M. Srinivasan, Honeybees as a Model for the Study of Visually Guided Flight, Navigation, and Biologically Inspired Robotics, Physiological Reviews, vol.91, issue.2, pp.91-413, 2011.
DOI : 10.1152/physrev.00005.2010

M. Egelhaaf, N. Boeddeker, R. Kern, R. Kurtz, and J. Lindemann, Spatial vision in insects is facilited by shaping the dynamic of visual input through behavioral action, Frontiers in Neural Circuits, issue.6, 2012.

J. Gibson, The Perception of the Visual World, The American Journal of Psychology, vol.64, issue.3, 1950.
DOI : 10.2307/1419017

K. Hausen, The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour
DOI : 10.1007/978-1-4613-2743-1_15

H. G. Krapp and R. Hengstenberg, Estimation of self-motion by optic flow processing in single visual interneurons, Nature, vol.384, issue.6608, pp.463-466, 1996.
DOI : 10.1038/384463a0

M. R. Ibbotson, Evidence for velocity-tuned motion-sensitive descending neurons in the honeybee, Proceedings of the Royal Society B: Biological Sciences, vol.268, issue.1482, pp.2195-2201, 1482.
DOI : 10.1098/rspb.2001.1770

G. K. Taylor and H. Krapp, Sensory systems and flight stability: What do insects measure and why? Advances in insect physiology: insect mechanics and control, pp.231-316, 2007.

L. F. Tammero and M. Dickinson, The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster, Journal of Experimental Biology, vol.205, issue.3, pp.327-343, 2002.

A. Censi, A. D. Straw, R. W. Sayaman, R. M. Murray, and M. Dickinson, Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila, PLoS Computational Biology, vol.20, issue.2, p.1002891, 2013.
DOI : 10.1371/journal.pcbi.1002891.s002

M. F. Land and T. Collett, Chasing behaviour of houseflies (Fannia canicularis), Journal of Comparative Physiology, vol.2, issue.4, pp.331-357, 1974.
DOI : 10.1007/BF00695351

C. Schiltra and J. Van-hateren, Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics, Journal of Experimental Biology, vol.202, pp.1481-1490, 1999.

N. Boeddeker, L. Dittmar, . Stüzzl, and M. Egelhaaf, The fine structure of honeybee head and body yaw movements in a homing task, Proceedings of the Royal Society B: Biological Sciences, vol.92, issue.7, 2012.
DOI : 10.1073/pnas.92.7.3029

J. P. Lindemann, H. Weiss, R. Möller, and M. Egelhaaf, Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly, Biological Cybernetics, vol.22, issue.3, pp.213-227, 2008.
DOI : 10.1007/s00422-007-0205-x

M. L. Reiser and M. Dickinson, A test bed for insect-inspired robotic control, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.361, issue.1811, pp.2267-2285, 2003.
DOI : 10.1098/rsta.2003.1259

D. Floreano, P. Husbnads, and S. Nolfi, Evolutionary robotics. Springer handbook of robotics, pp.1423-1451, 2008.

D. Floreano, Y. Epars, J. C. Zufferey, and C. Mattiussi, Evolution of spiking neural circuits in autonomous mobile robots, International Journal of Intelligent Systems, vol.1, issue.9, pp.1005-1024, 2006.
DOI : 10.1002/int.20173

T. R. Neumann, S. A. Huber, and H. Bülthof, Minimalistic approach to 3D obstacle avoidance behavior from simulated evolution, Artificial Neural Networks (ICANN'97, pp.715-720, 1997.
DOI : 10.1007/BFb0020238

F. L. Roubieu, J. R. Serres, F. Colonnier, N. Franceschini, S. Viollet et al., A biomimetic vision-based hovercraft accounts for bees??? complex behaviour in various corridors, Bioinspiration & Biomimetics, vol.9, issue.3, p.36003, 2014.
DOI : 10.1088/1748-3182/9/3/036003

URL : https://hal.archives-ouvertes.fr/hal-01446797

J. Serres, D. Dray, F. Ruffier, and N. Franceschini, A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance, Autonomous Robots, vol.312, issue.4, pp.103-122, 2008.
DOI : 10.1007/s10514-007-9069-0

E. Baird, M. V. Srinivasan, S. W. Zhang, and A. Cowling, Visual control of flight speed in honeybees, Journal of Experimental Biology, vol.208, issue.20, pp.3895-3905, 2005.
DOI : 10.1242/jeb.01818

E. Baird, T. Kornfeldt, and M. Dacke, Minimum viewing angle for visually guided ground speed control in bumblebees, Journal of Experimental Biology, vol.213, issue.10, pp.1625-1632, 2010.
DOI : 10.1242/jeb.038802

S. N. Fry, N. Rohrseitz, A. D. Straw, and M. Dickinson, Visual control of flight speed in Drosophila melanogaster, Journal of Experimental Biology, vol.212, issue.8, pp.1120-1130, 2009.
DOI : 10.1242/jeb.020768

G. Portelli, F. L. Roubieu, F. Ruffier, and N. Franceschini, Honeybees' Speed Depends on Dorsal as Well as Lateral, Ventral and Frontal Optic Flows, PLoS ONE, vol.3, issue.11, p.19486, 2011.
DOI : 10.1371/journal.pone.0019486.s002

