Dynamique morpho-paysagère du bassin versant moyen de l’oued Moulouya et impact sur l’envasement des barrages (Maroc)

Wadi Moulouya river basin landscape and morphological dynamism and repercussions on dams silting (Morocco)

Mustapha EL HANNANI
ESO-Angers, UMR 6590 CNRS, Université d’Angers.
Aude Nuscia TAIBI
LETG-Angers LEESA, UMR 6554 CNRS, Université d’Angers.
Taieb BOUMEAZA
GESIA, FLSH, Université Hassan II Mohammed-Casablanca, Maroc.

Remerciements : Cette étude a été financée dans le cadre d’un PICS CNRS-CNRST Maroc.

Le bassin versant de l’oued Moulouya d’une superficie de près de 54 500 km², comme tout le Maroc Nord Oriental où il se localise (Fig. 1), est caractérisé par des processus d’érosion intenses qui expliquent les forts taux d’envasement des barrages de Mechrâa Hammadi (1955) et Mohamed V (1967), estimés à 11.6 Mm³/an pour le barrage Mohamed V (Remini et Remini, 2003), parmi les plus importants du Maroc, en lien avec une dégradation spécifique dans le bassin de la Moulouya estimée à 214 m³/km²/an (Chaker, 1997).

![Fig. 1 : Le bassin versant de l’Oued Moulouya au Maroc Oriental](image)

Cet envasement se traduit par une réduction de la capacité utile des barrages, estimée à 10 Mm³/an (Belkhairi, 1988). Le volume du réservoir initialement de 726 Mm³ à l’origine, n’est plus que de 326.7 Mm³ en 2013 (Ministère de l’Énergie, des Mines, de l'Eau et de l'Environnement, 2013). Cela se répercute sur l’alimentation du périmètre irrigué de la basse Moulouya et en eau potable des centres urbains et complexes touristiques de toute la région méditerranéenne du Maroc nord oriental. Ces volumes d’eau perdus équivalent à l’irrigation potentielle de 1000 ha par an (Ahamrouni, 1996).
Si ces processus d'érosion découlent étroitement des caractéristiques bio-physiques du bassin versant de la Moulouya, il semblerait qu'ils aient été accentués ces dernières décennies par l'extension des terres cultivées associée à une modification des modes de mise en valeur agricoles des terres fragiles de cette région. Nous nous sommes intéressé ici plus particulièrement au bassin versant moyen de la Moulouya, situé en amont des barrages et incluant la moyenne Moulouya et la plaine de Guercif. La moyenne Moulouya est caractérisée par une topographie de 900 m d'altitude moyenne opposant une rive gauche à fortes pentes (glacis et cônes de déjection au pied du Moyen Atlas) à une rive droite constituée de plateaux à pentes faibles vers les Rekkam, marquant une transition vers les hauts plateaux à l'est (Fig. 2). La plaine de Guercif plus en aval, avec une altitude moyenne de 400 m, est également drainée par les oueds Meloulou et M'soun.

![Image](https://via.placeholder.com/150)

**Fig. 2 : Topographie du bassin versant de l'Oued Moulouya**


Les transformations morpho-paysagères associées à de nouvelles pratiques agraires, ont profondément modifié les dynamiques de surface dans le bassin versant moyen de la Moulouya, et les zones d'alimentation en sédiments envasant les barrages.

**Le bassin versant de l’oued Moulouya : des ensembles morpho-paysagers très contrastés à fort potentiel érosif**

Le bassin de la Moulouya couvre une superficie de 54 500 km² dont l’essentiel se localise en amont du barrage Mohamed V. Son bassin versant moyen est
caractérisé par un climat semi-aride à aride à tendance continentale avec des hivers froids. Ce climat très contraignant est lié à une position d’abri des montagnes du Rif et du Moyen Atlas, barrant la voie aux masses d’air humides atlantiques, et des montagnes des Keddana et des Beni Snassen, bloquant les masses d’air humides méditerranéennes. Par ailleurs, cette région est soumise aux influences sahariennes depuis le sud par les Hauts Plateaux. Les précipitations moyennes annuelles inférieures à 350 mm pour la majeure partie du bassin versant (fig. 3), particulièrement dans les plaines en position d’abri (237 mm à Taourirt, 185 mm à Guercif) sont très irrégulières d’une année à l’autre, et se concentrent sur un nombre de jours limités ; 40 à 45 jours à Taourirt par exemple (Troin, 2002). Cette concentration se traduit par de violentes averses notamment en avril-mai et octobre-novembre, or on sait combien les précipitations et leur intensité jouent un rôle fondamental dans la perte en terre d’une parcelle (Laouina, 1992).

