Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size

Abstract : The input of the Tropical Connected Set problem is a vertex-colored graph G=(V,E) and the task is to find a connected subset $S\subseteq V$ of minimum size such that each color of G appears in S . This problem is known to be NP-complete, even when restricted to trees of height at most three. We show that Tropical Connected Set on trees has no subexponential-time algorithm unless the Exponential Time Hypothesis fails. This motivates the study of exact exponential algorithms to solve Tropical Connected Set. We present an O^∗(1.5359n) time algorithm for general graphs and an O^∗(1.2721n) time algorithm for trees.
Type de document :
Communication dans un congrès
Parameterized and Exact Computation - 9th International Symposium, Sep 2014, Wroclaw, Poland. 8894, pp.147-158, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-319-13524-3_13〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01105083
Contributeur : Mathieu Liedloff <>
Soumis le : lundi 19 janvier 2015 - 16:51:41
Dernière modification le : jeudi 17 janvier 2019 - 15:06:06

Identifiants

Citation

Mathieu Chapelle, Manfred Cochefert, Dieter Kratsch, Romain Letourneur, Mathieu Liedloff. Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size. Parameterized and Exact Computation - 9th International Symposium, Sep 2014, Wroclaw, Poland. 8894, pp.147-158, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-319-13524-3_13〉. 〈hal-01105083〉

Partager

Métriques

Consultations de la notice

104