
HAL Id: hal-01107528
https://hal.science/hal-01107528

Submitted on 20 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CASHIER: A Cache Energy Saving Technique for QoS
Systems

Sparsh Mittal, Zhao Zhang, Yanan Cao

To cite this version:
Sparsh Mittal, Zhao Zhang, Yanan Cao. CASHIER: A Cache Energy Saving Technique for QoS Sys-
tems. 26th International Conference on VLSI Design and 12th International Conference on Embedded
Systems (VLSID), Jan 2013, Pune, India. pp.43 - 48, �10.1109/VLSID.2013.160�. �hal-01107528�

https://hal.science/hal-01107528
https://hal.archives-ouvertes.fr


CASHIER: A Cache Energy Saving Technique for QoS Systems

Sparsh Mittal, Zhao Zhang and Yanan Cao

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa 50011, USA

Email: {sparsh,zzhang,yanan}@iastate.edu

Abstract—With each CMOS technology generation, leakage
energy has been increasing at an exponential rate and hence,
managing the energy consumption of large, last-level caches
is becoming a critical research issue in modern chip design.
Saving cache energy in QoS systems is especially challenging,
since, to avoid missing deadlines, a suitable balance needs to be
made between energy saving and performance loss. We present
CASHIER, a Cache Energy Saving Technique for Quality of
Service Systems. Cashier uses dynamic profiling to estimate the
memory subsystem energy and execution time of the program
under multiple last level cache (LLC) configurations. It then
reconfigures LLC to an energy efficient configuration with a
view to meet the deadline. In QoS systems, allowed slack may
be specified either as percentage of baseline execution time or
as absolute slack and Cashier can work for both these cases.
The experiments show the effectiveness of Cashier in saving
cache energy. For example, for an L2 cache size of 2MB and
5% allowed-slack over baseline, the average saving in memory
subsystem energy by using Cashier is 23.6%.

Keywords-QoS systems, cache leakage energy saving, low
power, online profiling, last level cache

I. INTRODUCTION

As we are entering into an era of green computing, the

primary objective in chip design is shifting from achieving

highest peak performance to achieving highest performance-

energy efficiency. In battery-powered mobile systems, such

as cell phones and laptops, achieving energy efficiency is

especially important, since these systems work on batteries

which store limited energy. Moreover, since these systems

also need to fulfill application quality-of-service (QoS) re-

quirements [1, 2], a fine balance is required to meet the dual

goals of energy saving and minimum performance loss.

For several reasons reducing energy consumption of LLCs

in QoS systems remains a significant challenge. Firstly, as

the applications are becoming computation-intensive [3, 4],

the pressure on memory system is increasing and to mitigate

this pressure, modern processors are using large size LLCs.

Secondly, with shrinking CMOS feature size, leakage power

has been increasing at an exponential rate [5]. Since leakage

accounts for over 90% of the energy spent in LLCs [6], the

energy consumption of LLCs is becoming a major fraction

of chip energy consumption. Many existing techniques are

designed to save the dynamic energy of cache, however, a

large fraction of energy spent in LLCs is in the form of

leakage energy, and thus, these techniques having limited

utility in saving energy in LLCs. Further, the cache energy

saving techniques which require offline profiling are difficult

to scale and hence cannot be easily used in real-world QoS

applications. Thus, saving cache energy in QoS systems is a

challenging, yet important research issue and new techniques

are required to effectively address it.

In this paper, we present Cashier, a Cache energy saving

technique for quality-of-service (QoS) systems. Cashier uses

a small microarchitecture component called “reconfigurable

cache emulator” (RCE), which uses set sampling idea to

estimate program miss rate for various cache configurations

in an on-line manner. Additionally, Cashier uses CPI stacks

to estimate program execution time under different LLC

configurations. Using these estimates, the energy saving

algorithm (ESA) estimates memory subsystem energy un-

der different cache configurations. Then, a suitable cache

configuration is chosen to strike a right balance between

opportunity of energy saving and performance loss, thus

making best possible efforts to not miss the deadline. For

hardware implementation of cache line switching, Cashier

employs the gated-Vdd scheme [7].

Cashier has several features which address the limitations

of existing techniques. It uses low cost, non-intrusive, dy-

namic profiling technique which does not affect the oper-

ation of LLC. Also, Cashier optimizes memory subsystem

(which includes LLC and main memory) energy, instead of

merely LLC energy. Simulations have been performed using

Sniper [8, 9] and workloads from SPEC2006 suite. The

results show that Cashier is very effective in saving energy

while still meeting most of the deadlines. For example, for

2MB L2 cache with 5% allowed performance slack, the

average saving in memory subsystem energy is 23.6%.

