REGULARITY RESULTS FOR A CLASS OF HYPERBOLIC EQUATIONS WITH VMO COEFFICIENTS
Maïtine Bergounioux, Erica Schwindt

To cite this version:
Maïtine Bergounioux, Erica Schwindt. REGULARITY RESULTS FOR A CLASS OF HYPERBOLIC EQUATIONS WITH VMO COEFFICIENTS. 2015. <hal-01104914>

HAL Id: hal-01104914
https://hal.archives-ouvertes.fr/hal-01104914
Submitted on 19 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
REGULARITY RESULTS FOR A CLASS OF HYPERBOLIC EQUATIONS WITH VMO COEFFICIENTS

MAİTINE BERGOUNIOUX AND ERICA L. SCHWINDT

Abstract. In this note we show a regularity result for an hyperbolic system with discontinuous coefficients. More precisely, we deal with coefficients in the function space VMO and we prove the existence and uniqueness of a solution $u \in L^\infty(0, T; H^2(\Omega))$ with also suitable regularity for $\frac{\partial u}{\partial t}$, $\frac{\partial^2 u}{\partial t^2}$, and $\frac{\partial^3 u}{\partial t^3}$.

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^d with $d \geq 3$. In the context of photoacoustic tomography process modelling [1], we are led to study the following wave equation

\begin{equation}
\begin{cases}
\frac{\partial^2 p}{\partial t^2}(t, x) - \text{div}(v_s^2 \nabla p)(t, x) = f(t, x) & \text{in } (0, T) \times \Omega \\
p(t, x) = 0 & \text{on } (0, T) \times \partial \Omega \\
p(0, x) = \frac{\partial p}{\partial t}(0, x) = 0 & \text{in } \Omega,
\end{cases}
\end{equation}

where $p = p(t, x)$ is an acoustic pressure wave, $v_s = v_s(x)$ is the speed of sound, f is a distributed source that comes from a lightning process and Ω is the domain where the wave propagates. The coefficient v_s is generally unknown and not smooth. We are interested in establishing new results of regularity of the solution p in the case of discontinuous coefficient v_s.

Hereafter we will assume that $\partial \Omega$ is of class C^2 and we consider the following initial/boundary value problem:

\begin{equation}
\begin{cases}
\frac{\partial^2 u}{\partial t^2} + Lu = f & \text{in } (0, T) \times \Omega \\
u = 0 & \text{on } (0, T) \times \partial \Omega \\
u(0, x) = u_0, \quad \frac{\partial u}{\partial t}(0, x) = u_1 & \text{in } \Omega,
\end{cases}
\end{equation}

where $f : (0, T) \times \Omega \to \mathbb{R}$, $u_0, u_1 : \Omega \to \mathbb{R}$ are given and L denotes a second order partial differential operator in the divergence form.
We introduce some definitions and notations and the variational formulation of System (1.1) has been extensively studied. Classical results of well-posedness and regularity can be found in [9, §7.2]. In this reference a regularity result similar to our Theorem 3.1 is obtained under coefficient smoothness assumptions, namely $a_{ij} \in C^1(\Omega)$ and $\nabla (a_{ij}) \in [C^1(\Omega)]^d$.

In this work, we consider discontinuous coefficients a_{ij} such that $a_{ij} \in VMO \cap L^\infty(\Omega)$ and $\nabla a_{ij} \in [L^p(\Omega)]^d$ with $p > d$. Assuming the coefficients a_{ij} belong to $L^\infty(\Omega)$, it can be proved that System (1.1) admits a unique solution $u \in C^0(0, T; H^1_0(\Omega))$ with $\frac{\partial u}{\partial t} \in C^0(0, T; L^2(\Omega))$ (see first part of the proof of Theorem 3.1).