Fig. 3 : Un climat semi-aride à hivers froids

Ce climat favorise de faibles taux de boisement dans cette région. Seules les zones montagneuses les plus arrosées sont couvertes de forêts de thuyas et de chênes verts (Fig. 4).

Fig. 4 : Des formations végétales à dominante steppique et dégradées, et une occupation du sol ne favorisant pas la couverture des sols.
Dans les zones caractérisées par des précipitations autour de 300 mm se développe un matorral composé d’oléastres, de lentisques et de doum. Les zones plus franchement arides à moins de 300 mm de précipitations, au sud du bassin dans la gouttière de l’oued Moulouya, sont marquées par des formations steppiques où dominent les espèces xérophiles (steppe à muleau, aux armoise et jujubiers parfois piquetées de quelques *Pistacia atlantica*). Ces formations peu couvrantes protègent mal les sols des averses violentes et du ruissellement.

La configuration topographique du bassin versant constitue également un facteur aggravant l’érosion hydrique. Les plaines alluviales, allongées du sud-ouest au nord-est sont encadrées par les pentes fortes du Haut Atlas au sud (culminant à 3760 m), du Moyen Atlas (culminant à 2000 m ou 3000 m d’altitude) à l’ouest et du Rif culminant vers 2000 m dans sa partie orientale (Fig. 2). Ahamrouni (1996) a mesuré que presque le tiers de la superficie totale du bassin versant de la Moulouya présente des pentes fortes à très fortes (supérieures à 6 %).

Ce bassin versant est également caractérisé par une lithologie dominante fortement érodable (Fig. 5).

*Fig. 5 : Formations lithologiques du bassin versant moyen de la Moulouya*

A partir de ces différents critères lithologiques, topographiques et climatiques, complétés par des analyses granulométriques et minéralogiques, Ahamrouni (1996) a déterminé les principales zones de production de sédiments par érosion hydrique (par ruissellement diffus et concentré) dans le bassin versant de la Moulouya. Ces zones potentiellement les plus productives de sédiments (fig. 5) sont :
- Les formations superficielles limoneuses grises des plaines d’épandages de l’oued Msoun au nord de Guercif (plaine du Jel) en partie exploitées traditionnellement en céréaliiculture en bour mais plutôt dédiées aux parcours.
- Les formations à marnes vindoboniennes des glaciés au sud de la confluence des oueds Melloulou et Moulouya, traditionnellement plutôt dédiées à l’élevage sur formations steppiques.
- Les formations de marnes gypseuses rouges des glacis à steppes à alfa dans la région de Missour.
- Les flysch des plateaux séparant les bassins de la Moulouya et de l’oued Za et dans la vallée de l’oued Za et du Msoun, couverts de formations steppiques ouvertes (à chaméphytes ligneuses).
- Les nombreuses zones d’épandages alluviaux développées le long des oueds affluent de la Moulouya (dominante limoneuse).
La dynamique éolienne relativement faible à l’échelle du bassin, s’observe cependant dans les plaines alluviales limoneuses, essentiellement dans la plaine de Guercif.
A l’opposé, les zones à faible production de sédiment correspondent aux surfaces encroûtées et à substrats calcaires et dolomitiques des Hauts Plateaux drainés par l’oued Za, du couloir d’Outat El Haj et au sud-ouest de Missour. Colonisées par une steppe très ouverte à alfa en nappes discontinues associé à de l’armoise et des jujubiers sur sols squelettiques, ces espaces sont avant tout traditionnellement dédiés à un élevage extensif.

Des mutations récentes de l’occupation des sols modifiant la répartition spatiale des zones d’alimentation en sédiments.

