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Abstract

In this article, we generalize the concepts of Eulerian and Hamil-
tonian digraphs to directed hypergraphs. A dihypergraph H is a pair
(V(H), E(H)), where V(H) is a non-empty set of elements, called vertices,
and E(H) is a collection of ordered pairs of subsets of V(H), called hy-
perarcs. It is Eulerian (resp. Hamiltonian) if there is a dicycle containing
each hyperarc (resp. each vertex) exactly once. We first present some
properties of Eulerian and Hamiltonian dihypergraphs. For example, we
show that deciding whether a dihypergraph is Eulerian is an NP-complete
problem. We also study when iterated line dihypergraphs are Eulerian and
Hamiltonian. Finally, we study when the generalized de Bruijn dihyper-
graphs are Eulerian and Hamiltonian. In particular, we determine when
they contain a complete Berge dicycle, i.e. an Eulerian and Hamiltonian
dicycle.

1 Introduction

Eulerian and Hamiltonian dicycles are well-known concepts in Graph Theory.
An Eulerian dicycle in a digraph D is a dicycle C such that each arc of D

∗This research was supported by ANR Agape and Gratel.
†Preprint submitted to the journal Discrete Mathematics, Algorithms and Applications.
‡Supported by CNPq/Brazil under contract PDE 202049/2012-4.

1



appears exactly once in C. Similarly, a Hamiltonian dicycle is a dicycle C such
that each vertex of D appears exactly once in C (see [1, 2]).

We generalize these concepts to directed hypergraphs, called shortly dihy-
pergraphs. Informally, the difference between an usual digraph D and a dihyper-
graph H is that (hyper)arcs in H may have multiple heads and multiple tails.
Formally, a dihypergraph H is a pair (V(H), E(H)), where V(H) is a non-empty
set of elements, called vertices, and E(H) is a collection of ordered pairs of sub-
sets of V(H), called hyperarcs. It is Eulerian (resp. Hamiltonian) if there is a
dicycle containing each hyperarc (resp. each vertex) exactly once.

Eulerian and Hamiltonian (undirected) hypergraphs have already been de-
fined and studied in a similar way [3, 4]. In fact, if Hamiltonian hypergraphs
have received some attention (see [5, 6, 7]), Eulerian hypergraphs seem to have
been considered in their full generality only recently in [4]. A particular case
of Eulerian cycles in 3-uniform hypergraphs (called triangulated irregular net-
works) has been considered in [8, 9, 10] motivated by applications in geographic
systems or in computer graphics. However, to our best knowledge, Hamiltonian
and Eulerian dihypergraphs have not been considered.

Note that there are other definitions of Hamiltonian hypergraphs in the
literature. For example, an undirected hypergraph H is called Hamiltonian if
there exists a Hamiltonian-l cycle C in H, that is a cycle C where any two
consecutive (hyper)edges intersect themselves in exactly l vertices and every
vertex of H belongs to exactly one of those intersections [11, 6, 7]. Such a
notion can also be generalized to dihypergraphs. However, we choose the general
definition as otherwise there would be no more a clear connexion between the
Eulerian and the Hamiltonian dihypergraphs (with our definition the dual of an
Eulerian dihypergraph is Hamiltonian). Furthermore, we are mainly interested
in Hamiltonian line dihypergraphs, whose definition is given later, and, in this
case, both of these definitions of a Hamiltonian dihypergraph are equivalent.

It is well-known that a strongly connected digraph is Eulerian if, and only if,
every vertex has equal in-degree and out-degree. Therefore, deciding whether a
digraph is Eulerian can be done in polynomial time; but deciding whether it is
Hamiltonian is an NP-complete problem.

In the first part of the article, we show that for dihypergraphs the situation is
different from that of digraphs. For example, deciding whether a dihypergraph
is Eulerian is an NP-complete problem. We show nonetheless that some results
about the Eulerian digraphs can be generalized, in the case where the studied
dihypergraphs are uniform and regular. As example, we prove that if H is a
weakly-connected, d-regular, s-uniform dihypergraph, then, for every k ≥ 1,
Lk(H) is Eulerian and Hamiltonian. In the second part, we study the Eulerian
and Hamiltonian properties of special families of regular uniform dihypergraphs,
the generalized de Bruijn and Kautz dihypergraphs [12].

The so called de Bruijn digraphs were introduced to show the existence
of de Bruijn sequences, that is circular sequences of dD elements, such that
any subsequence of length D appears exactly once. To prove the existence
of such sequences, it was proved that de Bruijn digraphs are both Eulerian
and Hamiltonian. These digraphs have been rediscovered many times and their
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properties have been well studied (see, for example, the survey [13]) in particular
for the design of interconnection networks. Various generalizations of de Bruijn
digraphs have been introduced, like the generalized de Bruijn digraphs (also
named Reddy-Pradhan-Kuhl digraphs) presented in [14, 15]. These digraphs
are based on arithmetical properties and they exist for any number of vertices.
Other generalizations like Kautz digraphs, generalized Kautz digraphs (also
called Imase and Itoh digraphs [14]) and consecutive digraphs [16] have been
proposed in the literature.

One generalization concerns hypergraphs and dihypergraphs which are used
in the design of optical bus networks [17]. In particular, de Bruijn and Kautz
dihypergraphs and their generalizations, that were introduced in [12], have sev-
eral properties that are beneficial in the design of large, dense, robust networks.
They have been proposed as the underlying physical topologies for optical net-
works, as well as dense logical topologies for Logically Routed Networks (LRN)
because of ease of routing, load balancing and congestion reduction, that are
properties inherent in de Bruijn and Kautz networks. In 2009, J-J. Quisquater
brought to our attention the web site (http://punetech.com/building-eka-the-
worlds-fastest-privately-funded-supercomputer/ ) where it is explained how these
hypergraphs and the results of [18] were used for the design of the supercom-
puter EKA in 2007 (http://en.wikipedia.orwiki/EKA (supercomputer)).