Roughly speaking, the improved regularity, with respect to space, of the solution u is associated with the elliptic regularity of the equation for almost every $t \in [0, T]$, that is, with the regularity of $Lu(t) = f(t) - \frac{\partial^2 u}{\partial t^2}(t)$. Several regularity results for elliptic operators L have been obtained with more general elliptic operators of type $\tilde{L}u = - \sum_{i,j=1}^d a_{ij}(t, x)u_{x_i x_j} + \sum_{i=1}^d b_i(t, x)u_{x_i} + c(t, x)u$, and there exists a non-exhaustive list of papers devoted to results of regularity associated with the operator \tilde{L} with different hypothesis on the coefficients a_{ij}, b_i and c (see for example [4, 5, 6, 8, 7, 9, 14, 15] and references therein). Other results for parabolic equations with VMO coefficients can be found in [2, 11].

In Section 2 we introduce some definitions and notations and the variational formulation of System (1.1). Section 3 is devoted to the proof of Theorem 3.1 which is based on the regularity results obtained in [14].

2. Preliminaries

In the sequel, $L^p(\Omega)$ is the space of measurable functions u on Ω such that $\int_\Omega |u|^p < +\infty$ for $1 \leq p < \infty$. $L^\infty(\Omega)$ is the space of essentially bounded functions on Ω. $C^k(\Omega)$ is the set of all functions k-times continuously differentiable and its derivates of order $|\alpha|$ are continuous for all multiindex α such that $|\alpha| \leq k$. $C^\infty_c(\Omega)$ denotes the subspace of all functions u infinitely differentiable with compact support in Ω. We will denote $H^k(\Omega)$ the usual Sobolev space of all functions u such that $D^\alpha u$ exists in the distributional sense and belongs to $L^2(\Omega)$ for all multiindex α with $|\alpha| \leq k$. The subspace $H^1_0(\Omega)$ is the closure of $C^\infty_c(\Omega)$ in $H^1(\Omega)$ and the subspace $H^{-1}(\Omega)$ denotes the dual subspace to $H^1_0(\Omega)$. Let X be a Banach space: we will denote by $L^p(0, T; X)$ the space of all measurable functions u such that $u : [0, T] \rightarrow X$ defined by $u(t)(x) = u(t, x)$ (by abuse of notation) satisfies

$$
\|u\|_{L^p(0, T; X)} = \left(\int_0^T \|u(t)\|_X^p \, dt \right)^{1/p} < +\infty, \quad \text{if } p \in [1, +\infty)
$$

and

$$
\|u\|_{L^\infty(0, T; X)} = \operatorname{ess sup}_{0 \leq t \leq T} \|u(t)\|_X < +\infty, \quad \text{if } p = +\infty.
$$
The space $W^{1,p}(0,T;X)$ denotes all the functions $u \in L^p(0,T;X)$ such that \(\frac{\partial u}{\partial t} \in L^p(0,T;X) \). For simplicity, we will use often the notation $W^{1,p}(X)$ instead of $W^{1,p}(0,T;X)$.

Recall that the partial differential operator L is elliptic if there exists a constant $\kappa > 0$ such that

\[
\sum_{i,j=1}^{d} a_{ij}(x)\xi_i \xi_j \geq \kappa |\xi|^2
\]

for a.e. $x \in \Omega$ and for all $\xi \in \mathbb{R}^d$. Moreover, we assume

\[
a_{ij} = a_{ji} \quad \text{and} \quad 0 < a_{\min} \leq a_{ij} \leq a_{\max}, \quad \text{for all} \ i, j \in \{1, 2, \ldots, d\}.
\]

so that the operator defined by (1.2) is elliptic.

2.1. Elliptic regularity results

Here, we recall the results obtained in [14]. We first introduce useful functional spaces.

Definition 2.1. A function u is a bounded mean oscillation (BMO) function, if u is a real-valued function whose mean oscillation is bounded (finite). This function space is also called John–Nirenberg space. More precisely, we say that a locally integrable function u is a BMO function if

\[
\sup_B \left(\int_B |u(x) - u_B| \, dx \right) =: \|u\|_* < +\infty
\]

where B ranges in the class of the balls of \mathbb{R}^d and $u_B = \int_B u(x) \, dx = \frac{1}{|B|} \int_B u(x) \, dx$.