URL : https://hal.archives-ouvertes.fr/hal-00743523

J. Serres, G. Masson, F. Ruffier, and N. Franceschini, A bee in the corridor: centering and wall-following, Naturwissenschaften, vol.8, issue.4, pp.95-1181, 2008.
DOI : 10.1007/s00114-008-0440-6

T. S. Collett, Some operating rules for the optomotor system of a hoverfly during voluntary flight, Journal of Comparative Physiology ? A, vol.123, issue.3, pp.271-282, 1980.
DOI : 10.1007/BF00657045

C. Evangelista, P. Kraft, M. Dacke, T. Labhart, and M. Srinivasan, Honeybee navigation: critically examining the role of the polarization compass, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.402, issue.4, pp.369-20130037, 1636.
DOI : 10.1002/(SICI)1096-9861(19981228)402:4<520::AID-CNE6>3.0.CO;2-K

R. Kern, N. Boeddeker, L. Dittmar, and M. Egelhaaf, Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information, Journal of Experimental Biology, vol.215, issue.14, pp.215-2501
DOI : 10.1242/jeb.061713

D. Coombs and K. Roberts, Bee-bot: using peripheral optical flow to avoid obstacles, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp.714-721, 1992.

J. Santos-victor, G. Sandini, F. Curotto, and S. Garibaldi, Divergent stereo in autonomous navigation: From bees to robots, International Journal of Computer Vision, vol.60, issue.6162, pp.159-177, 1995.
DOI : 10.1007/BF01418981

K. Weber, S. Venkatesh, and M. Srinivasan, Insect inspired behaviors for the autonomous control of mobile robots. From living eyes to seeing machines, pp.226-248, 1997.

J. S. Humbert and A. Hyslop, Bioinspired Visuomotor Convergence, IEEE Transactions on Robotics, vol.26, issue.1, pp.121-130, 2010.
DOI : 10.1109/TRO.2009.2033330

W. E. Green, P. Y. Oh, and G. Barrows, Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.2347-2352, 2004.
DOI : 10.1109/ROBOT.2004.1307412

J. Zufferey, D. Floreano, and D. , Fly-inspired visual steering of an ultralight indoor aircraft, IEEE Transactions on Robotics, vol.22, issue.1, pp.137-146, 2006.
DOI : 10.1109/TRO.2005.858857

A. Beyeler, J. Zufferey, and D. Floreano, 3D Vision-based Navigation for Indoor Microflyers, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.1336-1341, 2007.
DOI : 10.1109/ROBOT.2007.363170

N. Ancona and T. Poggio, Optical flow from 1D correlation: Application to a simple time-to-crash detector, 1993 (4th) International Conference on Computer Vision, pp.209-214, 1993.
DOI : 10.1109/ICCV.1993.378218

M. V. Srinivasan, M. Poteser, and K. Kral, Motion detection in insect orientation and orientation, Vision Research, issue.16, pp.39-2749, 1999.

N. Franceschini, A. Riehle, L. Nestour, and A. , Directionally Selective Motion Detection by Insect Neurons, Facets of vision, pp.360-390, 1989.
DOI : 10.1007/978-3-642-74082-4_17

F. Ruffier and N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance, Robotics and Autonomous Systems, vol.50, issue.4, pp.177-194, 2005.
DOI : 10.1016/j.robot.2004.09.016

B. Hassenstein and W. Reichardt, Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus, Z. Naturforsch, issue.11, pp.513-524, 1956.

H. Esch, W. Natchigall, and S. N. Kogge, Correlations between aerodynamic output, electrical activity in the indirect flight muscles and wing positions of bees flying in a servomechanically controlled wind tunnel, Journal of Comparative Physiology A, vol.29, issue.2, pp.147-159, 1975.
DOI : 10.1007/BF00613966

C. Ellington, The Aerodynamics of Hovering Insect Flight. III. Kinematics, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.305, issue.1122, pp.41-78, 1984.
DOI : 10.1098/rstb.1984.0051

J. Koenderink and A. Doorn, Facts on optic flow, Biological Cybernetics, vol.203, issue.4, pp.247-254, 1987.
DOI : 10.1007/BF00365219

F. Expert, S. Viollet, and F. Ruffier, Outdoor field performances of insect-based visual motion sensors, Journal of Field Robotics, vol.22, issue.1, pp.974-977, 2011.
DOI : 10.1002/rob.20398

URL : https://hal.archives-ouvertes.fr/hal-00712699

N. Franceschini, J. M. Pichon, and C. Blanes, From Insect Vision to Robot Vision [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.337, issue.1281, pp.283-294, 1992.
DOI : 10.1098/rstb.1992.0106

R. A. Seidl, Die sehfelder und ommatidien-divergenzwinkel von arbeiterin, königen und drohne der honigbiene (Apis mellifica, 1982.

H. G. Krapp, R. Hengstenberg, and M. Egelhaaf, Binocular contributions to optic flow processing in the fly visual system, Journal of Neurophysiology, vol.85, issue.2, pp.724-734, 2001.

K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. Wood, Controlled Flight of a Biologically Inspired, Insect-Scale Robot, Science, vol.340, issue.6132, pp.603-607, 2013.
DOI : 10.1126/science.1231806

D. Floreano, R. Pericet-camara, S. Viollet, F. Ruffier, A. Brückner et al., Miniature curved artificial compound eyes, Proceedings of the National Academy of Sciences, vol.110, issue.23, p.2013
DOI : 10.1073/pnas.1219068110

URL : https://hal.archives-ouvertes.fr/hal-00835031