La répartition des zones d’alimentation en sédiments a été bouleversée ces dernières années par la modification de l’occupation du sol dans le bassin versant de la Moulouya.
Les programmes de développement de l'agriculture comme facteur
de changement paysager

Longtemps coupée du Maroc « utile », cette région périphérique de l'Oriental
est encore aujourd'hui peu intégrée au tissu économique du Maroc. Peu peuplée, avec
moins de 20 hab./km², la région connait un processus d’exode rural massif vidant les
campagnes pauvres et sous équipées pour gonfler les villes (taux d’urbanisation
supérieur à la moyenne nationale estimé à 72 % en 1994 selon Troin, 2002).
Cette région aux faibles aptitudes agricoles est essentiellement dédiée aux
activités agro-pastorales. Les milieux steppiques correspondent à des zones de
parcours pour un élevage ovin et caprin extensif (traditionnellement nomade, mais
progressivement semi-nomade et transhumant et de plus en plus sédentaire), activité
en crise notamment depuis les sécheresses sévères des années 70 et 80. Les surfaces
en bour (en sec), soumises à la forte contrainte de l’irrégularité des pluies, se limitent
traditionnellement à quelques périmètres localisés notamment dans la plaine de
Guercif, et ne constituaient qu’une activité d’appoint à l’élevage. Les cultures de
céréales pauvres (orge essentiellement) y sont à faibles rendements. Le long de la
vallée de la Moulouya et ses affluents importants, et autour des sources de résurgence
de piémont, s’est développée une agriculture irriguée en petites unités,
essentiellement par dérivation des eaux des oueds ou de quelques petits barrages
collinaires. L’irrigation pérenne y a permis la création d’oasis sans palmiers. La
diffusion des moto-pompes depuis la période coloniale et son intensification avec les
apports financiers de l’émigration, a favorisé le développement « d’un ruban de
cultures intensives couvrant un millier d’hectares autour du centre de Guercif »
(Troin, 2002) associant l’olivier aux cultures maraîchères, fourragères et céréalières.
Mais cette organisation séculaire, fruit d’une adaptation aux contraintes sévères
du milieu, se transforme rapidement ces dernières années sous l’impulsion de divers
programmes de développement agricole. Longtemps oubliée des aménageurs, cette
région a bénéficié de différents systèmes nationaux d’incitation financière à
l’aménagement hydro-agricole et foncier des propriétés agricoles à partir de 1985,
renforcé en 1995 puis en 2002 sur le volet irrigation et restauration des terres, et
amplifié depuis 2008 par le Plan Maroc vert. Ce Plan Maroc vert, matérialisé à
echelle régionale par les plans agricoles régionaux (PAR), est considéré par ces
initiateurs (l’État) comme un projet global et intégrateur, a la différence des
précédents qui étaient plus sectoriels. L’agriculture bour a également bénéficié de
divers programmes depuis 1957 et « l’opération labour » pour les plaines céréalières,
puis « l’opération engrais » en 1966, suivi par des programmes d’octroi de
subventions notamment aux petits agriculteurs pour l’équipement des exploitations
(1969 puis 1980), puis des stratégies de développement rural plus intégré (Plan
directeur de gestion conservatoire des ressources en terres bour en 1995).
Ces programmes, et notamment le Plan Maroc vert, visent à développer une
agriculture moderne et libérale. Pour cela, l’État apporte un soutien financier à toutes
les opérations d’aménagement et d’équipement de nouvelles parcelles. Cette
participation est fonction du type d’opération (équipement, plants d’arbres, ...), et se
situe entre 30 à 70 % des sommes investies. Cet engagement de l’État a constitué un
facteur d’incitation très fort pour de nombreux investisseurs, dont la majorité ne sont
ni agriculteurs, ni originaires de la région. Ces nouveaux acteurs, dont certains sont
des sociétés étrangères, sont porteurs de nouvelles pratiques agricoles, de travail des
terres et de modes d’irrigation.
L’impact de ces différents programmes se lit dans les paysages à travers la
multiplication des vergers (olivettes essentiellement et abricotiers) irrigués en goutte
à goutte, et le développement de la céréaliculture extensive en bour en système de dry-farming, créant un véritable front agricole dans certaines parties du bassin versant moyen de la Moulouya.

Le processus semble être particulièrement accéléré ces dernières années. Ainsi, de 1998 à 2008, les superficies de l’olivier ont connu un accroissement de 34 % dans le pays (La Vie éco, 2009). Nous ne disposons pas de données chiffrées pour le bassin moyen de la Moulouya, mais les suivis diachroniques des images satellites montrent clairement une démultiplication de nouvelles parcelles agricoles, particulièrement d’oliveraies, développées en dehors des périmètres traditionnellement exploités, notamment le long des axes routiers et de manière générale sur les zones de parcours « incultes », dédiées jusque là à l’élevage extensif sur formations végétales steppiques (fig. 6).