If u a BMO function and $r > 0$ we set

\[
\eta(r) = \sup_{\rho \leq r} \frac{1}{|B_{\rho}|} \int_{B_{\rho}} |u(x) - u_{B_{\rho}}| \, dx
\]

where B_{ρ} ranges in the class of the balls with radius ρ less than or equal to r.

Definition 2.2. A function u is a vanishing mean oscillation (VMO) function, if u belongs to the subspace of the BMO functions whose BMO norm over a ball vanishes as the radius of the ball tends to zero:

\[
\lim_{r \to 0} \eta(r) = 0.
\]

The space VMO was introduced by D. Sarason in [12]. The characterization of the VMO functions via the norm of the function over balls implies a number of good features of VMO functions not shared by general BMO functions; for example a VMO function can be approximated by smooth functions. The space BMO can be characterized as the dual space to H^1. Furthermore, if f is a BMO function then for any $q < +\infty$ f is locally in L^q and if f belongs to the Sobolev space $W^{d/\theta,d/\theta}$ then f is a VMO function, for any $\theta \in (0,1)$. For more details and properties of BMO and VMO functions we refer [10, 12, 13].

The following theorem have been proved for C. Vitanza in [14]. We consider the elliptic equation in non divergence form

\[
\tilde{L}u = - \sum_{i,j=1}^{d} \tilde{a}_{ij}(x)u_{x_i x_j} + \sum_{i=1}^{d} \tilde{b}_i(x)u_{x_i} + \tilde{c}(t, x)u = \tilde{f}
\]
and the associated Dirichlet problem

\begin{equation}
\begin{aligned}
\bar{L}u &= \bar{f} \\
\quad u \in W^{2,q}(\Omega) \cap W^{1,d}_0(\Omega), & \quad \bar{f} \in L^q(\Omega).
\end{aligned}
\end{equation}

Theorem 2.1. Let \(\Omega \) be \(C^{1,1} \). Assume \(\bar{a}_{ij} = \bar{a}_{ji} \), \(\bar{a}_{ij} \in VMO \cap L^\infty(\Omega) \) and that there exists \(\lambda > 0 \) such that

\[\forall \xi \in \mathbb{R}^d \quad \lambda^{-1} |\xi|^2 \leq \sum_{i,j=1}^{d} \bar{a}_{ij}(x)\xi_i\xi_j \leq \lambda |\xi|^2 \text{ a.e. in } \Omega. \]

We also suppose \(\bar{b}_i \in L^s(\Omega) \), \(s > d \) for \(1 < q \leq d \), \(s = q \) for \(q > d \), and \(\bar{c} \in L^r(\Omega) \) with \(r = \begin{cases} d & \text{if } 1 < q \leq d, \\ q & \text{if } q > d \end{cases} \) and \(\bar{c} \leq 0 \text{ a.e. in } \Omega. \) Then the Dirichlet problem (2.4) has a unique solution \(u \). Furthermore there exists a positive constant \(C \) such that

\[||u||_{W^{2,q}(\Omega) \cap W^{1,d}_0(\Omega)} \leq C \|\bar{f}\|_{L^q(\Omega)} \]

where the constant \(C \) depend on \(d, \partial \Omega, \lambda, \) on the VMO modulus of \(\bar{a}_{ij} \), on the \(L^s \) and \(L^d \) norms respectively of \(\bar{b}_i \) and \(\bar{c} \) and their AC modulus (see [14] for definition of AC modulus).

Here \(W^{k,q}(\Omega) \) denotes the space of all functions \(u \) such that \(D^\alpha u \in L^q(\Omega) \) for all multiindex \(\alpha \) with \(|\alpha| \leq k \) and \(1 \leq q \leq +\infty \).

Remark 2.1. In this work, we will use Theorem 2.1 with no lower order term \((\bar{c} = 0) \).

