost all
t € [ti,ta], 2(d(t,1)) < AMw((t, 1)) in view of item
(ii-c) of Proposition1 and p.99-100 in 30]. Therefore, the
next jump cannot occur befor the solution tod = A(6)
with 6(0) = a, becomes equal tb, in view of the standard
comparison principle. We denote byA) this time which is
strictly positive (note that,, b, A\ may depend om\ and thus
on A). Hence we have proved that—¢; > 7(A). We deduce
that the solutions to2) have a uniform semiglobal dwell-time
outsideA by induction. Assume now thad compact and that
item (i) of Proposition1 holds with S(A) = RZ'(A). Let
A > 0 and¢ be a solution toZ) with |¢(0,0)| < A. SinceA

is compact, there existA > 0 such that/¢(0,0)|4 < A. It
then suffices to follow similar lines as above to concludé tha

following the same lines as in the proof of Theorem 3.18 ife solutions toZ) have a uniform semiglobal dwell-time in

[8]. To prove uniform global pre-attractivity, we follow sitar
arguments as in the proof of Proposition 3.27 &h [For this
purpose, we show that the last condition of Proposition 3.
in [8] is verified. Letr > 0 and ¢ be a solution to ) with
|¢(0,0)| 4 < r. Take(t, j) € dom¢ with t + j > T for some
T > 0. If there existst’ + ;' < ¢+ j such thatp(t’, j') € A,
#(t,j) € A since the setd = R~1(0) is strongly forward
pre-invariant (see DefinitioB). Then the solution has reache
the attractorA. If it is not the case, then> 7(r)(j — 1), i.e.
# +1 > j, wherer(r) comes from Definitior8 according
to item (iv) of Theoreml. Thereforet + j > T implies
t+ =t~ +1 > T. We deduce that > ~,.(T) — N, with

7(r)
vr(s) = (1 + T(lr))‘ls for s > 0 which is of class,, and

N, = (1+ =£5)~'. We can thus invoked the same argumen

as for the pFoof of Proposition 3.27 i8][to conclude that4d

is UGpPAS. WhenA is compact, the fact that it is UGpAS
for system B) prevents the existence of finite escape time

Hence, the conditions at the end of Theorénallow us to
apply Proposition 6.10 ing] to conclude that any maximal
solution is complete. O

Proof of Proposition 1. Let A > 0 and ¢ be a solution to
(2) with |¢(0,0)|4 < A. Since items (i)-(ii) of Theorem
1 hold, R(¢(t,5)) < A for any (¢,5) € domg with

A = agr(A). Suppose there exist < t; < t, such that

this case. O

%7roof of Proposition 2. Let R : ¢ — max{0, R(¢) — £}

which is well-defined orC’ U D U G(D) C C U D U G(D).
This function is non-negative, locally Lipschitz on an
open set containing” (thus continuous) and is equal to
ero only on A. Moreover, R(q) tends tooco as [q] 3
ends tooo. Indeed,|q| ; — oo implies that|gl4 — oo
since |¢ ;7 < lgla (@s A C A). We then use the left
hand-side of item (i) of Theorenl. Hence there exist
Qq,09 € ICOOASUCI':I\ thatd}\(|q|vz) < R(q) < OAéQ(lqu)
for any ¢ € CU D UG(D) in view of Lemma3. Let

€ C and F(q) € Tg(g). Consider the case where
%(q) —e > 0,ie q € C\RZ'(g), thenTz(q) = Tc(q)
and thusF(q) € Tc(q). As a consequence, we use item
i) of Theorem1 (which is assumed to hold) to derive that
°(¢; F(q)) < —ar(R(q)) = —ar(R(q)+e) < —ar(R(q)).
If R(q)—e <0, thenR°(q; F'(¢)) = 0. Consider now the case
whereR(q) — & = 0 and note thallz(¢q) = To(q) U Th-1 (-

