A multilevel double loop approach for the design of onboard flight networks
Djamel Hadbi, Nicolas Retière, Frédéric Wurtz, Xavier Roboam, Bruno Sareni

To cite this version:
Djamel Hadbi, Nicolas Retière, Frédéric Wurtz, Xavier Roboam, Bruno Sareni. A multilevel double loop approach for the design of onboard flight networks. 13th International Workshop on Optimization and Inverse Problems in Electromagnetism, Sep 2014, Delft, Netherlands. pp. 1-2, 2015. <hal-01105354>

HAL Id: hal-01105354
https://hal.archives-ouvertes.fr/hal-01105354
Submitted on 22 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr
Eprints ID : 11991

To cite this version : Hadbi, Djamel and Retière, Nicolas and Wurtz, Frédéric and Roboam, Xavier and Sareni, Bruno A multilevel double loop approach for the design of onboard flight networks. In: 13th International Workshop on Optimization and Inverse Problems in Electromagnetism, 10 September 2014 - 12 September 2014 (Delft, Netherlands).

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
A MULTILEVEL DOUBLE LOOP APPROACH FOR THE DESIGN OF ONBOARD FLIGHT NETWORKS

Djamel Hadbi∗, Nicolas Retière∗, Frederic Wurtz∗, Xavier Roboam∗∗, Bruno Sareni∗∗

∗Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France, CNRS, G2Elab, F-38000 Grenoble, France
firstname.lastname@g2elab.grenoble-inp.fr

**Université de Toulouse, LAPLACE, UMR CNRS-INPT-UPS, 2 rue Camichel, 31071 Toulouse, France
firstname.lastname@laplace.univ-tlse.fr

Abstract. After testing different existing design methods for complex problems, we have concluded that a good approach based on system decomposition must coordinate the design process of components to reach the system optimum. In this paper, we present a multilevel collaborative approach for designing complex systems based on several loops (here 2). A system level optimization loop added to lead optimizations of components at their optimal solutions. This method was applied to the sizing of a simplified embedded electric network with single source–load configuration.

Keywords: integrated design, collaborative multilevel optimization, embedded electrical system.

INTRODUCTION

Thanks to capabilities of optimization in solving nonlinear and multimodal design problems, and to face increasing system complexity, practitioners attempted to propose multilevel schemes [1], [2]. J.-F. M. Bartehlemy proposed a classification of the multilevel optimization problems and identified several methods for solving certain classes of multilevel design problems [3]. He focused on two phases which are decomposition and coordination. Our works in GENOME project (optimized management of energy) allowed us to verify these conclusions and to add another key element: the “system level optimality”. Decomposing a system and coordinating sub-system designs is not enough to reach the optimum of the original non-decomposed system. Sub-system optimizations have to be guided to reach the best system solution [1], [2]. In this paper, we present a new multilevel method inspired by the design of embedded electrical system. An additional level of optimization is used to choose the best solutions among all feasible coordinated solutions.

I. PROBLEM CLASSIFICATION

The matrix of dependencies is a powerful analysis method that describes the couplings between functions and variables [3]. In some cases, the decomposition is imposed by confidentiality constraints that condition the work of each team in the global design process of the system. So, methods based on decoupling variables are not suitable to deal with such problems. In such cases, other formulations have to be proposed to manage coupling variables.

![Figure 1. Dependency matrix with coupling variables: (a) block full, (b) block-angular, (c) quasi-block-angular](image)

The second characteristic of the design problems often encountered in the design of embedded systems is that the objective functions at the system level can be expressed in terms of objective functions associated with each subsystem, e.g., the mass of an energy channel is the sum of all its components.

![Figure 2. Objective function decomposition](image)
II. MULTILEVEL DOUBLE LOOP METHOD

The original non decomposed problem depends of all design variables, each sub-objective function
\(W_{\text{source}}, W_{\text{load}} \) depends on its own design variables, but constraints depend on all design variables.

\[
\begin{align*}
\min_{C_{S},C_{1},C_{2},L} & \quad W_{\text{tot}}(C_{S},C_{1},C_{2},L) = \min_{C_{S},C_{1},C_{2},L} \left(W_{\text{source}}(C_{S}) + W_{\text{load}}(C_{1},C_{2},L) \right) \\
& \quad G_{1}(C_{S},C_{1},C_{2},L) = V_{c_{Sj}} - V_{c_{Sj}^{\text{STANDARD}}} \leq 0 \\
& \quad G_{2}(C_{S},C_{1},C_{2},L) = I_{c_{f}} - I_{c_{f}^{\text{STANDARD}}} \leq 0
\end{align*}
\]