2.2. **Variational formulation of (1.1).** Let \(u \in C^2([0,T] \times \Omega) \) be a classical solution of (1.1), i.e., \(u \) satisfies equation (1.1) at any \((t,x) \in (0,T) \times \Omega \). Multiplying the main equation of (1.1) by \(\phi \in C_0^\infty(\Omega) \) and integrate by parts, we obtain

\begin{equation}
\begin{aligned}
\int_\Omega \frac{\partial^2 u}{\partial t^2}(t,x)\phi(x) \, dx + \int_\Omega a_{ij}(x)\nabla u(t,x) \cdot \nabla \phi(x) \, dx = \int_\Omega f(t,x)\phi(x) \, dx
\end{aligned}
\end{equation}

a.e. \(t \in (0,T) \). Hence, from the density of \(C_0^\infty(\Omega) \) in \(H^1_0(\Omega) \), we have (2.5) for all \(\phi \in H^1_0(\Omega) \). Now, we recall the definition of a weak solution for (1.1) (see [9])

Definition 2.3. We say a function

\[u \in L^2(0,T;H^1_0(\Omega)) \]

with \(\frac{\partial u}{\partial t} \in L^2(0,T;L^2(\Omega)) \) and \(\frac{\partial^2 u}{\partial t^2} \in L^2(0,T;H^{-1}(\Omega)) \)

is a weak solution of Problem (1.1) provided (2.5) holds true for all \(\phi \in H^1_0(\Omega) \) and \(0 \leq t \leq T \) a.e., and \(u(0,x) = u_0(x) \) and \(\frac{\partial u}{\partial t}(0,x) = u_1(x) \).

We remark that the initial conditions \(u(0,x) = u_0(x) \) and \(\frac{\partial u}{\partial t}(0,x) = u_1(x) \) make sense because of regularity of a weak solution; indeed we have \(u \in C(0,T;L^2(\Omega)) \) and \(\frac{\partial u}{\partial t} \in C(0,T;H^{-1}(\Omega)) \).
3. The main result

Now, we may give the main result:

Theorem 3.1. Suppose $a_{ij} \in VMO \cap L^\infty(\Omega)$, $\nabla a_{ij} \in [L^p(\Omega)]^d$ with $p > d$ such that conditions (2.3) are ensured. We also suppose $f \in H^1(L^2(\Omega))$, $u_0 \in H^2(\Omega)$ and $u_1 \in H^1_0(\Omega)$. Then there exists a unique solution u of (1.1) such that

$$u \in L^\infty(H^2(\Omega)), \quad \frac{\partial u}{\partial t} \in L^p(H^1_0(\Omega)), \quad \frac{\partial^2 u}{\partial t^2} \in L^\infty(L^2(\Omega)), \quad \frac{\partial^3 u}{\partial t^3} \in L^2(H^{-1}(\Omega))$$

with the estimate

$$\max_{0 \leq t \leq T} \left(\|u(t)\|_{H^2(\Omega)} + \left\| \frac{\partial u}{\partial t}(t) \right\|_{H^1_0(\Omega)} + \left\| \frac{\partial^2 u}{\partial t^2}(t) \right\|_{L^2(\Omega)} + \left\| \frac{\partial^3 u}{\partial t^3} \right\|_{L^2(H^{-1}(\Omega))} \right) \leq C \left(\|f\|_{H^1(L^2(\Omega))} + \|u_0\|_{H^2(\Omega)} + \|u_1\|_{H^1(\Omega)} \right)$$

with the constant C depending on Ω, T and the coefficients a_{ij}.

Proof. We split the proof in several steps.

Step 1: Finite-dimensional approximate solutions.

For sake of simplicity, we denote $u' = \frac{\partial u}{\partial t}$, $u'' = \frac{\partial^2 u}{\partial t^2}$, $u''' = \frac{\partial^3 u}{\partial t^3}$ and $f' = \frac{\partial f}{\partial t}$ in the proof. We construct finite-dimensional approximate solutions of (2.5) by the method of Faedo–Galerkin.