II. RELATED WORK

Recently, several researchers have proposed techniques

for saving cache energy [10–12]. Mittal and Zhang [12]

use selective sets and selective ways to reconfigure the

cache for saving energy. However, their technique cannot

be used for applications with deadlines. Further, the cache

coloring technique used in our work provides much finer

granularity of cache reconfiguration than the previous cache

reconfiguration techniques (e.g. [11, 12]). Some researchers

have presented techniques for saving cache energy while

meeting deadlines [13, 14]. Wang and Mishra [14] use

offline analysis to profile a large number of configurations of



two-level cache hierarchy and explore these configurations

during run-time for finding the best configuration. However,

since product systems execute trillions of instructions of

arbitrary applications, offline profiling becomes infeasible

for use in such systems.

Apart from cache reconfiguration, dynamic

voltage/frequency scaling (DVFS) has also been used

for saving energy while still meeting the deadlines (e.g.

[15–18]). DVFS aims to save the dynamic energy of the

processor, while Cashier aims to save the leakage energy

of the processor. Thus, Cashier can be synergistically used

with DVFS to save additional amount of energy.

III. SYSTEM DESIGN

Several real-world applications present soft real-time re-

source demands. In such applications, the task deadlines

are usually more relaxed than the task completion time and

as long as a task is completed by its deadline, the actual

completion time does not matter from user’s perspective.

In such systems, Cashier can save leakage energy by using

cache reconfiguration, while making best possible effort to

meet the task deadline. For enabling cache reconfiguration,

Cashier uses cache coloring technique (Section III-A). For

estimating miss rates under different L2 configurations, it

uses RCE and using CPI stack method, it estimates program

execution time with those configurations (Section III-B and

III-C). The energy saving algorithm (ESA) uses these values

to estimate memory subsystem energy and finds the configu-

ration with minimum energy and bounded performance loss

(Section IV). We assume that LLC is L2 cache and based

on this description, Cashier can be easily extended to case

when LLC is L3 cache.

A. Cache coloring

To selectively and dynamically allocate cache to an appli-

cation, Cashier uses cache coloring technique [19, 20] which

works as follows. Firstly, the cache is logically divided

into multiple non-overlapping bins, called cache colors. The

maximum number of colors, N , is given by

N =
CacheSize

PageSize× Associativity
(1)

Further, the physical pages are divided into N memory

regions based on the least significant bits (LSBs) of their

physical page number. In Fig. 1, these bits are referred

to as Region ID. Cache coloring maps a memory region

to a unique color in the cache. For this purpose, Cashier

uses a small mapping table (MT) which stores the cache

color assigned to each memory region. By manipulating the

mapping between physical pages and cache colors, Cashier

allocates a particular cache color to a memory region and

thus, all physical pages in that memory region are mapped

to the same cache color.

Cashier works on the key idea that for restricting the

amount of active cache, all memory regions can be allocated

to merely few cache colors. Thus, the rest of the colors are

effectively not utilized and can be turned off to save cache

energy. This is implemented using the mapping table (MT).

At any point of execution, if M (≤N ) colors are allocated to

the application, the mapping table stores the mapping of N
regions to M colors. Thus, Cashier reconfigures the cache

at the granularity of a single cache color. A salient feature

of this cache coloring technique is that, unlike previous

approaches (e.g. [20]), it does not require a change in

underlying virtual address to physical address mapping, and

thus can be implemented with little overhead. We refer to

“active” or “turned on” color, as one that stores data and

consumes power normally. Also, an “inactive” color is one

that has been “turned off” to save leakage energy and hence

does not store data.

Figure 1 shows the flow diagram of Cashier with values

from the following example. We assume a 2MB, 8-way L2

cache of 64B block size and a PageSize value of 4KB.

Then from Equation 1, we get N= 64 colors. Hence, in this

case, MT has 64 entries, each 6-bits wide (Figure 1). Also

note that the size of mapping table is small and hence, its

access latency and energy consumption are negligible.