Le terrain, réalisé en 2012, a montré que ces mutations étaient encore d’actualité, et vraisemblablement accentuées depuis 2008 et le Plan Maroc Vert. Ces nouveaux périmètres agricoles correspondent pour l’essentiel à de petites parcelles, ce qui était déjà une caractéristique de la région (les propriétés de moins de 5 ha représentent 78,5 % du total dans la province de Taza où se localise la moyenne Moulouya, selon l’Agence pour le Développement Agricole), mais on note clairement le développement de périmètres plus importants qui sont le fait d’investisseurs, parfois étrangers (beaucoup d’espagnols), notamment dans la plaine du Jel.

Cette dynamique se traduit par la création de quatre grands types de nouveaux périmètres, qui se distinguent par des modes de mise en valeur et des pratiques spécifiques :

- Dans la plaine de l’oued M’soun (plaine du Jel), des oliveraies ont été implantées sur les formations alluviales limoneuses pourtant salées et traditionnellement dédiées aux parcours et à la céréaliculture pauvre en bour. Les arbres sont plantés dans des fosses circulaires à sols artificiels (Fig. 7 A et B), retenant l’eau et les sédiments, associant plusieurs systèmes d’irrigation (goutte à goutte et gravitaire). Les sols sont laissés à nu entre chaque fosse, par le passage de scarificateur ou le désherbage chimique. Les parcelles que l’on commence à voir se développer sur les images de 1987, ont plus que triplé sur celles de 2000, alors que la zone n’était visiblement pas cultivée en 1979 (Fig. 6 A). C’est dans cette plaine du Jel que l’on observe les plus grandes parcelles à proximité de l’échangeur de la nouvelle autoroute Fez – Oujda ouverte en juillet 2011, créées par des investisseurs privés, notamment de sociétés étrangères.

- Des oliveraies, associées parfois à d’autres plantations (abricotiers, choux, ...), ont également été développées sur les formations quaternaires encroûtées ou à poudingue (Fig. 6 B et C) après défonçage mécanique de la croûte superficielle d’une épaisseur jusqu’à 50cm (Fig. 8). Les arbres sont plantés dans des fosses à sols artificiels. Ces périmètres de petits producteurs et de sociétés d’investissement, sont en général associés à un système d’irrigation en goutte à goutte et s’étirent pour l’essentiel le long des routes (N15 Guercif-Outat El Hadj et N6 Guercif-Taourirt).
Fig. 6 : Suivi diachroniques à partir de compositions colorées d’images Landsat (canaux Bleu, PIR et MIR)

Fig. 7 : Oliveraies développées sur les formations limoneuses de la plaine de l’oued M’soun (Clichés : AN. Taïbi, 04-2012)
- On retrouve également ces oliveraies irriguées en goutte à goutte développées sur les formations marneuses néogènes, notamment dans la région de Aïn Fritissa (Fig. 9 A et B).

- Les glacis et cônes de déjection, traditionnellement zones de parcours « incultes » dédiées jusque là à l’élevage extensif sur formations végétales steppiques, sont en phase de mise en valeur agricole croissante avec une céréaliculture extensive en bour en système de dry-farming. Les images satellites montrent là encore, une démultiplication des parcelles entre 1987 et 2000. Ce système s’appuie sur de nouvelles pratiques de labours profonds au tracteur sur les sols fragiles et peu épais notamment au sud de Aïn Fritissa (Fig. 6 C et Fig. 10).
**L'impact des changements morpho-paysagers sur les processus d'érosion des sols**

Cette dynamique des paysages agricoles associés à de nouveaux modes d’exploitation et de pratiques culturelles et d’irrigation, modifie profondément les états de surface et les conditions de ruissellement, et de ce fait modifie également les zones d’alimentation et les volumes de sédiments produits dans ce bassin de la Moulouya.

Nos observations géomorphologiques de terrain dans le bassin versant moyen de la Moulouya, sans quantification, montrent une nette accélération des processus d’érosion. Les processus observés après les épisodes pluvieux intenses du printemps et de l’automne 2012 sont des découpages superficiels aréolaires, la formation de rigoles, de ravines et de ravinements généralisés (Bad lands) (Fig. 11). Ces processus naturels favorisés par les caractéristiques climatiques, topographiques, pédologiques et biogéographiques précédemment décrites, ont été accentués et étendus spatialement en lien avec les nouvelles pratiques agricoles mises en œuvre dans le cadre des programmes de développement agricole.