Connectivity properties of generalized de Bruijn dihypergraphs have been
studied in [19, 20, 21], but, to our best knowledge, their Hamiltonian and Eule-
rian properties have not been studied.

More precisely, we first determine when generalized de Bruijn and Kautz
dihypergraphs are Hamiltonian and Eulerian. Then, we study the case where
their number of hyperarcs is equal to their number of vertices. In that case, we
almost characterize when these dihypergraphs have a complete Berge dicycle,
i.e. a dicycle both Hamiltonian and Eulerian; in particular, we have a complete
characterization when the out-degree of each vertex is equal to the out-size of
each hyperarc.

2 Definitions and Notations

2.1 Dihypergraphs

A directed hypergraph, or simply dihypergraph is a pair (V(H), E(H)) where
V(H) is a non-empty set of elements, called vertices, and E(H) is a collection of
ordered pairs of subsets of V(H), called hyperarcs. We denote by n(H) (resp.
m(H)) the number of vertices (resp. hyperarcs) of H. Whenever H is clear in
the context, we use shortly n and m. We suppose, to avoid trivial cases, that
n > 1 and m > 1 and that we have no isolated vertex.

Let H be a dihypergraph and E = (E−, E+) be a hyperarc in E(H). Then,
the vertex sets E− and E+ are called the in-set and the out-set of the hyperarc
E, respectively. The sets E− and E+ do not need to be disjoint and they may
be empty. The vertices of E− are said to be incident to the hyperarc E and the
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vertices of E+ are said to be incident from E.
If E is a hyperarc in a dihypergraph H, then |E−| is the in-size and |E+|

is the out-size of E. The maximum in-size and the maximum out-size of H are
respectively:

s−(H) = max
E∈E(H)

|E−| and s+(H) = max
E∈E(H)

|E+|.

Note that a digraph is a dihypergraph D = (V(D), E(D)) with s−(D) =
s+(D) = 1.

Let v be a vertex in H. The in-degree of v is the number of hyperarcs that
contain v in their out-set and it is denoted by d−H(v). Similarly, the out-degree
of vertex v is the number of hyperarcs that contain v in their in-set and it is
denoted by d+H(v) .

The bipartite representation R(H) of a dihypergraph H is the bipartite di-
graph R(H) = (V1(R)∪V2(R), E(R)) where V1(R) = V(H), V2(R) = E(H) and
E(R) = {viEj | vi ∈ E−j } ∪ {Ejvi | vi ∈ E

+
j }. This representation digraph is

useful for drawing dihypergraphs. To make each figure more readable, we du-
plicate the vertices and we put in the left part the arcs from V1 to V2 and in the
right part those from V2 to V1. Figure 1 gives the representation digraph of the
de Bruijn dihypergraph GBH(2, 9, 2, 9) (see Section5), where vertex i belongs
to the in-set of the hyperarcs E2i and E2i+1 and the hyperarc Ej has as out-set
the vertices 2j and 2j + 1 (all the numbers being taken modulo 9).
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Figure 1: Bipartite representation of the De Bruijn dihypergraph
GBH(2, 9, 2, 9) and a complete Berge dicycle represented by dotted arcs (ver-
tices are drawn twice to better represent all the arcs).

Remark that when you inverse the respective roles of V1(R) and V2(R) in
R(H), you intuitively exchange the role of the vertices with the role of the
hyperarcs in H. This is an informal notion of the dual dihypergraph H∗. For-
mally, the vertices of the dual dihypergraph H∗ are in bijection φv with the
hyperarcs of H and the hyperarcs of H∗ are in bijection φE with the vertices of
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H. Moreover, for every vertex v ∈ V(H) and every hyperarc E ∈ E(H), vertex
e = φv(E) ∈ V(H∗) is in V −, where V = φE(v) ∈ E(H∗), if, and only if, v ∈ E+

and, similarly, e is in V + if, and only if, v ∈ E−. It is important to notice that
a hyperarc V ∈ E(H∗) may have an empty in-set (if d−H(v) = 0) or an empty
out-set (if d+H(v) = 0).

The underlying multidigraph U(H) of a dihypergraph H has as vertex set
V(U(H)) = V(H) and as arc set E(U(H)) that is the multiset of all ordered
pairs (u, v) such that u ∈ E− and v ∈ E+, for every hyperarc E ∈ E(H). We
emphasize that U(H) does not need to be simple: the number of arcs from u to
v in U(H) is the number of hyperarcs E = (E−, E+) in H such that u ∈ E−
and v ∈ E+. Observe that the underlying multidigraph of a given dihypergraph
is unique. However, a given digraph D can be the underlying digraph of many
dihypergraphs H.

2.2 Eulerian and Hamiltonian Dicycles in Dihypergraphs

By a dipath in a dihypergraphH, we mean a sequence P = v0, E0, . . . , vp−1, Ep−1, vp,
such that, for all i, j, we have vi ∈ V(H), Ej ∈ E(H), vi ∈ E−i for every
0 ≤ i ≤ p − 1, and vi ∈ E+

i−1 for every 1 ≤ i ≤ p. We also say that P is a
dipath of length p. Moreover, the dipath P is called a dicycle, or circuit, in H
if, and only if, we have v0 = vp. Observe that each dicycle in a dihypergraph
H corresponds to a dicycle in its bipartite representation R(H). Note that we
allow repetitions of vertices or hyperarcs and some authors prefer to use the
word tour in this case.