Figure 1. Cashier Flow Diagram (Using example of N= 64)

B. Reconfigurable Cache Emulator (RCE)

RCE builds on the idea of set sampling, which states that

the miss rate characteristics of the cache can be estimated

by sampling only a few sets [12, 21]. RCE uses profiling

units, which are data-less (tag only) components, having

the same replacement policy and associativity as that of

the L2 cache it emulates. To estimate cache miss rate for

each possible cache size1, a separate profiling unit may be

required. However, even with set sampling technique, this

may lead to large overhead. To reduce this overhead, while

still obtaining rich profiling information, Cashier profiles

only selected cache sizes (called ‘levels’) and uses piecewise

linear fit to estimate miss rates for other cache sizes. In this

paper, we use a six-level RCE, each level (unit) profiling

1X/16, 2X/16, 4X/16, 8X/16, 12X/16 and 16X/16 sizes

respectively, where X shows the size of L2 cache. The

1Note that since both associativity and block size are fixed, change in
cache size simply means change in cache set-count.



reasoning behind the use of these profiling levels is that

most of these levels profile a cache of power-of-two set-

count and the level profiling 12X/16 size is chosen to get

more uniformly spaced profiling levels between 8X/16 and

16X/16. This helps in obtaining more accurate miss rate

estimates. Unlike previous schemes (e.g. [11, 12]), which

only profile caches of power-of-two set-counts, the RCE

design of Cashier has the ability to emulate caches of non-

power-of-two set-counts also, using cache coloring scheme.

Figure 2. Reconfigurable Cache Emulator (RCE) Design

Figure 2 shows the design of RCE. First, the L2 accesses

are sampled using a sampling filter, which uses a sampling

ratio (RS) of 64. Then, these addresses are fed to a queue

(to avoid congestion) and then, using the mapping table

corresponding to each profiling level, the set (index) value

for each level is computed. Then, using a small multiplexer

(MUX), the addresses are sequentially fed to the respective

storage regions of the RCE for emulating cache access. RCE

operates in parallel to L2 cache and does not lie in critical

access path. We now calculate the size of RCE. Let the

number of sets in L2 be Z , then the number of sets in the

16X/16 profiling unit is Z/RS . Further, let T and B denote

the tag-size and block-size in bits, respectively and S show

the total number of sets in RCE. Let D denote the ratio of

RCE size and L2 cache size. We have

S =
(1 + 2 + 4 + 8 + 12 + 16)Z

16RS

(2)

D =
RCESize

L2CacheSize
=

43T

16RS(B + T )
(3)

For T =40, B=64×8 and RS=64, we get D=0.003 or

0.3%. Thus, the overhead of RCE is extremely small. We

take this overhead into account in our energy model.

C. CPI Stack for Execution Time Estimation

For estimating program execution time under different

L2 configurations, Cashier uses the CPI stack technique

[8, 22]. A ‘CPI stack’ is a stacked bar that shows the

different components contributing to overall performance.

It presents base CPI and ‘lost’ cycle opportunities due to

instruction interdependencies, cache misses etc., taking into

account the possible overlaps between execution and miss

events. Out of various components of CPI-stack, Cashier

uses the memory stall cycle component, since the change in

L2 configurations shows its effect on execution time in terms

of change in memory stall cycles. We assume that, in an

interval, memory stall cycles vary linearly with the number

of load misses, and thus, their ratio, called SPM (Stall cycles

Per load Miss), remains independent of the number of load

misses themselves. Then, the stall cycles under any cache

configuration can be computed by multiplying SPM with the

number of estimated load misses with that configuration.

Using stall cycle estimates and base CPI value from the

CPI stack, the total number of cycles (and hence total

execution time) under that configuration can be computed.

These estimates are used for computing memory subsystem

energy values (Section VI-B). Also, the execution time and

energy estimates are used by ESA (Section IV).

If the number of load misses vary significantly between

different cache configurations, the above mentioned linear-

ity assumption does not hold well. However, as shown

in Section IV, in an interval, Cashier only searches for

configurations which differ from current configuration in a

small number of active colors. Thus, the above assumption

holds reasonably well and energy estimation accuracy is

minimally affected.

IV. CASHIER ENERGY SAVING ALGORITHMS

We now explain the energy saving algorithms (ESAs)

of Cashier, which can run as kernel modules. We refer

to ‘baseline cache’ as the full size cache which does not

use cache reconfiguration or energy saving technique. We

assume that the available slack can be specified in one of

the two ways. First, the slack can be specified as extra time

itself (Tslack), e.g. a Tslack value of 100µs denotes that an

application can be slowed down by 100µs, without missing

the deadline. This is calledMagnitude Slack Method (MSM).