As $H^1_0(\Omega)$ is a separable Hilbert space, there exist a family of functions $\{w_m\}_{m \geq 1}$ in $H^1_0(\Omega)$ such that

$$\{w_m\}_{m \geq 1}$$

is an orthogonal basis of $H^1_0(\Omega)$

and

$$\{w_m\}_{m \geq 1}$$

is an orthonormal basis of $L^2(\Omega)$.

Fix now a positive m, we look for approximate solutions of (2.5) $u_m : [0, T] \to H^1_0(\Omega)$, as

$$u_m(t) = \sum_{i=1}^{m} g_{im}(t)w_i$$

with $g_m := (g_{1m}, g_{2m}, \ldots, g_{mm})$ satisfying

$$\left\{ \begin{array}{l}
\left(u_m''(t), w_j \right) + \left(a_{ij} \nabla u_m(t), \nabla w_j \right) = \left(f(t), w_j \right) \\
g_{im}(0) = (u_0, w_i), \quad g_{im}'(0) = (u_1, w_i) \quad (i = 1, 2, \ldots, m)
\end{array} \right.$$

(3.7)

where (\cdot, \cdot) denotes the scalar product in $L^2(\Omega)$. The initial conditions in system (3.7) mean that $u_m(0)$ and $u_m'(0)$ are the respective projections of u_0 and u_1 onto the subspace spanned by $\{w_1, w_2, \ldots, w_m\}$; thus we have $\lim_{m \to +\infty} u_m(0) = u_0$ and $\lim_{m \to +\infty} u_m'(0) = u_1$ (see, for example [3, Chapter 5]). From the classical theory of ordinary differential equations and assumptions of w_i, system (3.7) admits a unique local solution g_m such that $g_{jm} \in C^2(0, T_m)$ for $j = 1, 2, \ldots, m$. Then, for each fixed m, u_m defined by (3.6) is solution of (3.7).

Step 2: A priori estimates.

Multiplying (3.7) by g_{jm}', summing for $j = 1, \ldots, m$ and taking relation (3.6) into account, we get

$$\left(u_m''(t), u_m'(t) \right) + \left(a_{ij} \nabla u_m(t), \nabla u_m'(t) \right) = \left(f(t), u_m'(t) \right), \quad \text{a.e.} t \in [0, T]$$

(3.8)
or equivalently

\[
(3.9) \quad \frac{\partial}{\partial t} \left\| u_m(t) \right\|_{L^2(\Omega)}^2 + \frac{\partial}{\partial t} \left\| a_{ij} \nabla u_m(t) \right\|_{L^2(\Omega)}^2 \leq \left(\left\| f(t) \right\|_{L^2(\Omega)}^2 + \left\| u_m'(t) \right\|_{L^2(\Omega)}^2 \right).
\]

Integrating on \((0, s)\), we deduce

\[\left\| u_m(s) \right\|_{L^2(\Omega)}^2 \leq \int_0^s \left\| u_m'(t) \right\|_{L^2(\Omega)}^2 \, dt + \left\| u_m(0) \right\|_{L^2(\Omega)}^2\]

and with Gronwall’s inequality

\[\left\| u_m'(t) \right\|_{L^2(\Omega)}^2 \leq \exp(T) \left(\left\| f \right\|_{L^2(\Omega)}^2 + \left\| u_m(0) \right\|_{L^2(\Omega)}^2 \right).
\]

Therefore,

\[
(3.10) \quad \max_{0 \leq t \leq T} \left\| u_m'(t) \right\|_{L^2(\Omega)}^2 \leq C \left(\left\| f \right\|_{L^2(\Omega)}^2 + \left\| u_1 \right\|_{L^2(\Omega)}^2 \right)
\]

with \(C\) depending on \(T\) and \(\Omega\). Here, we have used that \(u_m'(0)\) is the projection of \(u_1\) onto the subspace spanned by \(\{w_1, \ldots, w_m\}\).