In the same way, we can extend the digraph-theoretic notions of Eulerian
dicycles and Hamiltonian dicycles to dihypergraphs:

Definition 1. Let H be a dihypergraph. We say that H is Eulerian (resp.
H is Hamiltonian) if, and only if, there is a dicycle C in H such that every
hyperarc of H (resp. every vertex of H) appears in C exactly once. We call C
an Eulerian dicycle (resp. a Hamiltonian dicycle).

Our generalization of an Eulerian dicycle to dihypergraphs is close to the
extension of an Euler tour to the undirected hypergraphs introduced in [4].

Definition 2 ([4]). Let Hu be an undirected hypergraph. A tour is a sequence
T = v0, E0, v1, . . . ,
vm−1, Em−1, v0 where, for all i, vi 6= vi+1 and vi and vi+1 are in the hyperedge
Ei (indices are taken modulo m). T is called an Euler tour when every hyperedge
of Hu appears exactly once in T . Hu is an Eulerian hypergraph if there exists
an Euler tour T in Hu.

Remark 1. An Eulerian dicycle in H (resp. a Hamiltonian dicycle in H) is a
dicycle in R(H), such that each vertex of V2(R) (resp. of V1(R)) appears exactly
once.
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As a consequence, a necessary and sufficient condition for R(H) to be Hamil-
tonian is that there is a dicycle C inH, such that C is simultaneously an Eulerian
dicycle and a Hamiltonian dicycle in H. In reference to the undirected case [3],
we call C a complete Berge dicycle:

Definition 3. Let H be a dihypergraph. A complete Berge dicycle in H is a
dicycle C in H, such that C is both an Eulerian dicycle and a Hamiltonian
dicycle in H.

3 General Results

In the following sections, we focus on Eulerian dihypergraphs. Recall that we
assume that the studied dihypergraphs have no isolated vertex, and that n > 1
and m > 1.

3.1 Some conditions

First, we recall a well-known characterization of Eulerian digraphs:

Theorem 1 ([22]). Let D be a digraph. The following statements are equivalent:

1. D is Eulerian;

2. D is (strongly) connected and, for all vertex v ∈ V(D), d−(v) = d+(v);

3. D is (strongly) connected and it has a dicycle decomposition (i.e. its arcs
can be partitioned into arc-disjoint dicycles).

The digraph-theoretic notions of connectivity can be extended to dihyper-
graphs [19]. We say that H is strongly (resp. weakly) connected if its underlying
multidigraph U(H) is strongly (resp. weakly) connected. U(H) is weakly con-
nected if its associated multigraph GU(H) (obtained by forgetting the orienta-
tion) is a connected multigraph (in Graph Theory this undirected graph is often
called the underlying graph; we use here a different terminology as we already
use the word underlying for the digraph associated to a dihypergraph). The
digraph-theoretic notions of vertex-connectivity and arc-connectivity are also
generalized by the dihypergraph-theoretic notions of vertex-connectivity and
hyperarc-connectivity (see [19]). Unlike 1-arc connected digraphs, 1-hyperarc
connected dihypergraphs are not always 1-vertex connected.

Remark that unlike an Eulerian digraph, an Eulerian dihypergraph does not
need to be strongly connected. Indeed, let H be an Eulerian dihypergraph. If
we add a new vertex x in H, such that x is incident to only one hyperarc E of
H and d−(x) = 0, then the dihypergraph obtained is still Eulerian, but it is not
strongly connected.

On the other hand, we have the following necessary condition:

Proposition 2. Let H be a dihypergraph. If H is Eulerian, then H is weakly
connected.
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Proof. Let GU(H) be the undirected associated multigraph to U(H). We want
to prove that GU(H) is connected. Note first that for all hyperarc E ∈ E(H),

vertices in the subset E− ∪E+ are in the same connected component in GU(H),
by the definition of U(H). Moreover, let E,F be any pair of distinct hyperarcs
of H. Since there is an Eulerian dicycle in H, therefore, there exist u ∈ E+

and v ∈ F−, such that there is a dipath in H from u to v. Since there is a
dipath from u to v in H, therefore there is a dipath P from u to v in U(H)
and so a path between u and v in GU(H). Therefore, the subsets E− ∪E+ and

F−∪F+ are in the same connected component in GU(H) too. Therefore, GU(H)

is connected.

Recall that a hypergraph is k-uniform if all its hyperedges have the same car-
dinality k. It was proved in [4] that, if H is an Eulerian k-uniform hypergraph,
then |Vodd(H)| ≤ (k − 2)m(H), where Vodd(H) is the set of all the vertices in
H with an odd degree and m(H) is the number of hyperedges in H. Using
the same idea, we also prove a necessary condition for a dihypergraph H to be
Eulerian.

Theorem 3. Let H be a dihypergraph. If H is Eulerian then:∑
v∈V(H)

|d+(v)− d−(v)| ≤
∑

E∈E(H)

(|E+|+ |E−| − 2).

Proof. Let C = v0, E0, v1, . . . , vm−1, Em−1, v0 be an Eulerian dicycle in H. By
definition, a given vertex may appear many times in C, but every hyperarc
appears exactly once in the dicycle C. Let us find the maximum number of
occurences of a given vertex v in C. For all i 6= j we may have vi = vj , but we
are sure that Ei 6= Ej . So a vertex v can appear at most min (d+(v), d−(v))
times in C and, as a consequence, we have the following inequality:∑

v∈V(H)

min (d+(v), d−(v)) ≥ m

Moreover, we know that:

min (d+(v), d−(v)) =
1

2
(d+(v) + d−(v)− |d+(v)− d−(v)|),

∑
v∈V(H)

d+(v) =
∑

E∈E(H)

|E−| and
∑

v∈V(H)

d−(v) =
∑

E∈E(H)

|E+|.

