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ABSTRACT 

In this paper, we look at the robustness of connected critical infrastructures under a 

systems-of-systems framework taking into account i) the dependencies and 

interdependencies among the components of a critical infrastructure and between 

different critical infrastructures, respectively; ii) the variability of the performance of 

each component by means of a multistate model; iii) the epistemic uncertainty in the 

transition probability between different components states by means of probability 

intervals. We adopt the Goal Tree Success Tree – Dynamic Master Logic Diagram 

for system modelling and we perform a quantitative assessment of the systems-of-

systems performance by Monte Carlo simulation. We illustrate the approach by way 

of a simplified case study consisting of two interdependent infrastructures (electric 

power system and a gas network) and a supervisory control and data acquisition 

system connected to the gas network.  

1. INTRODUCTION 

Critical infrastructures, e.g., transportation, electric power, water, oil, gas and 

communication systems, interact on the basis of complex relationships that cross the 

single infrastructure boundary, increasing, in this way, the risk of their failure: 

actually, a failure of an infrastructure can significantly impact another one. For 

example, the widespread power electric blackout occurred in the Midwest and 

Northeast United States and Ontario, Canada, on August 2003, affected the 

serviceability of the water system at Cleveland, OH, due to the lack of power needed 

to the water pumping stations to operate [Adachi and Ellingwood, 2008]. In addition, 

critical infrastructures are getting more and more dependent on information 

technologies that, on one hand, provide control and support to them increasing their 

efficiency, but, on the other hand, create new vulnerabilities [Nozick et al., 2005]. 

Understanding these interdependences between infrastructure systems is fundamental 

to the well-functioning of these “systems of systems”.  

Under a systems-of-systems framework of analysis, we wish to estimate the systems-

of-systems performance, in terms of robustness, considering the dependencies and 

interdependencies among the components of a critical infrastructure and between 

different critical infrastructures, respectively. For a more realistic representation, we 

adopt a multistate model where different degrees of damage of the individual 
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components are contemplated [Ferrario and Zio, 2013]: transitions between these 

different states of damage occur stochastically. In addition, we take into account the 

epistemic uncertainty affecting the transition probabilities between different states, 

due to the lack of knowledge and information on the system: actually, in many 

reliability assessments of safety-critical infrastructures, few observations of the 

system failure behavior are available and thus it is difficult to estimate their levels of 

damage and the precise values of the corresponding transition probabilities [Sallak et 

al., 2013].  

For illustration purposes, we adopt the case study proposed by [Nozick et al., 2005], 

consisting of two interdependent infrastructures (gas and electric power networks) 

and a supervisory control and data acquisition (SCADA) system connected to the gas 

network. As a measure of the robustness of the system, we determine the steady-state 

probability distributions of the supply of gas and electricity at the demand nodes. 

We propose a hierarchical model description by Goal Tree Success Tree – Dynamic 

Master Logic Diagram (GTST-DMLD) [Hu and Modarres, 1999], extending its 

representation characteristics to evaluate the physical flows of gas and electricity 

through the interdependent infrastructures. We adopt intervals to describe the 

epistemic uncertainty in the probabilities of transition between different components 

states and we use interval analysis to calculate the (uncertain) probabilities of the 

states of all the components of the critical infrastructures [Buckley, 2004]. Finally, 

we employ Monte Carlo simulation [Kalos, 1986; Zio, 2013] for the probabilistic 

evaluation of systems-of-systems performance. 

The reminder of the paper is organized as follows. In Section 2, the case study is 

presented; in Section 3, the systems-of-systems modelling by Goal Tree Success 

Tree - Dynamic Master Logic Diagram is illustrated; in Section 4, details of the 

procedural steps to evaluate the systems-of-systems performance under epistemic 

uncertainty are given; in Section 5, the results of the analysis are shown and 

commented; in Section 6, conclusions are provided. 

2. CASE STUDY 

The case study is taken from [Nozick et al., 2005] and deals with two interconnected 

infrastructures, i.e., a natural gas distribution network and an electricity 

generation/distribution network (Figure 1, solid and dashed lines, respectively). The 

gas distribution network is supported by a supervisory control and data acquisition 

(SCADA) system (Figure 1, dotted lines). The objective of these interconnected 

systems of systems is to provide the necessary amount of gas and electricity 

(hereafter also called “product”) to four demand nodes (end-nodes), namely D1 and 

D2 (gas) and L1 and L2 (electricity).  

