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REGULARITY RESULTS FOR A CLASS OF HYPERBOLIC

EQUATIONS WITH VMO COEFFICIENTS

MAÏTINE BERGOUNIOUX AND ERICA L. SCHWINDT

Abstract. In this note we show a regularity result for an hyperbolic system
with discontinuous coefficients. More precisely, we deal with coefficients in the
function space VMO and we prove the existence and uniqueness of a solution

u P L8p0, T ;H2pΩqq with also suitable regularity for Bu

Bt
, B

2
u

Bt2
and B

3
u

Bt3
.

1. Introduction

Let Ω be a bounded open subset of Rd with d ě 3. In the context of photoacoustic
tomography process modelling [1], we are led to study the follwing wave equation
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B2p

Bt2
pt, xq ´ divpv2s∇pqpt, xq “ fpt, xq in p0, T q ˆ Ω

ppt, xq “ 0 on p0, T q ˆ BΩ

pp0, xq “
Bp

Bt
p0, xq “ 0 in Ω,

where p “ ppt, xq is an acoustic pressure wave, vs “ vspxq is the speed of sound, f is
a distibuted source that comes from a lightning process and Ω is the domain where
the wave propagates. The coefficient vs is generally unknown and not smooth. We
are interested in establishing new results of regularity of the solution p in the case
of discontinuous coefficient vs.

Hereafter we will assume that BΩ is of class C2 and we consider the following
initial/boundary value problem:

(1.1)
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B2u

Bt2
` Lu “ f in p0, T q ˆ Ω

u “ 0 on p0, T q ˆ BΩ

up0, xq “ u0,
Bu

Bt
p0, xq “ u1 in Ω,

where f : p0, T q ˆ Ω Ñ R, u0, u1 : Ω Ñ R are given and L denotes a second order
partial differential operator in the divergence form:
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(1.2) Lu “ ´
d

ÿ

i,j“1

paijpxquxi
qxj

where uxi
denotes the partial derivative of u with respect to xi.

Systems of equations as (1.1) have been extensively studied. Classical results
of well-posedness and regularity can be found in [9, §7.2]. In this reference a
regularity result similar to our Theorem 3.1 is obtained under coefficient smoothness
assumptions, namely aij P C1pΩq and ∇paijq P rC1pΩqsd.

In this work, we consider discontinuous coefficients aij such that aij P VMO X
L8pΩq and ∇aij P rLppΩqsd with p ą d. Assuming the coefficients aij belong to
L8pΩq, it can proved that System (1.1) admits a unique solution u P C0p0, T ;H1

0 pΩqq
with Bu

Bt P C0p0, T ;L2pΩqq (see first part of the proof of Theorem 3.1).
Roughly speaking, the improved regularity, with respect to space, of the solution

u is associated with the elliptic regularity of the equation for almost every t P r0, T s,

that is, with the regularity of Luptq “ fptq ´
B2u

Bt2
ptq. Several regularity results

for elliptic operator L have been obtained with more general elliptic operators of

type L̄u “ ´
d

ÿ

i,j“1

aijpt, xquxixj
`

d
ÿ

i“1

bipt, xquxi
` cpt, xqu, and there exists a non-

exhaustive list of papers devoted to results of regularity associated with the operator
L̄ with different hypothesis on the coefficients aij , bi and c (see for example [4, 5, 6,
8, 7, 9, 14, 15] and references therein). Other results for parabolic equations with
VMO coefficients can be found in [2, 11].

In Section 2 we introduce some definitions and notations and the variational
formulation of System (1.1). Section 3 is devoted to the proof of Theorem 3.1
which is based on the regularity results obtained in [14].

2. Preliminaries

In the sequel, LppΩq is the space of measurable functions u on Ω such that
´

Ω
|u|p ă `8 for 1 ď p ă 8, L8pΩq is the space of essentially bounded functions

on Ω. CkpΩq is the set of all functions k-times continuously differentiable and its
derivates of order |α| are continuous for all multiindex α such that |α| ď k, C8

c pΩq
denote the subspace of all functions u infinitely differentiable with compact support
in Ω. We will denote HkpΩq the usual Sobolev space of all functions u such that
Dαu exists in the distributional sense and belongs to L2pΩq for all multiindex α

with |α| ď k. The subspace H1
0 pΩq is the closure of C8

c pΩq in H1pΩq and the
subspace H´1pΩq denotes the dual subspace to H1

0 pΩq. Let X be a Banach space:
we will denote by Lpp0, T ;Xq the space of the all measurable functions u such that
u : r0, T s Ñ X defined by uptqpxq “ upt, xq (by abuse of notation) satisfies