Second, the slack can be specified as a percentage of extra

time over baseline, denoted as Υ, e.g. Υ=3% denotes that an

application can be slowed down by 3% and still it meets its

deadline. This is called Percentage Slack Method (PSM).

Both these methods have been used in previous studies

[15, 20, 23, 24]. We now discuss the algorithms for each of

these methods. A salient feature of Cashier is that neither

of these two algorithms require a priori knowledge of the

baseline execution time for their operation.

We first discuss the steps which are common to both the

algorithms. In any interval i with C⋆ active colors; both the

algorithms select those configurations as candidates which

satisfy following two conditions. Firstly, to avoid thrashing,

a configuration should have at least N/16 active colors.

Secondly, to keep the reconfiguration overheads small, in

any interval, only up to L (L = 8 in this paper) colors can

be turned ON or OFF. If E denotes the set of configurations,



fulfilling these conditions, we have E = {C | (C⋆ − L) ≤
C ≤ (C⋆ + L) and C ≥ N/16}.

For explaining the algorithms, we define a quantify ti, as

follows. Using program execution time estimates, in every

interval, the algorithms estimate the extra time, which the

current configuration is taking over and above the baseline

configuration2. Over all the intervals, the Algorithm accu-

mulates these values. At the end of any interval i, this gives

the estimate of increased execution time (ti) due to ESAs

(viz. PSM or MSM), till that interval i. Thus, ti shows the

amount of slack already exploited.

We now explain the algorithm-specific steps.

MSM Algorithm:

1) To be conservative, MSM Algorithm keeps a reserved

slack of Treserve (Tslack/10 in this paper) and as-

sumes an effective slack of Teff =Tslack − Treserve.

2) At the end of interval i, (Teff − ti) shows the amount

of slack remaining. Based on this, MSM Algorithm

decides allowed maximum absolute slack (MASi+1)

for interval i + 1, e.g. if the remaining slack is 60µs,

the Algorithm may choose to use MASi+1 as 2µs.

3) The configurations having a slack greater than

MASi+1 are rejected from E. In effect, the config-

urations with number of active colors below a certain

threshold color are rejected. We call this step as

thresholding.

4) If E 6= φ, then the configuration from E with mini-

mum estimated energy is selected for interval i + 1.

5) If E = φ then the configuration closest to the thresh-

old, viz. (C⋆ + L) is chosen for next interval. This is

to avoid possible oscillations due to sudden change in

working set size of the application. Since the algorithm

aims to meet a global deadline, and not per-interval

deadline; by feedback adjustment, it compensates for

positive or negative deviations from the allowed slack.

PSM Algorithm:

1) If the total execution time at the end of interval i is

Ti, then (Ti − ti) gives the estimate of baseline time

till interval i. Using this, ∆i is calculated as follows:

∆i =
ti × 100

(Ti − ti)
(4)

Clearly, ∆i gives the estimate of percentage of extra

time taken by the PSM Algorithm over the baseline.

2) PSM Algorithm always tries to conservatively keep ∆i

below the actual allowed percentage slack (Υ), by a

small margin δ (0.3% in this paper). Thus, ∆i ≤ Υ−δ.

3) Based on ∆i and Υ, Algorithm computes maximum

percentage slack over the baseline for i + 1. This is

termed as MPSi+1 and represents the maximum per-

centage slack allowed in next interval. Then, to make

2Note that the execution time estimates for baseline cache configuration
are also obtained in run-time using RCE and not in offline manner.

performance aware choices, the configurations with

estimated percentage slack greater than MPSi+1 are

removed from E. Thus, in effect, the configurations

with number of active colors below a certain threshold

color are rejected. We call this step as thresholding.

4) If E 6= φ, then the configuration from E with mini-

mum estimated energy is selected for interval i + 1.

5) If E = φ then the configuration closest to threshold,

viz. (C⋆ + L) is chosen for next interval. The reason

for this is same as explained above.