Coupling variables \((V_{c_{Sj}}, I_{c_{f}}) \) have to ensure coherence between subsystems: there are coupled between themselves and depend on design variables. Due to frequency model of subsystems, voltage and current harmonic at a given frequency are related by the transfer function which depends on filter parameters.

\[
\begin{align*}
V_{c_{Sj}} & = I_{1} \left(C_{S}, I_{c_{f}} \right) \\
I_{c_{f}} & = I_{2} \left(C_{1},C_{2},L,V_{c_{Sj}} \right)
\end{align*}
\]

\(V_{c_{Sj}} \) and \(I_{c_{f}} \) are coupling variables of the system

1st loop: system optimization

\[
\begin{align*}
\min_{V_{c_{Sj}}, I_{c_{f}}} & \quad W_{\text{tot}}(V_{c_{Sj}}^{\text{Target}}, I_{c_{f}}^{\text{Target}}) = W_{\text{source}}(V_{c_{Sj}}^{\text{Target}}, I_{c_{f}}^{\text{Target}}) + W_{\text{load}}(V_{c_{Sj}}^{\text{Target}}, I_{c_{f}}^{\text{Target}}) \\
& \quad G_{1}(V_{c_{Sj}}^{\text{Target}}) = V_{c_{Sj}}^{\text{Target}} - V_{c_{Sj}}^{\text{STANDARD}} \leq 0, \text{ for frequency discretization} \\
& \quad G_{2}(I_{c_{f}}^{\text{Target}}) = I_{c_{f}}^{\text{Target}} - I_{c_{f}}^{\text{STANDARD}} \leq 0, \text{ for frequency discretization}
\end{align*}
\]

2nd loop: optimization of the source

\[
\begin{align*}
\min_{C_{S}, C_{1}, C_{2}, L} & \quad W_{\text{source}} = f_{s}(C_{S}) + P \sum (V_{local}^{c_{Sj}} - V_{Target}^{c_{Sj}})^{2} \\
& \quad |V_{local}^{c_{Sj}} - V_{Target}^{c_{Sj}}| \leq \varepsilon \\
& \quad V_{local}^{c_{Sj}} = g_{source}(C_{S}, I_{c_{f}}^{\text{Target}})
\end{align*}
\]

2nd loop: optimization of the load

\[
\begin{align*}
\min_{C_{1}, C_{2}, L} & \quad W_{\text{load}} = f_{l}(C_{1}, C_{2}, L) + P \sum (I_{local} - I_{Target})^{2} \\
& \quad |I_{local} - I_{Target}| \leq \varepsilon \\
& \quad I_{local} = g_{load}(C_{1}, C_{2}, L, V_{c_{Sj}}^{Target})
\end{align*}
\]

Figure 3. Architecture of the multilevel double loop optimization method

The proposed approach uses two levels of optimization. In the system level, the goal is to find values of coupling variables minimizing system level objective function. Each component optimization search the best solution in terms of design variables, but targeting coupling variables proposed at system level.

In the sub-system optimization, each optimization try to find the local optimum which respect to the values of coupling variables. The sub-objective function is penalized if targets on coupling variables are not fulfilled: in such a case, a penalty function is sent to the system level. The penalty term \(P \) must be very high in order to avoid the non-feasibility of the solution. With this configuration, the system level has to find feasible \((P=0) \) and optimal design.

Table 1. Objective function value

<table>
<thead>
<tr>
<th>Simultaneous design approach</th>
<th>Multilevel double loop approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of evaluations</td>
<td>500</td>
</tr>
<tr>
<td>Total weight (kg)</td>
<td>0.840</td>
</tr>
<tr>
<td>Number of evaluations</td>
<td>10000</td>
</tr>
<tr>
<td>Total weight (kg)</td>
<td>0.839</td>
</tr>
</tbody>
</table>

Using a genetic optimization algorithm we were able to converge at the same optimal solution found by using a simultaneous optimization on a whole system. The number of evaluation of subsystems was:

\[
N_{\text{ev.}} = N_{\text{ev. at system level}} \times 2 \times N_{\text{ev. at subsystem level}}
\]

Without knowing the internal models of subsystems, we managed to find the optimal system solution by exchanging only on data networks that are common to subsystems.

REFERENCES