The gas distribution network, supplied by two sources of gas (namely, S1 and S2, 

that are connected to the network by arcs S1_DS1 and S2_DS2, respectively) 

provides gas to the end-nodes D1 and D2 and to two nodes of the electricity network 

(E1 and E2). Once the gas enters into nodes E1 and E2, it is transformed into 

electrical energy that flows through arcs E1_G1 and E2_G2 (representing the electric 

power generation stations) to supply the end-nodes of electricity (L1 and L2); notice 
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that the demand L2 can be supplied by both electrical generations E1_G1 and 

E2_G2. The assumption is made that the gas-electricity transformation occurs with a 

constant coefficient, i.e., 100 cu. ft. of natural gas produces 1 MWh of electricity 

[Nozick et al., 2005].  

A SCADA system controls the gas flow through arcs a_b, b_c, c_d and d_e. It is 

assumed that: i) the SCADA has two core subsystems controlling different sets of 

arcs (in particular, the first one – SUB1 – refers to links a_b and b_c, whereas the 

second one – SUB2 – controls arcs c_d and d_e); ii) the SCADA is always provided 

by electric power [Nozick et al., 2005]. 

 

Figure 1: Interdependent gas (solid-black lines) and electric (dashed lines) 

infrastructures and SCADA system (dotted lines) [Nozick et al., 2005].  

The capacities of the arcs of the gas and electricity network (determining the 

maximum flows of gas or electricity supported by the arc) can be deterministic (i.e., 

fixed constant values) or stochastic (i.e., randomly evolving in time) (Figure 1, 

values in the square brackets). The stochastic capacities give rise to a multistate 

model that reflects the possibly different degrees of damage of the arc. On the 

contrary, the SCADA system state is defined by a binary random variable, whose 

values 1 and 0 represent its complete and partial functioning, respectively. For 

example, when the state of the SCADA subsystem SUB1 (controlling arcs a_b and 

b_c) is 0, the capacity of these arcs decreases because of the incorrect information 

provided by the SCADA subsystem (even if the arcs are not subject to a direct 

damage). On the basis of the two states of the SCADA subsystems, two different 

vectors of capacities are identified for each arc a_b, b_c, c_d and d_e: as illustrated 

in Figure 1, the first vector is used when the corresponding SCADA subsystem is in 

state 0, whereas the second one is utilized when the SCADA subsystem is in state 1. 

In the following, we generically denote the value of the state of a component (i.e., the 

capacity of the arcs) as ζcomp,i , i  {1,2,…,Scomp}, where the subscript ‘comp’ 

indicates the component of interest and Scomp is the total number of states for that 

component. For example, component S1_DS1 has SS1_DS1 = 4 possible states: ζS1_DS1,1 

= 90 [1000 cu. ft.], ζS1_DS1,2 = 95 [1000 cu. ft.], ζS1_DS1,3 = 100 [1000 cu. ft.], ζS1_DS1,4 

= 105 [1000 cu. ft.]. The total number of components in the systems of systems is 

referred to as Ncomp. 
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Changes in the arc capacities are due to random failures or recovery actions. The 

state transitions over time are modeled by Markov and semi-Markov processes as in 

[Nozick et al., 2005]. Semi-Markov processes are adopted to represent the evolution 

of the capacities of the gas supply links (S1_DS1 and S2_DS2), whereas Markov 

processes are used for all the others arcs. Both Markov and semi-Markov processes 

for a generic component ‘comp’ are defined by a transition probability matrix 

}..., ,2 ,1, :{P compij Sjipcomp  , where pij is the one-step probability of transition 

from state i to state j. In addition, the semi-Markov processes are characterized by 

continuous probability distributions for the holding time T
ij

comp, i.e., for the time of 

residence in state i before performing a transition to state j.  

Differently from [Nozick et al., 2005], we take into account the epistemic uncertainty 

affecting the transition probabilities and the holding time distributions of the Markov 

and semi-Markov processes, respectively. In particular, intervals,  ],[ ijij
pp , i,j = 1, 

…, Scomp, (instead of fixed constant values) are used to describe the state transition 

probabilities for both Markov and semi-Markov processes (matrices compP , comp = 

S1_DS1, S2_DS2, a_b, b_c, c_d d_e, SCADA, E1_G1 and E2_G2, in Figure 2 with 

respect to the states defined in Figure 1). The holding time distributions for the semi-

Markov process are considered normal with epistemically-uncertain mean (described 

by an interval) and fixed standard deviation (matrices compT , comp = S1_DS1, 

S2_DS2, in Figure 2).  

 
Figure 2: Holding time distributions (matrices compT ) for the arcs described by 

semi-Markov processes and state transition probability matrices ( compP ) for the 

arcs described by Markov and semi-Markov processes. 