If F(q) € Tco(g), we deduce thatR°(g; F(q))
max{(VR(q), F(q)),0} < max{-ar(R(q)),0} < 0
(using Lemmal). If F(q) € TR?(E), we apply Lemma
4 with V(x) e and W(z) R(q) to derive
(VR(q), F(q)) < (Ve, F(q)) = 0. Hence, wherR(q) —e =0
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and F(q) € Talq), R°(¢;F(g)) < 0 = —a(R(¢g)) the inter-jump time is lower bounded by the time it takes for
(as q € A in thls case andfz is equal to zero on Mle| to grow from0 to max{|z|,n}. For anyq € R"\ A,
A). We have shown thatR°(¢:F(q)) < —a(R(q) we definey(q) = ity whenle] < M~'max{|z|,n}
for any ¢ € C with F(q) € Tga(q). Let ¢ € D, andiy(q) = M~! otherwise. We note that |s mdeed locally
R(G(q)) = max{R(G(q)) — £,0} < max{R(q) — £,0}  Lipschitz on an open set containifyA) = R_'(A)\A. Let
in view of item (iii) of Theorem1. HenceR(G(q)) < R(q). ¢ € S(A) N D and G(g) € S(A). It holds thatG(q) =
Finally, in view of item (ii) of Proposition2, we apply the (z,0,W(e)), hencey(G(q)) = 0: item (ii-a) of Proposition
same arguments as in the proof of Theorkto conclude that 1 hoIds with @ = 0. In view of the above discussions,
A is UGpAS. Noting thatz(D) c G(D) c CUD c CUD, item (ii-b) of Propositionl is satisfied withb = M ~L. For
we follow the same lines as those in the proof of Theoreaimost allq € S(A), (V|z|, f(z,e)) < Li(la] + le]) <

1 to ensure thatd is UGAS. The last part of Propositiod L, (max{|z[,n}+|e|) for someL; > 0 in view of Assumptlon
is obtained by using the functioR (instead ofR), the fact 2and(Vn,—d6(n)) < Lyn < Lymax{|x|,n} for someL, > 0
that R°(¢; F(q)) < —ar(e) whengq € C, R(q) > ¢ and asd is locally Lipschitz. Thus, for almost aly € S(A),
F(q) € Tc(q) and by following similar arguments as in themax{(V|z|, f(z,e)),(Vn,—d(n))} < N(max{|z|,n} + |e|)

proof of Theoreml. O for someN > 0. Consequently, for almost ajl € S(A),
lg(z,e)| max{ |zl,n} + Nlel(max{ |z],n}+lel)

Proof of Theorem 2. We consider the locally Lipschitz (Vib(g), Flq)) < max{[z],n}? (51)
Lyapunov function, for ally € R™s, .
yap i sincelg(z,¢)| < La(|z| + |e) < Ls(max{|z|,n} + [e|) for

R = max{V(z),W(e),n}. 49) someLs > 0 according to Assumptioi, <Vw( ), F(q)) <

@ tVie). We).my R elveriy bl metl ¥ lme ol -

Item (i) of Theorem1 holds with A {0} by US- 1, va{lal )2 Lole \mdx{\m\nn}+zv\e|mdx{|z| DN ]ef?

ing (14), Lemma 2 and noting thaty > 0 on C U max{]z]y} N
DU GD). Let ¢ € C and F(q) € Tc(g). When L3+(L3+_N)1j)(q)+]\71/)(q) . Hence item (ji-c) of Proposition
R(g) = V(z) > max{W(e),n}, we derive from {6) 1holds with\(s) = L3+ (Ls+ N)s+ Ns? for anys > 0. By
and Lemmal that R°(q;F(q) = (VV (), f(z,e)) < applying Propositiori, item (iv) of Theorenml is verified and

—(I = o) o a(V(z)) = —( — o) o a(R(q)). Similarly, We derive that4 is UGpAS. We note tha# is compact and
when R(q) = 1 > max{V(z),W(e)}, R(q:F(q) — thatG(D)cC CUD. Letqe C\D, if q belongs to the interior
—8(n) = —6(R(g)). When R(q) = n = V(z) > OfC Tclg) = R+t and F(q) € Tc(g). Otherwiseg is

W(e), R(q; F(g) = max{(VV(2). f(z.¢)) . (Vn, ~0(p))} Such thaty =0, in this caseTc(q) — Rn-77 x Rxp and
according to Lemmal which is less than or equal tof(a) = (f(z.€),9(x,e),0) € Tc(q). According to Theorem

— min{(I— o) o a(R(q)),5(R(q))}. Consider the case wherel, A is UGAS. O

R(q) = W(e) = max{n,V(z)}, i.e. ¢ € C N D. We write

C = CiLUC, whereC; = {q : V(z) > W(e)} and Proof of Theorem 3. We consider the locally Lipschitz
= {q : n > W(e)}. Whenq € C;\Cs, necessarily function, for allg € R",

ng) € Te¢,(g) and we again apply Lemma to obtain R(g) = V(z)+nW(e)? (52)

R%(q; F(q)) = max{{VV(z), f(z,e)),(VW(e),g(x,€))}. . e .