Using (3.9) again, integrating on \((0, s)\) and using (3.10), we obtain

\[
\left\| a_{ij} \nabla u_m(t) \right\|_{L^2(\Omega)}^2 \leq 2 \left(\left\| f \right\|_{L^2(\Omega)}^2 + \left\| u_0 \right\|_{L^2(\Omega)}^2 \right) + TC \left(\left\| f \right\|_{L^2(\Omega)}^2 + \left\| u_1 \right\|_{L^2(\Omega)}^2 \right)
\]

with \(C\) depending on \(T\), \(\Omega\) and \(a_{ij}^{\text{max}}\). From hypothesis on \(a_{ij}\) and Poincaré inequality we get

\[
\left\| a_{ij} \nabla u_m(t) \right\|_{L^2(\Omega)}^2 \geq C_{\text{min}} \left\| u_m(t) \right\|_{H^1_0(\Omega)}^2.
\]

So,

\[
(3.11) \quad \max_{0 \leq t \leq T} \left\| u_m(t) \right\|_{H^1_0(\Omega)}^2 \leq C \left(\left\| f \right\|_{L^2(\Omega)}^2 + \left\| u_0 \right\|_{H^1_0(\Omega)}^2 + \left\| u_1 \right\|_{L^2(\Omega)}^2 \right)
\]

with \(C\) depending on \(\Omega\), \(T\), \(a_{\text{min}}\) and \(a_{ij}^{\text{max}}\).

Now, we estimate \(\left\| u_m'' \right\|_{L^2(\Omega)}\):

\[
\left\| u_m''(t) \right\|_{H^{-1}(\Omega)} = \sup_{\phi \in H_0^1(\Omega)} \left\langle u_m''(t), \phi \right\rangle_{H^{-1}, H_0^1} = \sup_{\phi \in H_0^1(\Omega)} \left[\left\langle f(t), \phi \right\rangle - \left\langle a_{ij} \nabla u_m(t), \nabla \phi \right\rangle \right]
\]

\[
\leq \left\| f(t) \right\|_{L^2(\Omega)} + \left\| a_{ij} \nabla u_m(t) \right\|_{L^2(\Omega)}.
\]

Thus

\[
(3.12) \quad \left\| u_m'' \right\|_{L^2(\Omega)} \leq C \left(\left\| f \right\|_{L^2(\Omega)}^2 + \left\| u_0 \right\|_{H^1_0(\Omega)}^2 + \left\| u_1 \right\|_{L^2(\Omega)}^2 \right)
\]

where \(C\) depends on \(\Omega\), \(T\), \(a_{\text{min}}\) and \(a_{ij}^{\text{max}}\).

From these estimates we can conclude that \(T_m = T\), that is \(g_m = (g_{m1}, g_{m2}, \ldots, g_{mm})\) is a global solution of system (3.7) and consequently a global solution \(u_m\).
Step 3: passage to the limit.
The estimates of step 2 allow us to conclude there exists a subsequence \(u_{nk} \) still denoted \(u_m \) and a function \(u \) such that

\[
\begin{align*}
 u_m &\rightharpoonup u \quad L^2(0, T; H^1_0(\Omega)) \\
 u'_m &\rightharpoonup u' \quad L^2(0, T; L^2(\Omega)) \\
 u''_m &\rightharpoonup u'' \quad L^2(0, T; H^{-1}(\Omega))
\end{align*}
\]

where \(\rightharpoonup \) stands for the weak convergence. This yields

\[
\int_\Omega \frac{\partial^2 u_m}{\partial t^2}(t)w_j \, dx \rightharpoonup \int_\Omega \frac{\partial^2 u}{\partial t^2}(t)w_j \, dx \quad \text{as } m \to +\infty
\]