In the present work, the demand nodes are not given the same importance: in 
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particular, D1 is more important than L1; on its turn, L1 is more important than both 

D2 and L2 (which instead are equally important). These assumptions are made to 

illustrate and motivate the repartition of electricity and gas flows in the network, as 

represented in the Goal Tree Success Tree - Dynamic Master Logic Diagram given in 

the next Section 3. 

The objective of the analysis is to determine the cumulative distribution functions of 

the product delivered to the demand nodes (i.e., D1, D2, L1, L2) at steady state. 

Since the state transition probabilities of the network components are affected by 

epistemic uncertainty, described by intervals,  ],[ ijij
pp , i,j = 1, …, Scomp, the 

corresponding component steady-state probabilities are also affected by epistemic 

uncertainty and represented by intervals of possible values, [ icompicomp ,
max

,
min , ], i = 1, 

…, Scomp. As a consequence, a set of cumulative distribution functions corresponding 

to the set of possible steady-state probabilities within the intervals [ icompicomp ,
max

,
min , ], 

i = 1, …, Scomp, is obtained for each demand node.  

3. SYSTEMS-OF-SYSTEMS MODELLING 

3.1. GTST-DMLD: basic concepts 

The Goal Tree Success Tree – Dynamic Master Logic Diagram (GTST-DMLD) is a 

goal-oriented method based on a hierarchical framework [Hu and Modarres, 1999]. It 

gives a comprehensive knowledge of the system describing the complex physical 

systems in terms of functions (qualities), objects (parts) and their relationships 

(interactions). The first part is developed by the Goal Tree (GT), the second one by 

the Success Tree (ST) and the third one by the DMLD [Hu and Modarres, 1999]. 

In extreme synthesis, the GT identifies the hierarchy of the qualities of the system 

decomposing the objective of the analysis, i.e., the goal, into functions that are in 

turn divided into other functions and so on by answering the question “how” they can 

attain the parent function (looking from top to bottom of the hierarchy) and “why” 

the functions are needed (looking from bottom to top of the hierarchy) [Brissaud et 

al., 2011]. The ST represents the hierarchy of the objects of the system from the 

whole system to the parts necessary to attain the last levels of the GT. This hierarchy 

is built identifying the elements that are “part of” the parent objects [Brissaud et al., 

2011]. The DMLD is an extension of the Master Logic Diagram (MLD) [Hu and 

Modarres, 1999] to model the dynamic behavior of a physical system. It identifies 

the interactions between parts, functions and parts and functions, in the form of a 

dependency matrix and it adds the dynamic aspect by introducing time-dependent 

fuzzy logic [Hu and Modarres, 1999].  

3.2. GTST-DMLD for interconnected networked infrastructures  

In this Section, we adapt the GTST-DMLD presented in Section 3.1 for the 

representation of interconnected networked infrastructures. In particular, we 

introduce new concepts in order to highlight in the diagram not only the dependency 

relations between the components, but also the ways in which the flows of gas and 

electricity are partitioned into the network on the basis of i) the importance of the 

demand nodes, ii) the amount of product necessary to satisfy each demand, iii) the 

constraints of the arc capacities, and iv) the information provided by the SCADA 
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system. In the following, first we explain the notation adopted in the GTST-DMLD 

and, then, we apply it to the case study of interest. 

First of all, since in the present work we are interested in analyzing the flows passing 

through the network, the input and output of an arc are flows and the output is 

(generally) the sum of the flow inputs. This situation is represented by a “+” in the 

middle of an “AND” gate, as shown in the example of Figure 3 a. where the flows of 

arcs A and B enter into arc C. 

With respect to the dependency relations, we distinguish between three main types: 

direct, indirect and constraint-based dependencies, as illustrated in Figures 3 and 4. 

The first ones, pictorially represented by dots and hereafter called "dot-

dependencies", express the fact that the product of the element on the bottom passes 

straightly into the element on the top. The indirect dependencies, represented by 

hexagons and called hereafter “hexagon dependencies”, are instead needed for the 

optimal allocation of the product in the network: for example, they are used to 

describe those cases where the flow exceedance in an arc can be better partitioned 

into another arc that is not directly connected to it but that shares one of the inputs 

(see the example of Figure 3 b). Finally, the constraint-based dependencies, depicted 

by triangles and hereafter called "triangle-dependencies", are employed to take into 

account some physical constraints posed by the problem, like the maximum flow 

required by a demand node. 