}u}Lpp0,T ;Xq “

˜

ˆ T

0

}uptq}pX dt

¸1{p

ă `8, if p P r1,`8q

and

}u}L8p0,T ;Xq “ ess sup
0ďtďT

}uptq}X ă `8, if p “ `8.
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The space W 1,pp0, T ;Xq denotes all the functions u P Lpp0, T ;Xq such that
Bu

Bt
P Lpp0, T ;Xq. For simplicity, we will use often the notation W 1,ppXq instead

of W 1,pp0, T ;Xq.
Recall that the partial differential operator L is elliptic if there exists a constant
κ ą 0 such that

d
ÿ

i,j“1

aijpxqξiξj ě κ|ξ|2

for a.e. x P Ω and for all ξ P R
d. Moreover, we assume

(2.3) aij “ aji and 0 ă amin ď aij ď amax, for all i, j P t1, 2. . . . , du.

so that the operator defined by (1.2) is elliptic.

2.1. Elliptic regularity results. Here, we recall the results obtained in [14]. We
first introduce useful functional spaces.

Definition 2.1. A function u is a bounded mean oscillation (BMO) function, if u
is a real-valued function whose mean oscillation is bounded (finite). This function
space is also called John–Nirenberg space. More precisely, we say that a locally
integrable function u is a BMO function if

sup
B

 

B

|upxq ´ uB | dx “: }u}˚ ă `8

where B ranges in the class of the balls of Rd and uB “

 

B

upxq dx “
1

|B|

ˆ

B

upxq dx.

If u a BMO function and r ą 0 we set

ηprq “ sup
ρďr

 

Bρ

|upxq ´ uBρ
| dx

where Bρ ranges in the class of the balls with radius ρ less than or equal to r.

Definition 2.2. A function u is a vanishing mean oscillation (VMO) function,
if u belongs to the subspace of the BMO functions whose BMO norm over a ball
vanishes as the radius of the ball tends to zero:

lim
rÑ0

ηprq “ 0.

The space VMO was introduced by D. Sarason in [12]. The characterization of
the VMO functions via the norm of the function over balls implies a number of good
features of VMO functions not shared by general BMO functions; for example a
VMO function can be approximated by smooth functions. The space BMO can be
characterized as the dual space to H1. Furthermore, if f is a BMO function then
for any q ă `8 f is locally in Lq and if f belongs to the Sobolev space W θ,d{θ then
f is a VMO function, for any θ P p0, 1s. For more details and properties of BMO
and VMO functions we refer [10, 12, 13].

The following theorem have been proved for C. Vitanza in [14]. We consider the
elliptic equation in non divergence form

L̄u “ ´
d

ÿ

i,j“1

āijpxquxixj
`

d
ÿ

i“1

b̄ipxquxi
` c̄pt, xqu “ f̄

3
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and the associated Dirichlet problem

(2.4)

#

L̄u “ f̄

u P W 2,qpΩq X W
1,q
0 pΩq, f̄ P LqpΩq.

Theorem 2.1. Let BΩ be C1,1. Assume āij “ āji, āij P VMO X L8pΩq and that
there exists λ ą 0 such that

@ξ P R
d λ´1|ξ|2 ď

d
ÿ

i,j“1

āijpxqξiξj ď λ|ξ|2 a.e. in Ω.

We also suppose b̄i P LspΩq, s ą d for 1 ă q ď d, s “ q for q ą d, and c̄ P LrpΩq

with r “

"

d if 1 ă q ď d

q if q ą d
and c̄ ď 0 a.e. in Ω. Then the Dirichlet problem (2.4)

has a unique solution u. Furthermore there exists a positive constant C such that

}u}W 2,qpΩqXW
1,q
0

pΩq ď C}f̄}LqpΩq

where the constant C depend on d, BΩ, λ, on the VMO modulus of āij, on the Ls

and Ld norms respectively of b̄i and c̄ and their AC modulus (see [14] for definition
of AC modulus).
Here W k,qpΩq denotes the space of all functions u such that Dαu P LqpΩq for all
multiindex α with |α| ď k and 1 ď q ď `8.

Remark 2.1. In this work, we will use Theorem 2.1 with no lower order term
(c̄ “ 0).

