A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, with an Application to HDR Imaging

Abstract : Recently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this work, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: Firstly it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g. inpainting of missing pixels or zooming). Secondly it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed scheme.
Type de document :
Article dans une revue
IEEE Transactions on Computational Imaging, 2017, 〈10.1109/TCI.2017.2704439〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01107519
Contributeur : Julie Delon <>
Soumis le : lundi 15 mai 2017 - 00:20:31
Dernière modification le : vendredi 16 juin 2017 - 17:22:55
Document(s) archivé(s) le : jeudi 17 août 2017 - 00:48:12

Fichier

hpnlb_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cecilia Aguerrebere, Andrés Almansa, Julie Delon, Yann Gousseau, Pablo Musé. A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, with an Application to HDR Imaging. IEEE Transactions on Computational Imaging, 2017, 〈10.1109/TCI.2017.2704439〉. 〈hal-01107519v5〉

Partager

Métriques

Consultations de
la notice

157

Téléchargements du document

52