We now explain the MSM algorithm with a simple

example and PSM can be similarly understood. Assume

N=64 and L=8 and in any interval, C⋆=28. Then, ini-

tially, E = {20, 25...35, 36}. If MASi+1 is such that the

configurations with C < 20 give an absolute slack value

greater than MASi+1, then all configurations in E pass

thresholding step and the one with minimum energy is

selected for next interval. However, if MASi+1 were such

that configurations with C < 40 were to be removed, then

after thresholding step, E = φ. In such case, the algorithm

selects the configuration with 36 (i.e. C⋆ +L) active colors,

which is the closest to threshold. In the next interval, C⋆

becomes 36 and then depending on MASi+2 and threshold-

color, a suitable color value can be chosen.

V. HARDWARE IMPLEMENTATION

For cache block switching, we use the gated-Vdd scheme

[7]. We assume a specific implementation of gated-Vdd

transistor (NMOS gated Vdd, dual Vt, wide, with charge

pump) which results in minimal impact on access latency,

but 5% increase in the cell area [7]. We account for this

overhead in our energy model (Section VI).

Cashier ESA runs after a large interval length (e.g. 5M

instructions). Cache reconfiguration changes the mapping of

memory regions to cache colors. During such time, when

a color is to be turned off, its dirty data is written back

to memory and the clean data is discarded; and then the

cache color is turned off. When a color is turned on, some

regions are mapped to this color and thus, this color starts

storing data. The cache reconfiguration scheme of Cashier

may introduce a one time overhead but is simple and has

less overhead than the previous techniques (e.g. [11, 12]).

VI. EXPERIMENTAL METHODOLOGY

A. Simulation Environment and Workload

We conduct out-of-order simulations using interval core

model from Sniper simulator [8, 9]. The processor frequency

is 2 GHz and ROB size is 128. Dispatch width is 4 micro-

operations. Each of L1I and L1D is 4-way 32KB, LRU cache

with 1ns latency. The L2 is 8-way 2MB, LRU cache with 6ns

latency. All caches use a block size of 64B. Main memory

latency is 70ns with peak bandwidth of 8GB/s and memory

queue contention is also modeled. The interval length is

5M instructions. To simulate the representative behavior of



SPEC2006, while still limiting the simulation time, we use

12 benchmarks from this suite, as suggested by Phansalkar

et al. [25] based on their multivariate statistical data analysis.

These 12 benchmarks, 6 each from integer point (gcc, hm-

mer, libquantum, mcf, sjeng, xalancbmk) and floating point

(cactusADM, lbm, milc, povray, soplex, wrf) benchmarks,

represent the behavior of entire SPEC2006 suite [25]. We

use ref inputs. We fast-forwarded each benchmark for 10B

instructions and then simulated for 1B instructions.

B. Energy Modeling

We take into account the energy spent in L2 cache, main

memory and the cost of executing the algorithm (EAlgo),

since other components are minimally affected by our ap-

proach. Note that for baseline experiments, EAlgo = 0.

Energy = EL2 + Emem + EAlgo (5)

Here energy spent in L2 and memory is composed of both

leakage and dynamic energy. Further, we use the symbols

Edyn
XY Z and P leak

XY Z to show the dynamic energy per access

and leakage energy per second, respectively, spent in any

component XY Z (e.g. L2, memory, RCE). To calculate L2

energy, we assume that an L2 miss consumes twice the

energy as that of an L2 hit [10, 12]. The leakage energy

is proportional to active area of the cache [11, 12]. Thus,

EL2 = Edyn
L2

×(2ML2+HL2)+(P leak
L2 ×T ime×C)/N (6)

Here N shows the total number of colors and for any

interval with C active colors, ML2 and HL2 show the

corresponding number of L2 misses and L2 hits respectively

and T ime shows time consumed in the interval. The L2

energy values are obtained using CACTI [26] for 4-bank

caches at 45nm technology. For 2MB L2 cache, we get

Edyn
L2

=0.985 nJ/access and P leak
L2

=1.568 Watt. To account

for the increased area due to use of gated-Vdd technique,

we assume 5% higher value of P leak
L2

for Cashier, but not

for baseline cache (Section V).

To calculate memory energy, we note that Edyn
mem=70 nJ

and P leak
mem=0.18 Watt [12, 27]. Using Amem to denote the

number of memory accesses, we get

Emem = Edyn
mem × Amem + P leak

mem × T ime (7)

Using ARCE to denote the number of RCE accesses and

ETran to denote block-transition energy, we get

EAlgo = Edyn
RCE × ARCE + P leak

RCE × T ime + ETran (8)

To calculate RCE energy consumption, we use Equation 2

and take power-of-two upper bound of S as S = 64Z/16RS.