2.2. Variational formulation of (1.1). Let u P C2pr0, T s ˆΩq be a classical solu-
tion of (1.1), (i.e., u satisfies equation (1.1) at any pt, xq P p0, T q ˆ Ω). Multiplying
the main equation of (1.1) by φ P C8

c pΩq and integrate by parts, we obtain

(2.5)

ˆ

Ω

B2u

Bt2
pt, xqφpxq dx `

ˆ

Ω

aijpxq∇upt, xq ¨ ∇φpxq dx “

ˆ

Ω

fpt, xqφpxq dx

a.e. t P p0, T q. Hence, from the density of C8
c pΩq in H1

0 pΩq, we have (2.5) for all
φ P H1

0 pΩq. Now, we recall the definition of a weak solution for (1.1) (see [9])

Definition 2.3. We say a function

u P L2p0, T ;H1
0 pΩqq with

Bu

Bt
P L2p0, T ;L2pΩqq and

B2u

Bt2
P L2p0, T ;H´1pΩqq

is a weak solution of Problem (1.1) provided (2.5) holds true for all φ P H1
0 pΩq and

0 ď t ď T a. e., and up0, xq “ u0pxq and
Bu

Bt
p0, xq “ u1pxq.

We remark that the initial conditions up0, xq “ u0pxq and
Bu

Bt
p0, xq “ u1pxq make

sense because of regularity of a weak solution; indeed we have u P Cp0, T ;L2pΩqq

and
Bu

Bt
P Cp0, T ;H´1pΩqq.
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3. The main result

Now, we may give the main result:

Theorem 3.1. Suppose aij P VMO X L8pΩq, ∇aij P rLppΩqsd with p ą d such
that conditions (2.3) are ensured. We also suppose f P H1pL2pΩqq, u0 P H2pΩq
and u1 P H1

0 pΩq. Then there exists a unique solution u of (1.1) such that

u P L8pH2pΩqq,
Bu

Bt
P L8pH1

0 pΩqq,
B2u

Bt2
P L8pL2pΩqq,

B3u

Bt3
P L2pH´1pΩqq

with the estimate

max
0ďtďT

˜

}uptq}H2pΩq `

›

›

›

›

Bu

Bt
ptq

›

›

›

›

H1

0
pΩq

`

›

›

›

›

B2u

Bt2
ptq

›

›

›

›

L2pΩq

¸

`

›

›

›

›

B3u

Bt3

›

›

›

›

L2pH´1pΩqq

ď C
´

}f}H1pL2pΩqq ` }u0}H2pΩq ` }u1}H1pΩq

¯

with the constant C depending on Ω, T and the coefficients aij.

Proof. We split the proof in several steps.
Step 1: Finite-dimensional approximate solutions.

For sake of simplicity, we denote u
1

“
Bu

Bt
, u

2

“
B2u

Bt2
, u

3

“
B3u

Bt3
and f

1

“
Bf

Bt
in

the proof. We construct finite-dimensional approximate solutions of (2.5) by the
method of Faedo–Galerkin.

As H1
0 pΩq is a separable Hilbert space, there exist a family of functions twmumě1

in H1
0 pΩq such that

twmumě1 is an orthogonal basis of H1
0 pΩq

and
twmumě1 is an orthonormal basis of L2pΩq.

Fix now a positive m, we look for approximate solutions of (2.5) um : r0, T s Ñ
H1

0 pΩq, as

(3.6) umptq “
m
ÿ

i“1

gimptqwi

with gm :“ pg1m, g2m, . . . , gmmq satisfying

(3.7)

#
´

u
2

mptq, wj

¯

` paij∇umptq,∇wjq “ pfptq, wjq

gimp0q “ pu0, wiq , g
1

imp0q “ pu1, wiq pi “ 1, 2, . . . ,mq

where p¨, ¨q denotes the scalar product in L2pΩq. The initial conditions in system

(3.7) mean that ump0q and u
1

mp0q are the respective projections of u0 and u1 onto
the subspace spanned by tw1, w2, . . . , wmu; thus we have limmÑ`8 ump0q “ u0 and

limmÑ`8 u
1

mp0q “ u1 (see, for example [3, Chapter 5]). From the classical theory of
ordinary differential equations and assumptions of wi, system (3.7) admits a unique
local solution gm such that gjm P C2p0, Tmq for j “ 1, 2, . . . ,m. Then, for each
fixed m, um defined by (3.6) is solution of (3.7).

Step 2: a priori estimates.

Multiplying (3.7) by g
1

jm, summing for j “ 1, . . . ,m and taking relation (3.6) into
account, we get

(3.8)
´

u
2

mptq, u
1

mptq
¯

`
´

aij∇umptq,∇u
1

mptq
¯

“
´

fptq, u
1

mptq
¯

, a.e.t P r0, T s

5
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or equivalently

(3.9)
B

Bt

›

›

›
u

1

mptq
›

›

›

2

L2pΩq
loooooooomoooooooon

ě0

`

ě0
hkkkkkkkkkkkkikkkkkkkkkkkkj

B

Bt
}aij∇umptq}2

L2pΩq ď

ˆ

}fptq}2L2pΩq `
›

›

›
u

1

mptq
›

›

›

2

L2pΩq

˙

.