Since (VV (z), f(z,e)) < —(I—0a)oa(V(g)) = —(I—0) o which szatlsﬁes item (i) qf Theorerh with aR( )=ay(s)+

a(R(q)) for any ¢ € C1, by applying Lemmad, we derive ¢aw(s)” andag(s) = min{ay (5), caw(5)%} for s > 0 us-

that R°(q; F(q)) = (VV (), f(z,e)) < —(I — o) o a(R(g)). NG Assumptior8and the fact thaiy € [e,¢ onCUDUG(D,).
A similar conclusion holds when € C5\C;. Suppose now For almost allg € C, (VR(q), F(q)) = <VV(~’C)7f($7€)> +
thatq € C1 N Cy N D. SinceF(q) € Te(q), F(q) belongs n{(VW(e)*,g(z,e)) + (=2nL(z,e) — n* — Gz, e))W(e)*.
to T¢;, (¢) or to Te, (q). Take F(q) € Te, (q) without loss of From Assumptior8 and in view of (23)-(24) in 37, for all
generality. We obtain thak°(¢; F(q)) < —(1— o) oa(R(¢q)) 4 € C,

by invoking the same arguments as above. Consequently, iteRe (¢: F(¢)) < —o(|z|) — o(le|) — H?(x) + G(x, €)W (e)?

(ii) of Theorem2 holds withag = min{(I — o) o , §}. Let +(=2nL(x,e) —n* — G(z,e))W(e)?
g€ D, +2nW(e) (L(w, )W (e) + H(z)
RG() = max(V(2),0,W()} < Rla)  (50) ) e e

so that item (iii) of Theoreni holds. We now show that item Therefore, for allg € C,
(iv) of Theoreml is satisfied using Propositioh Let A > 0 R
and A := @r(A). We work on the setR=(A) which is & (@ F(@) = —e(z) - (| )—Hz(x) —n°W(e)?
compact and strongly forward pre-invariant (see Definin (

as items (i)-(iii) of Theoreml hold. The inter-jump time is Using the fact thanW (e)H (z) < n*W(e) + H?*(z), we
the time it takes foi¥ (e) to grow from0 to max{V'(z),n}. obtain R°(¢; F(q)) < —o(|z]) — o(le]) < —p(|(z,e)|) for
We look for a lower bound on this time. For apye RZ*(A), some classc function p. Consequently, item (i) of Theorem
W(e) < Mle| anday, oW (e) < Mle| for someM > 0asW 1 is satisfied withar = poa@,'. Let ¢ € D, R(G(q)) =

is continuously differentiable and Assumptigmolds. Hence, V(z) < R(q): item (iii) of Theorem1 is ensured. We apply



IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Propositionl to show that the solutions t®%), (26) have a
uniform semiglobal dwell-time. Lef\ > 0 and definey(q) =
+ which is well-defined on an open set containifig" (A)

(sincen € [¢, @ on C U D UG(D)). Letq € RZ'(A)N D,
¥(G(q)) = ¢ ' item (ii-a) of Propositionl holds with a =
7', In view of the definition of the jump set in26), for
any ¢ € RZ1(A), ¢(q) < ¢! implies ¢ € C\D: item (ii-
b) of Propositionl holds with b = ¢~'. Noting that is
continuously differentiable oR_-"(A), let ¢ € RZ*(A)

<Vn,72nL(m,e)fn27G(m,e)>
n? ’

(53)

(Vi(q), F(q))

Sinceq € RZ*(A), RZ*(A) is compact and., G' are contin-
uous, there existd/ > 0 such thatmax{L(z,e), G(x,e)} <
M, thus

(Vir(q), Flg)) < ZMged (54)
and item (ii-c) of Proposition 1 holds with
A(s) = 2Ms + 1 + Ms? for any s > 0. Proposition