\[
\int_\Omega a_{ij}(x) \nabla u_m(t) \cdot \nabla w_j \, dx \rightharpoonup \int_\Omega a_{ij}(x) \nabla u(t) \cdot \nabla w_j \, dx \quad \text{as } m \to +\infty
\]

for every \(w_j \), by a density argument, for every \(H^1_0 \) function so equation (2.5) is satisfied. Furthermore, by standard arguments is possible to show that \(u(0) = u_0 \) and \(u'(0) = u_1 \). This proves that \(u \) is a weak solution of (1.1). Moreover from (3.10)-(3.12), we have \(u \in L^\infty(0, T; H^1_0(\Omega)) \), \(u' \in L^\infty(0, T; L^2(\Omega)) \) and \(u'' \in L^2(0, T; H^{-1}(\Omega)) \).

Step 4: The uniqueness solution of (1.1) follows similarly to the classical results for hyperbolic equations (for example [9, §7.2]) and from the conditions (2.3) for \(a_{ij} \).

Step 5: Regularity improvement.
Let us differentiate the main equation of (3.7) with respect to \(t \) and multiply by \(g_{jm} \)

\[
\left(u''_m(t), u''_m(t) \right) + \left(a_{ij} \nabla u'_m(t), \nabla u''_m(t) \right) = \left(f'(t), u''_m(t) \right),
\]

that is,

\[
(3.13) \quad \frac{\partial}{\partial t} \left\| u''_m(t) \right\|_{L^2(\Omega)}^2 + \frac{\partial}{\partial t} \left\| a_{ij} \nabla u'_m(t) \right\|_{L^2(\Omega)}^2 \leq \left(\left\| f'(t) \right\|_{L^2(\Omega)}^2 + \left\| u''_m(t) \right\|_{L^2(\Omega)}^2 \right).
\]

Integrating on \((0, s)\) gives

\[
\left\| u''_m(t) \right\|_{L^2(\Omega)}^2 \leq \left\| f \right\|_{L^2(\Omega)}^2 + \int_0^t \left\| u''_m(t) \right\|_{L^2(\Omega)}^2 \, dt + \left\| u''_m(0) \right\|_{L^2(\Omega)}^2
\]

and with (3.8) we deduce

\[
\left\| u''_m(0) \right\|_{L^2(\Omega)}^2 \leq C \left(\left\| f \right\|_{H^1(\Omega)}^2 + \left\| u_m(0) \right\|_{H^2(\Omega)}^2 \right) \leq C \left(\left\| f \right\|_{H^1(\Omega)}^2 + \left\| u_0 \right\|_{H^2(\Omega)}^2 \right).
\]

Then Gronwall’s inequality gives

\[
\max_{0 \leq t \leq T} \left\| u''_m(t) \right\|_{L^2(\Omega)}^2 \leq C \left(\left\| f \right\|_{H^1(\Omega)}^2 + \left\| u_0 \right\|_{H^2(\Omega)}^2 \right)
\]

where \(C \) depends on \(T, a_{\min} \), and \(\Omega \).
On the other hand, by integrating on \((0, s)\) in \((3.13)\) and using the last inequality, we obtain
\[
\left\| a_{ij} \nabla u_m'(t) \right\|_{L^2(\Omega)} \leq \| f \|_{L^2(L^2(\Omega))}^2 + \| u_m'' \|_{L^2(L^2(\Omega))}^2 + \left\| a_{ij} \nabla u_m'(0) \right\|_{L^2(\Omega)}^2
\]
\[
\leq C \left(\| f \|_{H^1(L^2(\Omega))}^2 + \| u_m'' \|_{H^2(\Omega)}^2 + \| u_m'(0) \|_{H^1(\Omega)}^2 \right)
\]
\[
\leq C \left(\| f \|_{H^1(L^2(\Omega))}^2 + \| u_0 \|_{H^2(\Omega)}^2 + \| u_1 \|_{H^1(\Omega)}^2 \right)
\]
with \(C\) depending on \(T, a_{\text{min}}, a_{\text{max}}\) and \(\Omega\). Therefore, \((3.14)\)
\[
\max_{0 \leq t \leq T} \left(\| u_m''(t) \|_{L^2(\Omega)}^2 + \| u_m'(t) \|_{H^1_0(\Omega)}^2 \right) \leq C \left(\| f \|_{H^1(L^2(\Omega))}^2 + \| u_0 \|_{H^2(\Omega)}^2 + \| u_1 \|_{H^1(\Omega)}^2 \right)
\]
where \(C\) depends on \(T, a_{\text{min}}, a_{\text{max}}\) and \(\Omega\).