Therefore, the following inequalities hold:∑
v∈V(H)

(d+(v) + d−(v)− |d+(v)− d−(v)|) ≥ 2m

∑
E∈E(H)

|E−|+
∑

E∈E(H)

|E+| −
∑

v∈V(H)

|d+(v)− d−(v)| ≥
∑

E∈E(H)

2

∑
v∈V(H)

|d+(v)− d−(v)| ≤
∑

E∈E(H)

[(|E+| − 1) + (|E−| − 1)]
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For a digraph D, Theorem 3 is
the Euler’s condition presented in Theorem 1: for all v ∈ V(D), d+(v) =

d−(v).
Theorem 3 is not a sufficient condition for a strongly connected dihypergraph

H to be Eulerian: counter-examples are presented in Figure 2 and in Figure 3(b).
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Figure 2: A regular dihypergraph that is not Eulerian.

Another necessary condition was proposed by N. Cohen (private commu-
nication), who transposed the search of an Eulerian dicycle into a Perfect
Matching problem (see [3, 2]).

Let H be a dihypergraph. If there is a hyperarc E ∈ E(H) whose in-set
(resp. whose out-set) is empty, then H cannot be Eulerian. Else, let ϕ : E(H)→
V(H) × V(H) be any function such that, for all E, we have ϕ(E) ∈ E− × E+.
By replacing each hyperarc E by the arc ϕ(E) we get a digraph, denoted by
Dϕ[H] = (V(H), ϕ(E(H))). Observe that Dϕ[H] is a subdigraph of U(H) and
it can have loops or multiple arcs.

Remark 2. A dihypergraph H is Eulerian if, and only if, there exists a function
ϕ such that Dϕ[H] is an Eulerian digraph.

By Theorem 1, a necessary and sufficient condition for a digraph D to be
Eulerian is that D is connected and, for every vertex v, d−(v) = d+(v). If D
satisfies this degree constraint for every vertex, but is not necessarily connected,
we call D a balanced digraph.

We will use the well-known Hall’s Theorem to prove a necessary and sufficient
condition for the digraph Dϕ[H] to be balanced, for some ϕ.

Theorem 4 (see [3, 2]). Let G = (V1 ∪ V2, E) be a bipartite graph such that
|V1| = |V2|. There is a perfect matching in B if, and only if, for every subset
S ⊂ V1, |Γ(S)| ≥ |S|, where Γ(S) denotes the set of vertices adjacent to some
vertex of S.

Definition 4. Let X be a subset of V(H). We denote by d+H(X) (shortly d+(X))
the number of hyperarcs E ∈ E(H) such that E−∩X 6= ∅ and by d−s,H(X) (shortly

denoted d−s (X)) the number of hyperarcs E such that E+ ⊆ X.

We are now able to prove the following result:

8



Theorem 5. Let H be a dihypergraph. There exists a function ϕ such that
Dϕ[H] is a balanced digraph if, and only if, for every subset X ⊆ V(H), we
have d−s (X) ≤ d+(X).

Proof. Let us assume there exists ϕ such that Dϕ[H] is a balanced digraph. For
every subset X ⊆ V(H), for every hyperarc E such that E+ ⊆ X, we necessarily
have (u, v) = ϕ(E) ∈ V(H)×X. Since Dϕ[H] is balanced, hence there must
be some hyperarc F such that ϕ(F ) has vertex v as origin, that is v ∈ F−. So
F− ∩X is not empty. Furthermore, we can associate to two distinct hyperarcs
E two distinct hyperarcs F ; therefore d−s (X) ≤ d+(X).

Conversely, let us assume that for every subset X ⊆ V(H), d−s (X) ≤
d+(X). Consider the bipartite graph BP (H) = (V1(BP ) ∪ V2(BP ), E(BP ))
with V1(BP ) = {E+

j : Ej ∈ E(H)}, V2(BP ) = {E−j : Ej ∈ E(H)} and

E(BP ) = {E+
j E
−
j′

: E+
j ∩ E

−
j′
6= ∅}.

Let S = {E+
j1
, E+

j2
, . . . , E+

j|S|
} be a subset of V1(BP ) and X =

|S|⋃
k=1

E+
jk

.

Observe that |Γ(S)| = d+(X). Since d−s (X) ≥ |S|, we conclude that |Γ(S)| ≥
|S|. Moreover, V1(BP ) and V2(BP ) have the same cardinality. By Theorem
4, there is a perfect matching M in BP (H). We now define a function ϕ as
follows: for all edge E+

i E
−
j of M , one can choose any vertex v ∈ E+

i ∩ E
−
j as

the tail of ϕ(Ei) and the head of ϕ(Ej). Thus, we get a subdigraph Dϕ[H] that
is a balanced digraph.

Observe that we may define d−(X) and d+s (X) in the same way as d+(X)
and d−s (X). Thus, another formulation of Theorem 5 is: there exists ϕ such
that Dϕ[H] is a balanced digraph if, and only if, for every subset X ⊆ V(H)
d+s (X) ≤ d−(X).

By Theorem 5, deciding whether there exists ϕ such thatDϕ[H] is a balanced
digraph can be done in polynomial time. However, deciding whether there exists
ϕ such that Dϕ[H] is strongly connected is an NP-complete problem [23].

3.2 Duality and Complexity

First, we show that the search of an Eulerian dicycle in H is equivalent to the
search of a Hamiltonian dicycle in its dual:

Proposition 6. A dihypergraph H is Eulerian if, and only if, H∗ is Hamilto-
nian.

Proof. For each dicycle C = v0, E0, v1, E1, . . . , vp, Ep, v0 of H one can find a
corresponding dicycle in H∗ namely C∗ = e0, V1, e1, . . . , ep, V0, e0 and vice-versa.
Thus, C is an Eulerian dicycle in H (i.e. C contains each hyperarc of H exactly
once) if, and only if, C∗ contains each vertex of H∗ exactly once, i.e. C∗ is a
Hamiltonian dicycle of H∗.