1 guarantees that the solutions t®5), (26) have a
uniform semiglobal dwell-time (sinced is compact).
Noting that A is compact,G(D) C C U D, we only
need to prove thatF'(q) € Tc(g) for any ¢ € C\D
to conclude the proof using Theoreth Let ¢ € C\D,
whenn € (c,¢) the result holds adc(q) = R tnetl,
Supposen = ¢ Tc(q) = R"=T" x (—c0,0]. Since
F(q) (f(a:,e),g(x,e),—QnL(:c,e) - 772 - G(xve)) and L
andG are non-negativel’(¢) € Tc(q). As a consequenced
is UGAS in view of Theorent. O

Proof of Theorem 5. We consider the following locally
Lipschitz functionR(q) := Ri(z) + Ra(e) for all ¢ € R™q,
where

Rl(I) =
RQ(G)

maX{V(I) —a! (2p)a 0}7

max{(le])  p, 0}. (59)

We note thatR only becomes equal to zero on the compa%t

setA = {(z,e) : V(z) < a 1(2p) andy(le]) < p}, is
continuous and tends teo only as|q|4 — co. Hence item
(i) of Theorem1 holds by applying Lemma&. Let ¢ € C.
WhenV (z) —a~1(2p) > 0, it holds that, in view of 15) and
Lemmal,

Ry (x; f(x,¢€)) (VV (@), f(z,e)) < —a(V(2)) +(le])

< “a(V(D) +p o

since on the sef’ we haveR(q) = Ry (z), we derive that

Ry (z; f(z,e)) —a(Ri(z) +a"'(2p) +p
—a(R(q) +a71(2p)) + p.

= (57)

We note that fa(R(q)) + p = 2a(R(g) +
a0 a7l(2p) < a(R(g) + a1(2p)) since a is
strictly increasing as a clagss, function. Therefore

R;(: f(x,e)) < —5a(R(q)) — p+p = —5a(R(q)). In view
of Lemmal and above, whei (z) — a~1(2p) < 0, we have
that RS (z; f(z,€)) < 0 = —1a(R(q)) asq € A and R is
equal to zero ond . We now considerR, still for ¢ € C.

Note that we cannot have(le|) — p > 0 asq € C. When

~v(le]) — p < 0, RS(e; g(z,e)) = 0. Consider the case where
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v(le]) = p =0, i.e. ¢ € C N D and assume&’'(q) € Tc(q).
According to Lemmad, 0 = (Vp, F(q)) > (Vv(le]), g(z, e)),
henceRs(e; g(x,e)) = max{0, (V~y(le|),g(x,e))} < 0. We
have proved that item (ii) of Theorerh is verified with
ap = 1a. Letq € D, R(G(q)) = Ri(z) + 0 < R(q): item
(iii) of Theorem 1 holds. We now prove that the solutions
to (31), (32) have a uniform semiglobal dwell-time. Define
¥(q) = ~(le]) for ¢ € R™, which is locally Lipschitz on
an open set containing_'(A) as desired. Le\ > 0 and
q € RZY(A) N D, ¢(G(g)) = 0: item (ii-a) of Proposition
1 holds witha = 0. Let ¢ € RZ*(A), ¥(q) < p implies
that ¢ € C\D: item (ii-b) of Propositionl is verified with
b = p. Since the functiony is continuously differentiable,
there existsM > 0 such that for almost alf € RZ*(A),
(V7(le]), g(w,e)) < M. Hence item (ji-c) of Propositiorl
is verified with A(s) = M for s > 0. We deduce that the
solutions to 81), (32) have a uniform semiglobal dwell-time
by applying Propositionl (as A is compact). According
to Theoreml, A is UGpAS. Note that4 is compact and
G(D) ¢ CUD. Letq € C\D, i.e. y(le]) < p, then
F(q) € Tc(q) = R"=*"<, ConsequentlyA is UGAS in view
of Theorem1. O

