Solving Capacitated Dominating Set by using covering by subsets and maximum matching

Abstract : The Capacitated Dominating Set problem is the problem of finding a dominating set of minimum cardinality where each vertex has been assigned a bound on the number of vertices it has capacity to dominate. Cygan et al. showed in 2009 that this problem can be solved in $O(n^3 m {{n} \choose {n/3}})$ or in $O^*(1.89^n)$ time using maximum matching algorithm. An alternative way to solve this problem is to use dynamic programming over subsets. By exploiting structural properties of instances that can not be solved fast by the maximum matching approach, and "hiding" additional cost related to considering subsets of large cardinality in the dynamic programming, an improved algorithm is obtained. We show that the Capacitated Dominating Set problem can be solved in $O^*(1.8463^n)$ time.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2014, 168, pp.60-68. 〈10.1016/j.dam.2012.10.021〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01105058
Contributeur : Mathieu Liedloff <>
Soumis le : lundi 19 janvier 2015 - 16:34:17
Dernière modification le : jeudi 7 février 2019 - 14:51:38

Identifiants

Collections

Citation

Mathieu Liedloff, Ioan Todinca, Yngve Villanger. Solving Capacitated Dominating Set by using covering by subsets and maximum matching. Discrete Applied Mathematics, Elsevier, 2014, 168, pp.60-68. 〈10.1016/j.dam.2012.10.021〉. 〈hal-01105058〉

Partager

Métriques

Consultations de la notice

61