Integrating on p0, sq, we deduce
›

›

›
u

1

mpsq
›

›

›

2

L2pΩq
ď }f}2L2pL2pΩqq `

ˆ s

0

›

›

›
u

1

mptq
›

›

›

2

L2pΩq
dt `

›

›

›
u

1

mp0q
›

›

›

2

L2pΩq

and with Gronwall’s inequality

}u
1

mptq}2L2pΩq ď exppT q
´

}f}2L2pL2pΩqq ` }u
1

mp0q}2L2pΩq

¯

.

Therefore,

(3.10) max
0ďtďT

}u
1

mptq}2L2pΩq ď C
´

}f}2L2pL2pΩqq ` }u1}2L2pΩq

¯

with C depending on T and Ω. Here, we have used that u
1

mp0q is the projection of
u1 onto the subspace spanned by tw1, . . . , wmu.

Using (3.9) again, integrating on p0, sq and using (3.10), we obtain

}aij∇umptq}2L2pΩq ď }f}2L2pL2pΩqq ` }aij∇ump0q}2L2pΩq `

ˆ t

0

}u
1

mpsq}2L2pΩq ds

ď }f}2L2pL2pΩqq ` pamaxq2}∇u0}2L2pΩq ` TC
´

}f}2L2pL2pΩqq ` }h}2L2pΩq

¯

ď C
´

}f}2L2pL2pΩqq ` }∇u0}2L2pΩq ` }u1}2L2pΩq

¯

with C depending on T , Ω and amax. From hypothesis on aij and Poincaré in-
equality we get

}aij∇umptq}2L2pΩq ě Ca2min}umptq}2H1

0
pΩq.

So,

(3.11) max
0ďtďT

}umptq}2H1

0
pΩq ď C

´

}f}2L2pL2pΩqq ` }u0}2H1pΩq ` }u1}2L2pΩq

¯

with C depending on Ω, T , amin and amax.
Now, we estimate }u

2

m}L2pH´1pΩqq:

}u
2

mptq}H´1pΩq “ sup
φPH1

0
pΩq

}φ}
H1

0
pΩq“1

A

u
2

mptq, φ
E

H´1,H1

0

“ sup
φPH1

0
pΩq

}φ}
H1

0
pΩq“1

rpfptq, φq ´ paij∇umptq,∇φqs

ď ď }fptq}L2pΩq ` }aij∇umptq}L2pΩq.

Thus

(3.12) }u
2

m}L2pH´1pΩqq ď C
´

}f}2L2pL2pΩqq ` }u0}2H1pΩq ` }u1}2L2pΩq

¯

where C depends on Ω, T , amin and amax.
From these estimates we can conclude that Tm “ T , that is gm “ pg1m, g2m, . . . , gmmq

is a global solution of system (3.7) and consequently a global solution um.

6
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Step 3: passage to the limit.
The estimates of step 2 allow us to conclude there exists a subsequence umk still

denoted um and a function u such that

um á u L2p0, T ;H1
0 pΩqq

u
1

m á u
1

L2p0, T ;L2pΩqq

u
2

m á u
2

L2p0, T ;H´1pΩqq

where á stands for the weak convergence. This yields
ˆ

Ω

B2um

Bt2
ptqwj dx Ñ

ˆ

Ω

B2u

Bt2
ptqwj dx as m Ñ `8

ˆ

Ω

aijpxq∇umptq ¨ ∇wj dx Ñ

ˆ

Ω

aijpxq∇uptq ¨ ∇wj dx as m Ñ `8

for every wj , by a density argument, for every H1
0 function so equation (2.5) is

satisfied. Furthermore, by standard arguments is possible to show that up0q “

u0 and u
1

p0q “ u1. This proves that u is a weak solution of (1.1). Moreover

from (3.10)-(3.12) we have u P L8p0, T ;H1
0 pΩqq, u

1

P L8p0, T ;L2pΩqq and u
2

P
L2p0, T ;H´1pΩqq.

Step 4: The uniqueness solution of (1.1) follows similarly to the classical results
for hyperbolic equations (for example [9, §7.2 ]) and from the conditions (2.3) for
aij .