We estimate energy using CACTI for a single bank structure,

with 8B block size and count energy consumption of tag

arrays only, since RCE is a tag-only structure. For an RCE

corresponding to 2MB L2, we get Edyn
RCE=0.004 nJ/access

and P leak
RCE=0.007 Watt. Since for every 64 L2 accesses, RCE

is accessed only 6 times, RCE energy consumption is a very

small fraction of L2 cache energy consumption. Each block

transition is assumed to take 0.002 nJ. Using Tran to denote

the total number of blocks transitions, we get

ETran = 0.002 × Tran nJ (9)

VII. RESULTS AND ANALYSIS

We now present the results of evaluation of Cashier. Note

that we evaluate Cashier under much more strict deadlines

than that used by previous works (e.g. [15]). For brevity,

we use the names cactus, libquant and xalan to denote

cactusADM, libquantum and xalancbmk, respectively.

A. Magnitude Slack Method

For evaluating MSM, we need to assign a randomly

chosen slack to each application, which is neither too high,

nor too low. Hence, we use two tests which assign slacks

randomly, while still ensuring reasonably strict deadlines and

evaluation. In first test, we generated a list P of 12 random

numbers in the range of [0, 1], using on-line random number

-10

 0

 20

 40

 60

 80

cactus gcc hmmer lbm libquan mcf milc povray sjeng soplex wrf xalan Average

%
E

n
er

g
y
 S

av
ed

 

% Energy Saved

 0

 20

 40

 60

 80

 100

cactus gcc hmmer lbm libquan mcf milc povray sjeng soplex wrf xalan

M
il

li
o
n
 C

y
cl

es

Allowed Slack Cycles
Actual Extra Cycles

 0

 20

 40

 60

 80

 100

cactus gcc hmmer lbm libquan mcf milc povray sjeng soplex wrf xalan

M
il

li
o
n
 C

y
cl

es

Missed

Missed

Allowed Slack Cycles
Actual Extra Cycles

Figure 3. Results with Magnitude Slack Method: Percentage Energy Saving and Simulation Cycle Increase (mcf and povray miss their deadlines)



-10

 0

 20

 40

 60

 80

cactus gcc hmmer lbm libquan mcf milc povray sjeng soplex wrf xalan Average

 0

 2

 4

 6

 8

%
E

n
er

g
y
 S

av
ed

 

%
E

x
tr

a 
C

y
cl

es

% Energy Saved % Extra Cycles

-10

 0

 20

 40

 60

 80

cactus gcc hmmer lbm libquan mcf milc povray sjeng soplex wrf xalan Average

 0

 2

 4

 6

 8

%
E

n
er

g
y
 S

av
ed

 

%
E

x
tr

a 
C

y
cl

es

Deadline 

Figure 4. Results with Percentage Slack Method: Percentage Energy Saving and Percentage Simulation Cycle Increase for Υ = 5% (No benchmark
misses the deadline)

generation utility [28] and then calculated (4 + pi)% of

baseline simulation cycles, where pi ∈ P , i = {1, 2..12}.

We then set it as a Tslack for MSM algorithm for each of

the 12 benchmarks. Figure 3 shows the results. The average

saving in energy over baseline cache is 25.9%, and for two

benchmarks (mcf and povray), the deadline is missed.

To test MSM under arbitrary slack value, we use a second

test. We take baseline simulation cycles of all benchmarks

and sort these values in ascending order. We then take the

mean of two medians, and set 5% of this value as Tslack for

all the benchmarks. In our experiments, Tslack value was

46.081M cycles. Using this, we observe 26.8% saving in

energy, and two benchmarks (cactusADM and povray) miss

the deadline (figure omitted due to space limitation).

We further test MSM, as outlined in first test, but this time

with (4+ qi)% of baseline simulation cycles, where qi ∈ Q,

i = {1, 2..12} and Q is another randomly generated list. We

get average energy saving of 25.8% and two benchmarks

(mcf and povray) miss the deadline (figure omitted).

B. Percentage Slack Method

Figure 4 shows the percentage energy saved over a base-

line cache, for percentage slack, Υ=5%. The average saving

in energy is 23.6% and none of the benchmarks misses the

deadline. For Υ=3%, the average saving in energy is 22.4%

and two benchmarks (lbm and mcf) miss their deadlines and

for Υ=7%, the average saving in energy is 25.0% and no

benchmark misses its deadline (figures omitted).