As a direct consequence we can observe that, since (H∗)∗ = H, H is Hamil-
tonian if, and only if, H∗ is Eulerian. Moreover, since deciding whether a
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di(hyper)graph H is Hamiltonian is an NP-complete problem [1], the following
result is not surprising:

Theorem 7. Deciding whether a dihypergraph H is Eulerian is NP-complete.

Proof. Let C be a dipath. One can verify, in O(|E(H)|) operations, whether C
is an Eulerian dicycle in H. Consequently, the problem is in NP . Since the
dual H∗ can be built in O(|E(H)|+ |V(H)|)-time, we conclude the proof directly
from Proposition 6 and the NP-completeness of deciding whether a digraph is
Hamiltonian.

In order to check if a given dihypergraph is Hamiltonian, we will often use
the following proposition:

Proposition 8. A dihypergraph H is Hamiltonian if, and only if, its underlying
multidigraph U(H) is Hamiltonian.

Proof. By definition of U(H), any dicycle in H is a dicycle in U(H) with the
same vertices, and reciprocally.

3.3 Line Dihypergraphs Properties

The line dihypergraph L(H) of a dihypergraph H has as vertices the dipaths of
length 1 in H and as hyperarcs the dipaths of length 1 in H∗:

V(L(H)) =
⋃

E∈E(H)

{(uEv) | u ∈ E−, v ∈ E+},

E(L(H)) =
⋃

v∈V(H)

{(EvF ) | v ∈ E+ ∩ F−};

where the in-set and the out-set of hyperarc (EvF ) are (EvF )− = {(uEv) | u ∈
E−} and (EvF )+ = {(vFw) | w ∈ F+}.

Particularly, when D is a digraph, L(D) is the line digraph of D (see [1]).
The following results are used in the sequel:

Theorem 9 ([19]). Let H be a dihypergraph. Then,

1. the digraphs R(L(H)) and L2(R(H)) are isomorphic;

2. the digraphs U(L(H)) and L(U(H)) are isomorphic;

3. the digraphs (L(H))∗ and L(H∗) are isomorphic.

Recall that:

Theorem 10 ([24]). For a given digraph D, the line digraph L(D) is Hamilto-
nian if, and only if, D is Eulerian.
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This property is useful for some special families of digraphs, e.g. Kautz and
de Bruijn digraphs, that are stable by line digraph operation [24]. By using
induction, one can prove that every digraph of the family is Hamiltonian. It
was shown in [19] that de Bruijn and Kautz dihypergraphs are also stable by line
dihypergraph operation. So, it is natural to wonder whether this property can
be generalized to dihypergraphs. However, we only get a weak generalization.

Proposition 11. Let H be a dihypergraph. Then, L(H) is Hamiltonian if, and
only if, U(H) is Eulerian.

Proof. By Proposition 8, the dihypergraph L(H) is Hamiltonian if, and only if,
U(L(H)) is Hamiltonian. Moreover, U(L(H)) and L(U(H)) are isomorphic by
Theorem 9. Finally, by Theorem 10 L(U(H)) is Hamiltonian if, and only if,
U(H) is Eulerian.

We now show with two counter-examples that both implications of the cor-
responding version of Theorem 10 to dihypergraphs do not hold. There exist
dihypergraphs which are Eulerian such that their line dihypergraph is not Hamil-
tonian and there also exist dihypergraphs that are not Eulerian such that their
line dihypergraph is Hamiltonian.
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(b) H2

Figure 3: Counter-examples for extension of Theorem 10 to dihypergraphs.

Consider the dihypergraph H1 = (V(H1), E(H1)) whose bipartite representa-
tion digraph is depicted in Figure 3(a). Observe that 0, E, 2, F, 0 is an Eulerian
dicycle in H1. But d+U(H1)

(1) = 4, that is different than d−U(H1)
(1) = 3. As a

consequence, U(H1) cannot be Eulerian, by Theorem 1.
On the other hand, the dihypergraph H2 = (V(H2), E(H2)), depicted in

Figure 3(b), is not Eulerian, but U(H) is Eulerian and so L(H) is Hamiltonian.
Remark that H2 verifies the necessary condition of Theorem 3. Furthermore,
H2 is strongly connected. One may observe that its underlying multidigraph
U(H2) is Eulerian (it is even a 2-regular digraph). However, H2 is not Eulerian
because it does not verify the condition of Theorem 5. Indeed, d−s ({1, 2}) = 2,
which is strictly greater than d+({1, 2}) = 1.

We will show, in the next sections, that there are Eulerian dihypergraphs
H, which are not digraphs, such that their U(H) is Eulerian.
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4 Case of d-regular, s-uniform Dihypergraphs

Let (s−, s+) be a couple of positive integers. An (s−, s+)-uniform dihypergraph
H is a dihypergraph such that the in-size (resp. the out-size) of every hyperarc
in H equals s− (resp. equals s+). When s− = s+ = s we also say that H is a
s-uniform dihypergraph. Recall that digraphs are 1-uniform dihypergraphs.

Let (d−, d+) be a couple of positive integers. A (d−, d+)-regular dihyper-
graph H is a dihypergraph such that the in-degree (resp. the out-degree) of
every vertex in H equals d− (resp. d+). When d− = d+ = d, we also say that
H is a d-regular dihypergraph. Regular 1-uniform dihypergraphs are exactly
regular digraphs. Remark that a dihypergraph H is (p, q)-uniform if, and only
if, its dual dihypergraph H∗ is (p, q)-regular, for any positive integers p, q.

When the studied dihypergraphs are uniform, Theorem 3 can be reformu-
lated in a very similar way to [4]:

Corollary 1. Let H be an Eulerian dihypergraph. If H is (s−, s+)-uniform,
then: ∑

v∈V(H)

|d+(v)− d−(v)| ≤ (s+ + s− − 2) m

Observe that even though d-regular dihypergraphs always verify the neces-
sary condition of Theorem 3, they are not always Eulerian (see Figure 2).