Step 5: Regularity improvment.
Let us differentiate the mais equation of (3.7) with respect to t and multiply by

g
2

jm
´

u
3

mptq, u
2

mptq
¯

`
´

aij∇u
1

mptq,∇u
2

mptq
¯

“
´

f
1

ptq, u
2

mptq
¯

,

that is,

(3.13)
B

Bt

›

›

›
u

2

mptq
›

›

›

2

L2pΩq
loooooooomoooooooon

ě0

`

ě0
hkkkkkkkkkkkkikkkkkkkkkkkkj

B

Bt

›

›

›
aij∇u

1

mptq
›

›

›

2

L2pΩq
ď

ˆ

›

›

›
f

1

ptq
›

›

›

2

L2pΩq
`

›

›

›
u

2

mptq
›

›

›

2

L2pΩq

˙

.

Integrating on p0, sq gives

›

›

›
u

2

mptq
›

›

›

2

L2pΩq
ď

›

›

›
f

1
›

›

›

2

L2pL2pΩqq
`

ˆ s

0

›

›

›
u

2

mptq
›

›

›

2

L2pΩq
dt `

›

›

›
u

2

mp0q
›

›

›

2

L2pΩq

and with (3.8) we deduce

›

›

›
u

2

mp0q
›

›

›

2

L2pΩq
ď C

´

}f}2H1pL2pΩqq ` }ump0q}2H2pΩq

¯

ď C
´

}f}2H1pL2pΩqq ` }u0}2H2pΩq

¯

.

Then Gronwall’s inequality gives

max
0ďtďT

›

›

›
u

2

mptq
›

›

›

2

L2pΩq
ď C

´

}f}2H1pL2pΩqq ` }u0}2H2pΩq

¯

where C depends on T , amin and Ω.

7
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On the other hand, by integrating on p0, sq in (3.13) and using the last inequality,
we obtain

›

›

›
aij∇u

1

mptq
›

›

›

L2pΩq
ď

›

›

›
f

1
›

›

›

2

L2pL2pΩqq
`

›

›

›
u

2

m

›

›

›

2

L2pL2pΩqq
`

›

›

›
aij∇u

1

mp0q
›

›

›

L2pΩq

ď C
´

}f}2H1pL2pΩqq ` }u0}2H2pΩq ` }u
1

mp0q}2H1pΩq

¯

ď C
´

}f}2H1pL2pΩqq ` }u0}2H2pΩq ` }u1}2H1pΩq

¯

with C depending on T , amin, a
max and Ω. Therefore,

(3.14)

max
0ďtďT

ˆ

›

›

›
u

2

mptq
›

›

›

2

L2pΩq
`

›

›

›
u

1

mptq
›

›

›

H1

0
pΩq

˙

ď C
´

}f}2H1pL2pΩqq ` }u0}2H2pΩq ` }u1}2H1pΩq

¯

where C depends on T , amin, a
max and Ω.

In order to establish the higher regularity for u, we remark that, from (3.8), for
a.e t P r0, T s we have

p´divpaij∇umptqq, φq “ pfptq ´ u
2

mptqq, φq

for every φ P H1
0 pΩq. We taking q “ 2, āij “ aij , b̄i “

Bai1
Bx1

` . . . `
Baid
Bxd

and c̄ “ 0

in Theorem 2.1 and from hypothesis for aij and ∇aij , we get umptq P H2pΩq and

}umptq}H2pΩq ď C}fptq ´ u
2

mptq}L2pΩq

where C depends on Ω and the coefficients aij ( via }∇aij}Lp and the VMO modulus
of aij).

Hence, by using (3.14) we deduce

max
0ďtďT

}umptq}H2pΩq ď C max
0ďtďT

}fptq ´ u
2

mptq}L2pΩq

ď C
´

}f}H1pL2pΩqq ` }u0}H1pΩq ` }u1}2L2pΩq

¯

.

with C depending on Ω, T and the coefficients aij .

Last, we estimate }u
3

m}L2pH´1pΩqq

}u
3

mptq}H´1pΩq “ sup
φPH1

0
pΩq

φ‰0

A

u
3

mptq, φ
E

H´1,H1

0

1

}φ}H1

0
pΩq

sup
φPH1

0
pΩq

φ‰0

”

pf
1

ptq, φq ´ paij∇u
1

mptq,∇φq
ı 1

}φ}H1

0
pΩq

ď }f
1

ptq}L2pΩq ` }aij∇u
1

mptq}L2pΩq.

Thus, from (3.14)

}u
3

m}L2pH´1pΩqq ď C
´

}f}2H1pL2pΩqq ` }u0}2H2pΩq ` }u1}2H1pΩq

¯

where C depends on Ω, T and the coefficients aij . Passing to limit as m Ñ `8,
we obtain the same regularity and bounds for u. This concludes the proof of
theorem. �
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