VIII. CONCLUSION

In this paper, we presented Cashier, a dynamic reconfigu-

ration based cache energy saving approach for QoS systems.

Cashier achieves a right balance between the opportunity

of energy saving and performance loss and fully adapts

itself according to the available slack to maximize energy

saving. Thus, Cashier saves energy with a small and bounded

performance loss and may allow using a larger cache for the

same energy budget to obtain even higher performance.

ACKNOWLEDGEMENTS

The authors appreciate the constructive comments from

the anonymous reviewers. This work is supported in part by

the NSF under grants CNS-0834476 and CNS-1117604.

REFERENCES

[1] W. Yuan et al., “Energy-efficient soft real-time cpu scheduling for
mobile multimedia systems,” ACM SIGOPS OSR, 2003.

[2] J. Li et al., “Real-time constrained task scheduling in 3d chip
multiprocessor to reduce peak temperature,” in EUC, 2010.

[3] S. Khaitan et al., “A class of new preconditioners for linear solvers
used in power system time-domain simulation,” IEEE TPS, 2010.

[4] A. Pande et al., “BayWave: Bayesian Wavelet-based Image Estima-
tion,” IJSISE, vol. 2, no. 4, 2009.

[5] http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.
pdf.

[6] H. Homayoun et al., “Adaptive techniques for leakage power manage-
ment in L2 cache peripheral circuits,” in ICCD, 2008, pp. 563–569.

[7] M. Powell et al., “Gated-Vdd: a circuit technique to reduce leakage
in deep-submicron cache memories,” in ISLPED, 2000, pp. 90 – 95.

[8] T. Carlson et al., “Sniper: Exploring the level of abstraction for scal-
able and accurate parallel multi-core simulations,” Supercomputing,
2011.

[9] http://snipersim.org.
[10] H. Hanson et al., “Static energy reduction techniques for micropro-

cessor caches,” IEEE Trans. on VLSI, 2003.
[11] S. Yang et al., “Exploiting choice in resizable cache design to optimize

deep-submicron processor energy-delay,” in HPCA, 2002.
[12] S. Mittal et al., “EnCache: Improving cache energy efficiency using

a software-controlled profiling cache,” in IEEE EIT, May 2012.
[13] J. Chi et al., “Cache leakage control mechanism for hard real-time

systems,” in CASES, 2007, pp. 248–256.
[14] W. Wang et al., “Dynamic reconfiguration of two-level caches in soft

real-time embedded systems,” in ISVLSI. IEEE, 2009, pp. 145–150.
[15] A. Weissel and F. Bellosa, “Process cruise control: event-driven clock

scaling for dynamic power management,” in CASES, 2002.
[16] R. Jejurikar et al., “Dynamic slack reclamation with procrastination

scheduling in real-time embedded systems,” in DAC, 2005.
[17] P. Pillai et al., “Real-time dynamic voltage scaling for low-power

embedded operating systems,” in ACM SOSP, 2001, pp. 89–102.
[18] K. Choi et al., “Off-chip latency-driven dynamic voltage and fre-

quency scaling for an mpeg decoding,” in DAC, 2004, pp. 544–549.
[19] R. Kessler et al., “Page placement algorithms for large real-indexed

caches,” ACM TOCS, vol. 10, no. 4, pp. 338–359, 1992.
[20] J. Lin et al., “Gaining insights into multicore cache partitioning:

Bridging the gap between simulation and real systems,” 2008.
[21] M. K. Qureshi et al., “Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423–432.

[22] S. Eyerman et al., “A performance counter architecture for computing
accurate CPI components,” in ASPLOS. ACM, 2006, pp. 175–184.

[23] N. Roy et al., “Toward effective multi-capacity resource allocation in
distributed real-time and embedded systems,” in ISORC, 2008.

[24] P. White, “Rsvp and integrated services in the internet: A tutorial,”
IEEE Communications Magazine, vol. 35, no. 5, pp. 100–106, 1997.

[25] A. Phansalkar et al., “Subsetting the SPEC CPU2006 benchmark
suite,” ACM SIGARCH CAN, vol. 35, no. 1, pp. 69–76, 2007.

[26] CACTI 5.3, http://quid.hpl.hp.com:9081/cacti/.
[27] H. Zheng et al., “Decoupled DIMM: building high-bandwidth mem-

ory system using low-speed dram devices,” in ISCA, 2009.
[28] http://www.random.org/decimal-fractions/.