In order to establish the higher regularity for \(u\), we remark that, from \((3.8)\), for a.e. \(t \in [0, T]\) we have
\[
(- \operatorname{div}(a_{ij} \nabla u_m(t)), \phi) = (f(t) - u_m''(t), \phi)
\]
for every \(\phi \in H^1_0(\Omega)\). We taking \(q = 2\), \(a_{ij} = a_{ij}, \tilde{b}_i = \frac{\partial a_{i1}}{\partial x_1} + \ldots + \frac{\partial a_{id}}{\partial x_d}\) and \(\bar{c} = 0\) in Theorem 2.1 and from hypothesis for \(a_{ij}\) and \(\nabla a_{ij}\), we get \(u_m(t) \in H^2(\Omega)\) and
\[
\| u_m(t) \|_{H^2(\Omega)} \leq C \| f(t) - u_m''(t) \|_{L^2(\Omega)}
\]
where \(C\) depends on \(\Omega\) and the coefficients \(a_{ij}\) (via \(\| \nabla a_{ij} \|_{L^p}\) and the VMO modulus of \(a_{ij}\)).

Hence, by using \((3.14)\) we deduce
\[
\max_{0 \leq t \leq T} \| u_m(t) \|_{H^2(\Omega)} \leq C \max_{0 \leq t \leq T} \| f(t) - u_m''(t) \|_{L^2(\Omega)}
\]
\[
\leq C \left(\| f \|_{H^1(L^2(\Omega))} + \| u_0 \|_{H^2(\Omega)} + \| u_1 \|_{L^2(\Omega)} \right).
\]
with \(C\) depending on \(\Omega, T\) and the coefficients \(a_{ij}\).

Last, we estimate \(\| u_m'' \|_{L^2(H^{-1}(\Omega))}\)
\[
\| u_m''(t) \|_{H^{-1}(\Omega)} = \sup_{\phi \in H^1_0(\Omega)} \left\langle u_m''(t), \phi \right\rangle_{H^{-1}, H^1_0} \frac{1}{\| \phi \|_{H^1_0(\Omega)}}
\]
\[
\leq \sup_{\phi \in H^1_0(\Omega)} \left[\left\langle f'(t), \phi \right\rangle - \left\langle a_{ij} \nabla u_m'(t), \nabla \phi \right\rangle \right] \frac{1}{\| \phi \|_{H^1_0(\Omega)}}
\]
\[
\leq \| f'(t) \|_{L^2(\Omega)} + \| a_{ij} \nabla u_m'(t) \|_{L^2(\Omega)}.
\]
Thus, from \((3.14)\)
\[
\| u_m'' \|_{L^2(H^{-1}(\Omega))} \leq C \left(\| f \|_{H^1(L^2(\Omega))}^2 + \| u_0 \|_{H^2(\Omega)}^2 + \| u_1 \|_{H^1(\Omega)}^2 \right)
\]
where \(C\) depends on \(\Omega, T\) and the coefficients \(a_{ij}\). Passing to limit as \(m \to +\infty\), we obtain the same regularity and bounds for \(u\). This concludes the proof of theorem. \(\square\)

The work of MB was partially supported by AVENTURES - ANR-12-BLAN-BS01-0001-01. The work of ELS was partially supported by AVENTURES - ANR-12-BLAN-BS01-0001-01 and Ecos-Conicyt Grant C13E05.
References