We recall the following result about regular digraphs:

Theorem 12 ([1]). Deciding whether a 2-regular digraph D is Hamiltonian is
an NP-complete problem.

In [4], the authors use a similar result about 3-regular graphs, to prove that
deciding whether a k-uniform hypergraph, k ≥ 3, is Eulerian is an NP-complete
problem. We do the same for uniform dihypergraphs. First, observe that if the
dihypergraphs are 1-uniform, that is they are digraphs, we know that deciding
whether a digraph is Eulerian can be done in polynomial time [24].

Theorem 13. Let (s−, s+) be a couple of positive integers. If s− ≥ 2 or s+ ≥ 2,
then deciding whether a (s−, s+)-uniform dihypergraph is Eulerian is an NP-
complete problem.

Proof. By symmetry, we only need to prove the case when s+ ≥ 2. Furthermore,
by Theorem 7, we already know that the problem is in the NP-class. We now
reduce the Hamiltonian problem in 2-regular digraphs to the Eulerian problem
in (s−, s+)-uniform dihypergraphs.

The idea consists in associating in polynomial time to a 2-regular digraph D
a dihypergraph HD, such that HD is Eulerian if, and only if, D is Hamiltonian
and then the result will follow by Theorem 12.

Let D = (V(D), E(D)) be a 2-regular digraph. We define the dihypergraph
HD with the following rules:

1. V(HD) = V(D)∪{A× V(D)}∪ {B × V(D)}, where A and B are two sets
satisfying |A| = s− − 1 and |B| = s+ − 2;
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2. to each vertex v ∈ V(D), we associate a hyperarc Ev ∈ E(HD) such that

E−v = {v} ∪ {A× {v}} and E+
v = {wv, w

′

v} ∪ {B × {v}}, where wv and

w
′

v are the out-neighbors of v in D.

By construction, HD is a (s−, s+)-uniform dihypergraph. Let us prove now that
D is Hamiltonian if, and only if, HD is Eulerian.

Suppose first that D is Hamiltonian and let C = v0, v1, . . . , vn−1, v0 be
a Hamiltonian dicycle in D. From C, we build a dicycle CD in HD, CD =
v0, Ev0 , v1, Ev1 , . . ., vn−1, Evn−1

, v0, where Evi is the hyperarc that is induced
by vi. By definition of a Hamiltonian dicycle, for all v ∈ V(D), v appears only
once in C. Therefore, by construction of HD, for every Ev ∈ E(HD), Ev appears
exactly once in CD. So, CD is an Eulerian dicycle in HD.

Now, suppose that HD is Eulerian. Remark that for every E,F ∈ E(HD), by
construction ofHD, we have E+∩F− ⊂ V(D). Thus, let CD = v0, E0, v1, E1, . . . , vm−1, Em−1, v0
be an Eulerian dicycle in HD. Because of the previous remark, we know that for
every i, vi ∈ V(D). However, a vertex v ∈ V(D) is incident to only one hyperarc
in HD. As a consequence, for all i, Ei is the hyperarc that is associated to vi
and so, each vi appears exactly once, and therefore, C = v0, v1, . . . , vm−1, v0 is
a Hamiltonian dicycle in D.

When H is a digraph, we know that:

Theorem 14 ([24]). Let D be a weakly-connected digraph. If D is regular,
then all its iterated line digraphs Lk(D), for every k ≥ 1, are Hamiltonian and
Eulerian.

We now prove that, more generally:

Theorem 15. Let H be a weakly-connected, d-regular, s-uniform dihypergraph.
Then for every k ≥ 1, Lk(H) is Eulerian and Hamiltonian.

Proof. Since H is d-regular and s-uniform, then U(H) is a ds-regular multidi-
graph. As a consequence, for all k ≥ 0, Lk(U(H)) is also ds-regular. By Theo-
rem 9, we have by induction on k that, for all k ≥ 0, U(Lk(H)) is isomorphic
to Lk(U(H)). So, for all k ≥ 0, U(Lk(H)) is Eulerian (because it is a regular
multidigraph), that is equivalent, by Proposition 11, to L(Lk(H)) = Lk+1(H)
be Hamiltonian.

Moreover, H∗ is s-regular, d-uniform, and we claim that it is also a weakly
connected dihypergraph. Indeed, s ≥ 1 implies that there is no empty in-set and
no empty out-set in H∗. So, the connectivity of H implies the connectivity of
H∗. Therefore, for every k ≥ 1 Lk(H∗) is also Hamiltonian. Again by Theorem
9, we prove by induction on k that, for all k ≥ 1, (Lk(H))∗ is isomorphic to
Lk(H∗). Therefore, by Proposition 6, for every k ≥ 1 Lk(H) is Eulerian.

Remark 3. Theorem 15 holds when H is (d−, d+)-regular, H is (s−, s+)-
uniform, if we add the extra-condition: d−s− = d+s+.
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Recall that a complete Berge dicycle is an Eulerian and Hamiltonian dicycle
and that if a dihypergraph has such a dicycle, then its bipartite representation
digraph R(H) is Hamiltonian. In the case s = d, we are able to prove a slightly
more general result:

Proposition 16. Let H be a d-regular, d-uniform dihypergraph that is weakly
connected. There is a complete Berge dicycle in L(H).

Proof. Because of the d-regularity, d-uniformity of H, its own bipartite repre-
sentation digraph R(H) is d-regular. Therefore, for every i ≥ 1, Li(R(H)) is
Hamiltonian. By Theorem 9, we know that L2(R(H)) and R(L(H)) are isomor-
phic. Therefore, R(L(H)) is Hamiltonian.