For clarity of illustration, in Figure 3, examples of two types of dot- and hexagon- 

dependencies are given, with respect to different graph representations. Figure 3 a. 

shows the dependence of arc C on two input arcs A and B: arc C receives all the 

input products from A and B; this complete direct dependence is depicted by a black 

dot. Figures 3 b. and c. describe the same "physical" situation (i.e., an input arc A 

and two output arcs B and C), but with different relative importances of the arcs. 

Two different cases are illustrated. In the first case (Figure 3 b.), arc B is more 

important than C: thus, in this situation, the flow from A supplies first arc B until its 

demand is satisfied, and then arc C. In the second case (Figure 3 c.), arcs B and C are 

equally important: thus, the input flow (A) is divided into equal parts on the basis of 

the number of output arcs (i.e., two in this example). In the case of Figure 3 b., the 

flow that enters in C is given by the difference between the entire flow from A and 

the flow given to B; to represent and compute this difference in the DMLD, the 

hexagon-dependency is adopted to correct the black dot-dependency from arc A to 

arc C (in fact, it is impossible that the entire flow of A enters at the same time in the 

arcs B and C as expressed by the black dot-dependency). The white hexagon assumes 

the value of the flow in B with a negative sign; this value is then summed to the 

initial flow of A to obtain the flux to C. The flow given to B can be the entire flow of 

A or a lower value depending on the constraints and arc capacity (see the following 

example in Figure 4). In the case of Figure 3 c., the flow from A is divided into equal 

parts: this condition is represented by a grey dot. However, this equal partition of the 

flow may not represent the optimal one, since some output arcs may require less flow 

than the one allocated according to this criterion. Thus, to optimize the repartition of 

the flow, hexagon-dependencies are adopted: they are directed from an output arc to 

all the other output arcs that share the same input. In this case, the “surplus flow” is a 
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positive quantity and it is represented by a grey hexagon (to distinguish it from the 

“negative” white hexagon of the example in Figure 3 b). 

Notice that the graph representation of Figures 3 b. and 3 c. are identical; however, 

the partition of the flux from A is completely different in the two cases: this means 

that the graph representation alone cannot be used to describe the repartition of the 

flows in the network according to different criteria. On the contrary, the DMLD can 

capture and depict this aspect, that is useful in the quantitative evaluation of the 

system performance. 

 
Figure 3: Examples of dot- and hexagon-dependencies with respect to possible 

graph representations. 

In Figure 4, examples of two types of triangle-dependencies are given, with respect 

to different possible graph representations. Figure 4 a. depicts the same situation as 

Figure 3 a. with an additional arc D whose behavior impacts on the state of arc C 

(however, notice that D is not an input to C). This dependency is represented by a 

grey triangle and it means that the output of C can be modified on the basis of the 

state of arc D. In the present case study, this constraint-based dependency is used to 

model the SCADA system that can decrease the actual flow of the controlled arc if it 

is in a damage state. Figure 4 b. represents the same situation of Figure 3 c. with the 

addition of another arc (D) sequential to arc C. In this case, the capacity (or the 

demand) of arc D can limit the amount of flow in input to arc C. This constraint is 

represented in the DMLD by a black triangle and it is needed to control the input 

flow partitioned in different arcs and guarantee that it is not higher than necessary. 

 
Figure 4: Examples of triangle-dependencies with respect to possible graph 

representations. 

Finally, another type of constraint is taken into account, i.e., the one related to the 

capacity of the arcs: when the flow in input to an arc is higher than the capacity of 
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the arc itself, the output flow will be equal to the capacity of the arc. The arc capacity 

can be deterministic or stochastic and in the GTST-DMLD it is represented by a grey 

or dot-filled rectangular, respectively (see Figure 5). 

In Figure 5, the GTST-DMLD of the case study of Section 2 is shown. 

 
Figure 5: GTST-DMLD of the case study with respect to the graph of Figure 1. 

The Goal Tree, on the top, represents the main goal of the systems of systems that is 

related to the supply of the demands of gas and electricity. The objective is achieved 

if the corresponding nodes D1, D2, L1 and L2 receive the required amont of gas and 

electricity, respectively. In the present case study, we limit the analysis to the last 

level of the GT, i.e., we analyze the performance of each demand, without 

investigating a global indicator of the systems of systems.  

The Success Tree is composed by the main hierarchies of gas and electricity 

networks (that directly provide the demand nodes with gas and electricity to achieve 

the goal function) and by the support hierarchy of the SCADA system (that is needed 

for the control of the gas network and, therefore, it is not directly involved in the 

achievement of the goal function). Given its support role, it is represented in a 

parallel dashed branch connected to the gas hierarchy.  

