Lipschitz Regularization of Images supported on Surfaces using Riemannian Morphological Operators

Abstract : Dierent imaging modalities produce nowadays images on smooth surfaces, represented by images painted on meshes or point clouds. These Riemannian images are often nonsmooth and their regularization can be needed in many applications. This paper deals with the approximation of a bounded nonsmooth image painted on a surface by a sequence of more regular functions, having in particular Lipschitz gradient, and without any hypothesis of dierentiability. We adopt here a geometric framework known as Lasry-Lions regularization. The aim of the present contribution is to consider the extension of Lasry-Lions regularization to Riemannian manifolds. We show that the key ingredients for such regularization are Riemannian morphological operators.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées


https://hal-mines-paristech.archives-ouvertes.fr/hal-01108130
Contributeur : Jesus Angulo <>
Soumis le : samedi 21 mars 2015 - 16:43:10
Dernière modification le : mardi 12 septembre 2017 - 11:41:19
Document(s) archivé(s) le : lundi 14 septembre 2015 - 03:20:19

Fichier

LipschitzRegularization_angulo...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01108130, version 2

Collections

Citation

Jesus Angulo. Lipschitz Regularization of Images supported on Surfaces using Riemannian Morphological Operators. 2014. <hal-01108130v2>

Partager

Métriques

Consultations de
la notice

116

Téléchargements du document

183