Proof of Theorem 6. We considerR(q) = max{n, V(x)}
which is locally Lipschitz oriR™s. Item (i) of Theoremni holds
with @r(s) = max{s,av(s)} and az(s) = Fmin{s/2,
ay(s/2)} for s > 0. Let ¢ € C and F(q) € Te(q). When
n > V(z), R°(q; F(q)) —d(n) according to Lemma
1. Hence R°(q; F(q)) —0(R(q)). Whenn = V(x),
R(4:F(q) = max{(VV(z),(z,e)),~8(n)} according
to Lemmal. We apply Lemma4d with V(z) n and
W(z) = V(z) to derive that(VV(z), f(z,e)) < —d(n),
thereforeR°(q; F(q)) = —d(n) = —06(R(q)). Consequently,
item (ii) of Theorem1l is verified withar = §. Let ¢ € D,
R(G(q)) = V(z) < R(q): item (iii) of Theorem1 holds.
From the fact thatt < o o «, the next jump instant cannot

ccur beforeW (e) grows from0 to o o a(V(z)), which
corresponds to the event-triggering condition studied in
Section V-C. We know from Theorem4 that this time is
lower bounded by a uniform semiglobal constant as long we
are not inA := {q : (z,e) = 0}, since Assumptiond-2

are verified. On the other hand, if a solution lies.inwith

n # 0, no jump will occur asV/ (x) will never become equal

to n. As a consequence, the solutions &p)( (36) have a
uniform semiglobal dwell-time outside the origin, and henc
outside.A. We conclude the proof by applying Theordm(]

REFERENCES

[1] K.E. Arzén. A simple event-based PID controller. Pmoceedings of the
14th IFAC World Congress, Beijing, Chingolume 18, pages 423-428,
1999.

K.J. Astrtom and B.M. Bernhardsson. Comparison of periodic and event
based sampling for first-order stochastic systems$?rbteedings of the
14th IFAC World congress, Beijing, Chingolume 11, pages 301-306,
1999.

K.J. Asttom and B.M. Bernhardsson. Comparison of Riemann and
Lebesgue sampling for first order stochastic systems.|[EEE Con-
ference on Decision and Control, Las Vegas, U.Spages 2011-2016,
2002.

(2]

(3]



IEEE TRANSACTIONS ON AUTOMATIC CONTROL

(4
(5]

(6]

(7]

(8]
El
[20]

(11]

[12]

(23]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

F. H. Clarke.Optimization and nonsmooth analysfSlassics in Applied
Mathematics vol. 5, SIAM, Philadelphia, U.S.A., 1990.
M.C.F. Donkers and W.P.M.H. Heemels. Output-based tetreggered

control with guaranteed ~.-gain and improved and decentralized event-

triggering. IEEE Transactions on Automatic Contrd@7(6):1362—-1376,
2012.

F. Forni, S. Galeani, D. Nesi¢, and L. Zaccarian. Laeypsors for the
scheduling of measurement samples transmission in lifeaed loops
over networks. IMEEE Conf. on Decision and Control, Atlanta, U.S.A.
pages 6469-6474, 2010.

R. Goebel, R.G. Sanfelice, and A.R. Teel. Invariancen@ples for
switching systems via hybrid systems techniqu&ystems & Control
Letters 57:980-986, 2008.

R. Goebel, R.G. Sanfelice, and A.R. Teéllybrid dynamical systems
Princeton, U.S.A., 2012.

14

[31] M. Velasco, P., Marti, and E. Bini. On Lyapunov samglifor event-
driven controllers. INEEE Conference on Decision and Control held
jointly with the Chinese Control Conference, Shangai, n@hipages
6238-6243, 2009.

G.C. Walsh, O. Beldiman, and L.G. Bushnell. Asymptdiihavior of
nonlinear networked control system&EE Transactions on Automatic
Control, 46:1093-1097, 2001.

X. Wang and M.D. Lemmon. Event design in event-triggefeedback
control systems. IhEEE Conference on Decision and Control, Cancun,
Mexicg pages 2105-2110, 2008.

X. Wang and M.D. Lemmon. On event design in event-trigde
feedback systemsAutomatica 47(10):2319-2322, 2011.

[32]

(33]

[34]

L. Griine. Asymptotic behavior of dynamical and control systems under

pertubation and discretizationNumber 1783. Springer, 2002.
W.P.M.H. Heemels, M.C.F. Donkers, and A.R. Teel. PRdidoevent-
triggered control for linear systems.[EEE Transactions Automatic
Control, 58(4):847-861, 2013.

W.P.M.H. Heemels, J.H. Sandee, and P.P.J. van den Bo&dalysis
of event-driven controllers for linear systemisiternational Journal of
Control, 81(4):571-590, 2009.