The DMLD is represented by the relationships between objects of the ST or between 

objects of the ST and functions of the GT. It allows determining the goal function by 

the evaluation of all the dependencies from the bottom to the top of the diagram, 

following the rules explained above for the dot-, hexagon- and triangle- 

dependencies. For example, arc a_b depends on two arcs, DS1_a and DS2_b, 

connected by black dot-dependencies (Figure 5). Thus, the output of a_b is given by 
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the sum of the corresponding input values, i.e., DS1_a + DS2_b. This value may, 

then, be modified by the triangle constraint of the SCADA system and by the 

(stochastic) capacity of arc a_b itself.  

4. SYSTEMS-OF-SYSTEMS PERFORMANCE EVALUATION 

In this Section, we illustrate the algorithm adopted to evaluate the performance of the 

systems of systems described in Section 2, in the presence of epistemic uncertainties 

in the components state transition probabilities (represented by intervals). As already 

mentioned in Section 2, the system performance is quantified in terms of the steady-

state probability distributions of the product delivered at the demand nodes. The 

algorithm consists of the following three main steps: 

1. Processing the epistemic uncertainties by interval analysis: this step leads to the 

evaluation of the intervals of the steady-state probabilities, [ icompicomp ,
max

,
min , ], i = 

1, 2, ..., Scomp, for the states of each component (comp = 1, 2, ..., Ncomp) of the 

systems of systems. 

2. Evaluation of the systems-of-systems performance by Monte Carlo simulation: 

this step leads to the determination of a set of cumulative distribution functions 

(CDFs) of the product delivered at each demand node at steady state, one for each 

possible combination of steady-state probabilities ranging within the intervals [
icompicomp ,

max
,

min , ], i = 1, 2, ..., Scomp, (found at step 1. above).  

3. Post-processing the results obtained at the previous step 2: this step leads to the 

identification of two extreme upper and lower CDFs that bound the set of CDFs 

produced at step 2. above. 

5. RESULTS 

Table 1 reports the upper and lower probabilities that the product delivered at steady 

state to the demand nodes, D1, D2, L1 and L2, exceeds the following threshold 

values: d1* = 95 [1000 cu. ft.], d2* = 75 [1000 cu. ft.], l1* = 475 [MWh] and l2* = 

375 [MWh] (i.e., the probabilities that the corresponding demands are satisfied). 

Table 1: lower and upper probabilities that the product delivered to the demand 

nodes (D1, D2, L1 and L2) exceeds the corresponding requested threshold value. 

D1  d1* = 95 [1000 cu. ft.] 

[lower, upper] 

D2  d2* = 75 [1000 cu. ft.] 

[lower, upper] 

L1  l1* = 475 [MWh] 

[lower, upper] 

L2  l2* = 375 [MWh] 

[lower, upper] 

[0.971, 1] [0.450, 0.780] [0.963, 1] [0.929, 0.992] 

It can be seen that, in general, the probability of satisfying demand nodes D1 and L1 

is higher than for nodes D2 and L2: their threshold values are satisfied, in the worst 

case, with probability equal to 0.971 and 0.963, respectively. On the contrary, node 

D2 is the least supplied: the upper and lower probabilities that the product delivered 

to it exceeds the corresponding threshold value are low, i.e., 0.450 and 0.780, 

respectively. This is due to the fact that node D2 can be satisfied by only one path 

that presents high epistemic uncertainty in the arc capacities (a_b, b_c, c_d and d_e). 

On the contrary node L2, is satisfied with probability between 0.929 and 0.992 even 

if it is the farthest node from the input sources (and, thus, more affected by 

uncertainties in the arc capacities): this is due to the presence of two redundant paths 

that allow its supply by arcs E1_G1 and E2_G2. 
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6. CONCLUSIONS 

In this paper, we have considered systems of systems made of interdependent 

infrastructures and proposed a modelling framework to evaluate the robustness 

taking into account i) the dependencies and interdependencies among the 

components of a critical infrastructure and between different critical infrastructures, 

respectively, ii) the variability in the states of the components (by adopting a 

multistate model), and iii) the epistemic uncertainty in the transition probabilities 

between different components states (by interval analysis).  

For exemplification, we have performed an analysis of interconnected gas and 

electricity networks, with a supervisory control and data acquisition (SCADA) 

system connected to the gas network, by using the Goal Tree Success Tree – 

Dynamic Master Logic Diagram for system modeling and Monte Carlo simulation 

for the quantitative evaluation of performance at steady state. The results obtained 

can help to improve the global systems-of-systems performance by improving the 

structural response of specific arcs that more easily turns into damage states or by 

developing a more redundant network that allows the supply of the product from 

different paths. 
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