Abstract : Let $\Delta(x)=\sum_{n\leq x}a(n)-\sum_{j=1}^6 c_jx^{1/j}$ denote the error term in the abelian group problem. Using zeta-function methods it is proved that
$$\int_1^X\Delta^2(x)\,dx~<\!\!<~ X^{39/29} \log^2X$$
where the exponent $39/29=1.344827\ldots$ is close to the best possible exponent $4/3$ in this problem.
https://hal.archives-ouvertes.fr/hal-01104704 Contributor : Ariane RollandConnect in order to contact the contributor Submitted on : Monday, January 19, 2015 - 9:38:02 AM Last modification on : Monday, March 28, 2022 - 8:14:08 AM Long-term archiving on: : Monday, April 20, 2015 - 10:25:22 AM
Aleksandar Ivić. The number of finite non-isomorphic abelian groups in mean square.. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1986, Volume 9 -1986, pp.17-23. ⟨10.46298/hrj.1986.117⟩. ⟨hal-01104704⟩