H.K. Khalil. Nonlinear systemsPrentice-Hall, Englewood Cliffs, New
Jersey, U.S.A., 3rd edition, 2002.

E. Kofman and J.H. Braslavsky. Level crossing samplimdeedback
stabilization under data-rate constraints. IEEE Conference on Deci-
sion and Contrgl pages 4423-4428, 2006.

M. Krsti¢ and P.V. Kokotovi¢. Lean backstepping dgsfor a jet engine
compressor model. IfProceedings of the 4th IEEE Conference ory
Control Applications pages 1047-1052, 1995.

J. Lunze and D. Lehmann. A state-feedback approach ¢otdased
control. Automatica 46:211-215, 2010.

M. Miskowicz. Send-on-delta concept: An event-basedadreporting
strategy. Sensors6(1):49—63, 2006.

D. Nesi¢c and A.R. Teel. Input-output stability propes of networked

Romain Postoyan was born in Paris, France, in
1982. He received the M.Sc. degree in Electrical
and Control Engineering from ENSEEIHT (France)

in 2005. He obtained the M.Sc. by Research in
Control Theory & Application from Coventry Uni-
versity (United Kingdom) in 2006 and the Ph.D. in
Control Theory from Université Paris-Sud (France)
in 2009. In 2010, he was a research assistant at the
University of Melbourne (Australia). Since 2011, he

is a CNRS researcher at the Centre de Recherche en

PLACE
PHOTO
HERE

control systemslEEE Trans. on Aut. Contrpl49:1650-1667, 2004.
D. NeSic and A.R. Teel. A Lyapunov-based small-gdiedrem for
hybrid 1SS systems. IHEEE Conference on Decision and Control,
Cancun, Mexicppages 3380-3385, 2008.

D. Nesi¢, A.R. Teel, and D. Carnevale. Explicit cortation of the
sampling period in emulation of controllers for nonlineangpled-data
systems. IEEE Transactions on Automatic Controb4(3):619-624,
2009.

G. Otanez, J.R. Moyne, and D.M. Tilbury. Using deadlzata reduce
communication in networked control systems. American Control
Conference, Anchorage, U.S.pages 3015-3020, 2002.

C. De Persis and R. Postoyan. A Lyapunov redesign ofdioation
algorithms for cyberphysical systems. anXiv 1404.05762014.

R. Postoyan, A. Anta, W.P.M.H. Heeemels, P. Tabuadd, BnNesic.
Periodic event-triggered control for nonlinear systenmslHEE Confer-
ence on Decision and Control, Florence, 1taB013.

R. Postoyan, A. Anta, D. Nesi¢, and P. Tabuada. A ungfyLyapunov-
based framework for the event-triggered control of nominsystems.
In IEEE Conference on Decision and Control and European Cobntrg
Conference, Orlando, U.S.Apages 2559-2564, 2011.

R. Postoyan, P. Tabuada, D. Nesi¢, and A. Anta. Etigdgered and
self-triggered stabilization of distributed networkedhtrol systems. In
IEEE Conf. on Decision and Control and European Control Conf
Orlando, U.S.A.pages 2565-2570, 2011.

S. Prajna, A. Papachristodoulou, P. Seiler, and P.ArilBa Sos-
tools: sum of squares optimization toolbox for matlab. URL:
http://www.cds.caltech.edu/sostqo004.

A. Seuret, C. Prieur, and N. Marchand. Stability of noear systems
by means of event-triggered sampling algorithm&VA Journal of
Mathematical Control and Informatigr31(3):415-433, 2013.

E.D. Sontag and Y. Wang. On characterizations of theutiip-state
stability property.Systems & Control Letter4(5):351-359, 1995.

P. Tabuada. Event-triggered real-time schedulingtabiizing control
tasks.IEEE Transactions on Automatic Contr&l2(9):1680-1685, 2007.
P. Tallapragada and N. Chopra. On event triggered imgdior nonlinear
systems. IEEE Transactions on Automatic Contrdd8(9):2343-2348,
2013.

A.R. Teel and L. Praly. On assigning the derivative ofistutbance
attenuation control Lyapunov functioMathematics of Control, Signals
and Systemsl3(2):95-124, 2000.

Automatique de Nancy (France).