Other results about Eulerian and Hamiltonian dihypergraphs can be found
in [25].

5 de Bruijn and Kautz Dihypergraphs

In this section, we study the Eulerian and Hamiltonian properties of the gener-
alization of de Bruijn and Kautz digraphs to dihypergraphs.

5.1 de Bruijn, Kautz and Consecutive-d digraphs

First, we recall some definitions and previous results on digraphs that we will
use in the sequel.

Definition 5 ([14, 15]). The generalized de Bruijn digraph GB(d, n) (also
called Reddy-Pradhan-Khul digraph), is the digraph whose vertices are labeled
with the integers modulo n; there is an arc from vertex i to vertex j if, and only
if, j ≡ di+ α (mod n), for every α with 0 ≤ α ≤ d− 1.

If n = dD, GB(d, n) is nothing else than the de Bruijn digraph B(d,D)
(see [13, 24]).

Definition 6 ([14]). The generalized Kautz digraph GK(d, n) (also called
Imase-Itoh digraph), is the digraph whose vertices are labeled with the inte-
gers modulo n; there is an arc from vertex i to vertex j if, and only if, j ≡
−di− d+ α (mod n), for every α with 0 ≤ α ≤ d− 1.

If n = dD + dD−1, GK(d, n) is nothing else than the Kautz digraph K(d,D)
(see [13, 24]).

Both of those families of digraphs can be generalized in the following way:

Definition 7 ([26]). Let 1 ≤ d, q ≤ n− 1, and 0 ≤ r ≤ n− 1, then the
Consecutive-d digraph G(d, n, q, r) is the digraph whose vertices are labeled with
the integers modulo n, such that there is an arc from vertex i to vertex j if, and
only if, j ≡ qi+ r + α (mod n), for every α with 0 ≤ α ≤ d− 1.
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Observe that if q = d and r = 0, then G(d, n, d, 0) = GB(d, n) and that if
q = r = n− d, then G(d, n, n− d, n− d) = GK(d, n).

Definition 8 ([27]). Let λ be a positive integer, with 1 ≤ λ ≤ d. Then
GBλ(d, n) is the subdigraph of GB(d, n) such that there is a link from i to j
if, and only if, j ≡ di+ α (mod n), for every 0 ≤ α ≤ λ− 1.

Actually, the digraph GBλ(d, n) is nothing else than the Consecutive-d di-
graph G(λ, n, d, 0). But the notation of GBλ(d, n) helps to understand that it
is a subdigraph of GB(d, n). If λ = d, GBd(d, n) = GB(d, n). We can define in
a similar way GKλ(d, n).

Consecutive-d digraphs have been intensively studied (see [26, 28, 29, 30, 31,
32, 33, 34, 35]). Particularly, the characterization of the Hamiltonian Consecutive-
d digraphs is nearly complete:

Theorem 17 ([31, 26, 28, 29]). Let G = G(d, n, q, r) be a Consecutive-d digraph.

• If d = 1, then G is Hamiltonian if, and only if, all of the four following
conditions hold:

1. gcd (n, q) = 1;

2. for every prime number p such that p divides n, then we have p divides
(q − 1);

3. if 4 divides n, then 4 also divides (q − 1);

4. gcd (n, q − 1, r) = 1.

• If d = 2, then G is Hamiltonian if, and only if, one of the following
conditions is verified:

1. gcd (n, q) = 2;

2. gcd (n, q) = 1 and either G(1, n, q, r) or G(1, n, q, r + 1) is Hamilto-
nian.

• If d = 3, then:

1. if gcd (n, q) ≥ 2, G is Hamiltonian if, and only if, gcd (n, q) ≤ 3;

2. if gcd (n, q) = 1 and 1 ≤ |q| ≤ 3, G is Hamiltonian.

• If d ≥ 4, then G is Hamiltonian if, and only if, gcd (n, q) ≤ d.

Corollary 2 ([28]). Let G = G(d, n, q, r) be a Consecutive-d digraph. If gcd (n, q) ≥
2, then G is Hamiltonian if, and only if, gcd (n, q) ≤ d.

The only remaining case is when d = 3, for which there is only a partial
characterization.

In particular, the characterization of the Hamiltonian generalized de Bruijn
(resp. Kautz) digraphs is complete:

15



Theorem 18 ([27]). If λ = gcd (n, d) ≥ 2, then GBλ(d, n) and GKλ(d, n) are
Hamiltonian.

Theorem 19 ([28, 27]). GB(d, n) is Hamiltonian if, and only if, one of the
following conditions holds:

1. d ≥ 3;

2. d = 2 and n is even.

Theorem 20 ([28, 27]). GK(d, n) is Hamiltonian if, and only if, one of the
following conditions holds:

1. d ≥ 3;

2. d = 2 and n is even;

3. d = 2 and n is a power of 3.

GB(d, n) and GK(d, n) are also Eulerian [27].
Finally, GB(d, n) and GK(d, n) have interesting line digraph properties. We

use the following relations:

Proposition 21 ([27]). If gcd (n, d) = λ ≥ 2, then

L(GBλ(d,
n

λ
)) = GBλ(d, n) and L(GKλ(d,

n

λ
)) = GKλ(d, n)

Particularly:

L(GB(d, n)) = GB(d, dn) and L(GK(d, n)) = GK(d, dn).

5.2 Definitions of de Bruijn and Kautz dihypergraphs

We now give the arithmetical definition for the de Bruijn and Kautz dihyper-
graphs. For other definitions, see [12]. In what follows, the vertices (resp. the
hyperarcs) are labeled with the integers modulo n (resp. modulo m); the ver-
tices are denoted i, 0 ≤ i ≤ n − 1 and the hyperarcs Ej , 0 ≤ j ≤ m − 1. To
ease the reading we do not write, when it is clear in the context, the expressions
(mod n) and (mod m).