![Image 1](image1.png) ![Image 2](image2.png) ![Image 3](image3.png)

**Fig. 11 : Processus d’érosion par ravinement et en nappes (Clichés : M. El Hannani, 10-2012)**

La plaine du Jel (oued M’soun) qui était déjà considérée comme une des plus grande source de sédiments du bassin connaît une intensification du ruissellement diffus et concentré et de la déflation éolienne. Les sols y sont laissés à nu entre les fosses accueillant les oliviers (Fig. 7 C), ce qui favorise, avec l’effet splash (déplacement par rejaillissement de fragments de sols individualisés sous l’effet des gouttes de pluie), l’imperméabilisation des surfaces avec la formation d’une croûte de battance et donc le ruissellement. Sur ces surfaces imperméabilisées, à pentes faibles, se forme un ruissellement en nappe lors des pluies de faible intensité, décapant progressivement la surface des sols (Girard et al, 2005). Lorsque l’intensité des pluies est plus forte (ou la pente), le ruissellement à plutôt tendance à se concentrer et favorise le ravinement. Les taux de salinité élevés des eaux d’irrigation et des formations limoneuses de cette plaine, dénudées la majeure partie de l’année, accroissent encore l’agressivité de l’érosion hydrique mais également éolienne en augmentant la désagrégation des sols (Fig. 7 D).
Les processus d’érosion ont également été réactivés pour les mêmes raisons dans les nouvelles oliveraies développées sur les formations marneuses néogènes dans la région de Ain Fritissa. L’imperméabilisation des sols par effet splash, créant une croûte de battance, y a engendré des processus de ravinement particulièrement intenses (Fig. 9 A, B et 11).

Sur les plateaux enroûtés, c’est la destruction mécanique de la croûte superficielle (épaisseur jusqu’à 50cm) qui favorise la mobilisation des sédiments fins limoneux par le ruissellement, notamment diffus, lors des épisodes pluvieux. Ces surfaces enroûtées, considérées jusque là comme stables, sont donc devenues productrices de sédiments.

C’est également le cas des sols fragiles et peu épaiss des glaciolâtres au sud de Ain Fritissa, mis en valeur en système de dry-farming avec de nouvelles pratiques de labours profonds au tracteur. Des travaux menés dans les mêmes types de milieux en Algérie (Magagnosc, 1988 ; Rullan, 1988) ont déjà montré l’impact majeur de cette mécanisation et du développement de la céréaliiculture extensive en système de dry-farming, sur l’accélération des processus d’érosion des sols fragiles de zones semi-arides. Ces méthodes de dry-farming introduites dès la période coloniale au Maghreb, ont été décrites comme entraînant la déstructuration des sols pauvres, peu épaiss, par les labours profonds et répétés (Rullan, 1988). En effet, les labours profonds entraînent la baisse des taux d’humus (de 2 à 0,5 % à long terme), car l’aération du sol favorise la minéralisation de cet humus. Cela conduit à laborer de plus en plus profondément pour faire remonter les éléments riches ce qui amène à l’épuisement du stock d’humus et à la disparition du pouvoir de rétention d’eau (Rullan, 1988). Ces pratiques sont associées en général à une jachère travaillée au moins biennale, où les sols restent sans protection de nombreux mois consécutifs, ce qui est un facteur de ravinement et de déflation éolienne.

Les programmes de développement agricoles qui s’inscrivent au Maroc dans un processus long et tortueux datant de la colonisation, et qui ont pour objectifs la modernisation de l’agriculture marocaine, ont des bilans mitigés. Si ils ont indéniablement eu des effets positifs dans le développement à court terme de la région et l’amélioration des conditions de vie, ils montrent également que la focalisation sur des objectifs de développement économique (L’objectif du Plan Maroc Vert est de faire de l’agriculture le principal moteur de croissance de l’économie nationale dans les 10 à 15 prochaines années) et sociaux (lutte contre la pauvreté rurale), en délaissant la composante environnementale, peut créer à long terme des effets induits détruisant les apports économiques et sociaux de ces programmes.

