Group Measures and Modeling for Social Networks

Abstract : Social network modeling is generally based on graph theory, which allows for study of dynamics and emerging phenomena. However, in terms of neighborhood, the graphs are not necessarily adapted to represent complex interactions, and the neighborhood of a group of vertices can be inferred from the neighborhoods of each vertex composing that group. In our study, we consider that a group has to be considered as a complex system where emerging phenomena can appear. In this paper, a formalism is proposed to resolve this problematic by modeling groups in social networks using pretopology as a generalization of the graph theory. After giving some definitions and examples of modeling, we show how some measures used in social network analysis (degree, betweenness, and closeness) can be also generalized to consider a group as a whole entity.
Type de document :
Article dans une revue
Journal of Complex Systems, Hindawi, 2014, 2014, pp.Article ID 354385. 〈http://www.hindawi.com/journals/jcs/2014/354385/〉. 〈10.1155/2014/354385〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01105054
Contributeur : Vincent Levorato <>
Soumis le : lundi 19 janvier 2015 - 16:30:47
Dernière modification le : jeudi 7 février 2019 - 16:16:50
Document(s) archivé(s) le : lundi 20 avril 2015 - 11:01:21

Fichier

354385.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Vincent Levorato. Group Measures and Modeling for Social Networks. Journal of Complex Systems, Hindawi, 2014, 2014, pp.Article ID 354385. 〈http://www.hindawi.com/journals/jcs/2014/354385/〉. 〈10.1155/2014/354385〉. 〈hal-01105054〉

Partager

Métriques

Consultations de la notice

182

Téléchargements de fichiers

189