Paulo Tabuadawas born in Lisbon, Portugal, one
year after the Carnation Revolution. He received
his ‘Licenciatura’ degree in Aerospace Engineering
from Instituto Superior Tecnico, Lisbon, Portugal
in 1998 and his Ph.D. degree in Electrical and
Computer Engineering in 2002 from the Institute for
Systems and Robotics, a private research institute
associated with Instituto Superior Tecnico. Between
January 2002 and July 2003 he was a postdoctoral
researcher at the University of Pennsylvania. After
spending three years at the University of Notre
Dame, as an Assistant Professor, he joined the ElectricginEering De-
partment at the University of California, Los Angeles, whére established
and directs the Cyber-Physical Systems Laboratory.

Paulo Tabuada's contributions to cyber-physical systemse tbeen rec-
ognized by multiple awards including the NSF CAREER award2@05,
the Donald P. Eckman award in 2009 and the George S. Axelbydaima
2011. In 2009 he co-chaired the International ConferencbridySystems:
Computation and Control (HSCC'09), in 2012 he was progranctar for
the 3rd IFAC Workshop on Distributed Estimation and ControNetworked
Systems (NecSys'12), and in 2015 he was the program co-fdratine IFAC
Conference on Analysis and Design of Hybrid Systems. He séswed on
the editorial board of the IEEE Embedded Systems LettersthadlEEE
Transactions on Automatic Control. His latest book, onfigaiion and control
of hybrid systems, was published by Springer in 2009.

PLACE
PHOTO
HERE




IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Dragan Nesic is a Professor in the Department
of Electrical and Electronic Engineering (DEEE) at
The University of Melbourne, Australia. He received
his BE degree in Mechanical Engineering from The

PLACE University of Belgrade, Yugoslavia in 1990, and
PHHE%TEO his Ph.D. degree from Systems Engineering, RSISE,

Australian National University, Canberra, Australia
in 1997. Since February 1999 he has been with
The University of Melbourne. His research interests
include networked control systems, discrete-time,
sampled-data and continuous-time nonlinear control
systems, input-to-state stability, extremum seeking robnepplications of
symbolic computation in control theory, hybrid control &ms, and so on.
He was awarded a Humboldt Research Fellowship (2003) by thraAder
von Humboldt Foundation, an Australian Professorial Fedloip (2004-2009)
and Future Fellowship (2010-2014) by the Australian Rede&ouncil. He

is a Fellow of IEEE and a Fellow of IEAust. He is currently a tiguished
Lecturer of CSS, IEEE (2008-). He served as an AssociateoEtlr the
journals Automatica, IEEE Transactions on Automatic CalptBystems and
Control Letters and European Journal of Control.

Adolfo Anta received the ‘Licenciatura’ degree from
ICAI Engineering School, Madrid, Spain, in 2002,
and the M.Sc. and Ph.D. degrees from the University
of California, Los Angeles, CA, USA, in 2007 and

PLACE 2010, respectively. From 2002 to 2005, he was a
PHHE%TS Design Engineer with EADS and, from 2010 to

2012, he was a Postdoctoral Researcher with the
Technical University of Berlin and the Max Planck
Institute, Germany. He is currently with General
Electric Global Research Europe. His current re-
search interests include robust control, networked
control systems, and power systems.

Dr. Anta received the Fulbright Scholarship in 2005, thexateder von
Humboldt Fellowship in 2011, was a Finalist for the StudemtsBPaper
Award at the IEEE Conference on Decision and Control in 20@8eived
the 2010 EMSOFT Best Paper Award and the IEEE CSS George 3$hyAxe
Award in 2011.

15



	Introduction
	Preliminaries
	System models
	Analytical tools
	Definitions
	Lyapunov conditions
	Existence of uniform semiglobal dwell-times

	Main results
	Using a threshold variable
	Using a clock variable
	Strategy in Tabuada-TAC07
	Strategies in Kofman-cdc06,Miskowicz-sensors06,Otanez-Moyne-Tilbury-02
	Strategy in Wang-Lemmon-aut11

	Illustrative examples
	Jet engine compressor
	van der Pol oscillator

	Conclusion
	Appendix
	References
	Biographies
	Romain Postoyan
	Paulo Tabuada
	Dragan Nešic
	Adolfo Anta