En effet, les mutations des paysages agraires en cours dans le bassin moyen de la Moulouya s’inscrivent dans un processus de développement agricole «inadapté» aux caractéristiques biophysiques de la région et se traduisent par une accentuation des processus d’érosion dans ce contexte biophysique déjà favorable. L’accentuation des processus d’érosion vient donc aggraver le problème particulièrement préoccupant de l’envasement des barrages. En 1994, les pertes économiques totales dues à l’envasement du barrage Mohamed V étaient déjà estimées à 950 millions de dirhams en 2030 par le Ministère de l’Agriculture et de la Mise en Valeur Agricole, avec une perte économique en production agricole de 70.000 hectares dans les périmètres irrigués en aval du barrage, et une perte en production d’énergie électrique estimée à 300 millions de KWh. Les pertes en productivité et production dans les périmètres agricoles équipés en grande hydraulique en aval des barrages, à
cause de la diminution des ressources en eau disponibles pour leur irrigation, relativise donc les gains économiques et sociaux réalisés avec ces programmes de développement agricoles en amont du barrage.

Par ailleurs, cet exemple illustre la nécessité de traiter de manière intégrée les différents volets que comporte l’érosion des sols. Le volet hydraulique ne doit pas être dissocié du volet agronomique. Or les programmes de lutte contre l’érosion et l’envasement des barrages mis en œuvre sur ce bassin versant (et au Maroc et au Maghreb de manière générale) sont pour la majorité sectoriels. Ils proposent des solutions purement techniques d’intervention notamment dans les chenaux des oueds et leurs affluents (jusqu’aux ravines), sans se préoccuper des facteurs de production de sédiment à l’amont, eux-mêmes liés aux choix agraires et agronomiques mis en œuvre dans les parcelles sur les bassins versants, découlant des diverses incitations d’État pour le développement de l’agriculture. En réalité, c’est le cycle global de l’eau à l’intérieur du bassin versant qui doit être pris en compte (Laouina, 1992) ainsi que les dimensions socio-environnementales du développement.

Au-delà de ces premières conclusions préliminaires, l’évaluation de l’impact de ces transformations sur le long terme reste à réaliser. Les conclusions de ce travail mériteraient un approfondissement avec notamment des quantifications terrain des processus d’érosion et le croisement des données d’envasement des barrages avec les rythmes d’extension des nouvelles parcelles d’olivettes et de céréalière extensive.

Résumé : Le bassin versant de l’oued Moulouya, comme tout le Maroc Nord Oriental est caractérisé par des processus d’érosion intenses qui expliquent les forts taux d’envasement des barrages de Mechrâa Hammadi (1955) et Mohamed V (1967) estimés à 11.6 Mm³/an pour le barrage Mohamed V, et qui se répercutent sur l’alimentation du périmètre irrigué de la basse Moulouya et en eau potable des centres urbains et complexes touristiques de toute la région méditerranéenne du Maroc nord oriental. Des observations à partir d’images satellitaires (Landsat de 1979, 1987, 2000) et de terrain (2012), montrent de rapides et importantes mutations des paysages de ce bassin versant qui impactent ces processus d’érosion. Dans le cadre de différents programmes de développement de l’agriculture, dont le plan Maroc Vert à l’échelle de tout le pays depuis 2008, de très nombreuses nouvelles parcelles agricoles, notamment d’oliveraies, se sont développées en dehors des périmètres traditionnellement exploités, sur des surfaces encourtées, à poudingue ou à formations limoneuses salifères plutôt dédiées à l’élevage transhumant. Les parcelles ainsi créées sont associées fréquemment à de nouvelles pratiques agricoles, de travail des terres et d’irrigation qui modifient profondément les états de surface et les conditions de ruissellement et ont tendance à accentuer les processus d’érosion.

Mots clés : Dynamique morpho-paysagère, érosion, bassin versant, oued Moulouya.

Abstract : The wadi Moulouya river basin, as the whole north eastern Morocco, is characterised by heavy erosion processes explaining the high silting of Mechrâa Hammadi (1955) and Mohamed V (1967) dams estimated around 11.6 Mm³/year for Mohamed V dam. These silting rates have repercussions on the low Moulouya irrigated area and the cities and tourist complexes drinking water supply. Remote sensing monitoring with Landsat images dated 1979, 1987 and 2000 and land survey (2012) show fast and important Moulouya river basin landscapes changes, modifying the erosion processes. As part of different agriculture development programmes, including the Plan Maroc Vert since 2008, numerous new agricultural parcels, especially olive plantations, extended outside the traditional farmed areas, on crusted lands, poudingue or salty alluvial (silt) superficial deposits, rather than transhumant grazing. The parcels created are frequently associated with new agricultural practices, cultivation of soils and irrigation which deeply modify the soils surface characteristics and rill wash and sheet wash conditions inclining to enhance erosion processes.

Key words : Landscape and morphological dynamism, erosion, river basin, wadi Moulouya.
Références bibliographiques