Definition 9 ([12]). Let d, n, s and m be four positive integers, such that
dn ≡ 0 (mod m) and sm ≡ 0 (mod n). The generalized de Bruijn dihypergraph
GBH(d, n, s,m) has as vertex set (resp. hyperarc set) the integers modulo n
(resp. modulo m). Any vertex i belongs to the in-set of hyperarcs Edi+α (mod m),
for every 0 ≤ α ≤ d− 1. Any hyperarc Ej has as out-set the vertices sj + β
(mod n), for every 0 ≤ β ≤ s− 1.

Note that the condition dn ≡ 0 (mod m) follows from the fact that the
vertices i and i+n should be incident to the same hyperarcs d(i+n)+α ≡ di+α
(mod m). Similarly E+

j = E+
j+m implies sm ≡ 0 (mod n).
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Particularly, when n = m, it can be useful to remark that in the bipartite
digraph R(GBH(d, n, s, n)), the incidence relations from V1 to V2 are the same
as in GB(d, n) and the incidence relations from V2 to V1 are the same as in
GB(s, n).

Definition 10 ([12]). Let (d, n, s,m) be four positive integers, such that dn ≡ 0
(mod m) and sm ≡ 0 (mod n). The generalized Kautz dihypergraph, denoted
by GKH(d, n, s,m), is the dihypergraph whose vertices (resp. hyperarcs) are
labeled by the integers modulo n (resp. modulo m), such that a vertex i is
incident to hyperarcs Edi+α (mod m), for every 0 ≤ α ≤ d− 1 and hyperarc Ej
has for out-set the vertices −sj − s+ β (mod n), for every 0 ≤ β ≤ s− 1.

By inversing the labeling of the hyperarcs, it has been proposed in [12] an
equivalent definition for Kautz dihypergraphs:

Definition 11 ([12]). Let (d, n, s,m) be four positive integers, such that dn ≡ 0
(mod m) and sm ≡ 0 (mod n). The generalized Kautz dihypergraph, denoted by
GKH(d, n, s,m), is the dihypergraph whose vertices (resp. hyperarcs) are labeled
by the integers modulo n (resp. modulo m), such that a vertex i is incident to
hyperarcs E−di−d+α (mod m), for every 0 ≤ α ≤ d− 1 and hyperarc Ej has for
out-set the vertices sj + β (mod n), for every 0 ≤ β ≤ s− 1.

We recall some properties that will be used in Section 6.

Theorem 22 ([12]). The underlying multidigraph of GBH(d, n, s,m) (resp.
GKH(d, n, s,m)) is GB(ds, n) (resp. GK(ds, n)).

Theorem 23 ([12]). If H = GBH(d, n, s,m) (resp. GKH(d, n, s,m)), then
H∗ = GBH(s,m, d, n) (resp. GKH(s,m, d, n)).

Theorem 24 ([19]). The line dihypergraph of GBH(d, n, s,m) (resp. of GKH(d, n, s,m))
is GBH(d, dsn, s, dsm) (resp. is GKH(d, dsn, s, dsm)).

5.3 Eulerian and Hamiltonian properties

We now characterize when the generalized de Bruijn and Kautz dihypergraphs
are Hamiltonian and Eulerian. Recall that we suppose n > 1 and m > 1.

Theorem 25. Let H = GBH(d, n, s,m) be a generalized de Bruijn dihyper-
graph. H is Hamiltonian if, and only if, one of the following conditions is
verified:

1. ds ≥ 3;

2. ds = 2 and n is even.

Proof. First, recall that U(H) = GB(ds, n) by Theorem 22. By Theorem 19,
we know that the de Bruijn digraph GB(ds, n) is Hamiltonian if, and only if,
ds ≥ 3; or ds = 2 and n is even. Therefore, by Proposition 8, Theorem 25
follows.
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Theorem 26. Let H = GBH(d, n, s,m) be a generalized de Bruijn dihyper-
graph. H is Eulerian if, and only if, one of the following conditions is verified:

1. ds ≥ 3;

2. ds = 2 and m is even.

Proof. By Theorem 23, H∗ = GBH(s,m, d, n). Theorem 25 gives a necessary
and sufficient condition for H∗ to be Hamiltonian. By Proposition 6, this is also
a necessary and sufficient condition for H to be Eulerian.

The method that is used for deciding whether GBH(d, n, s,m) is Eulerian
or Hamiltonian can be applied to Kautz dihypergraphs in the same way. By
Theorem 20, we have necessary and sufficient conditions for a generalized Kautz
digraph to be Hamiltonian. Consequently:

Theorem 27. Let H = GKH(d, n, s,m) be a generalized Kautz dihypergraph.

1. If ds ≥ 3, then H is Eulerian and Hamiltonian;

2. If ds = 2, then H is Eulerian (resp. Hamiltonian) if, and only if, m (resp.
n) is even or a power of 3.

6 Existence of Complete Berge Dicycles

In this section, we want to determine when there exists a complete Berge dicycle
in GBH(d, n, s,m), (i.e a Hamiltonian dicycle in its bipartite representation
digraph).

A necessary condition for a dihypergraph H to have a complete Berge dicycle
is that n = m. Otherwise, R(H) cannot be Hamiltonian. We prove that:

Theorem 28. There is a complete Berge dicycle in GBH(d, n, s, n) if one of
the following conditions is verified:

1. d ≥ 3 and s ≥ 3;

2. d = 2 and s ≥ 4, or s = 2 and d ≥ 4;

3. {d, s} = {2, 3} and either n is even or n is a multiple of 3;

4. d = s = 2 and n is even or n is a power of 3 (otherwise it does not exist);

5. d = 1 or s = 1 and GB(ds, n) is Hamiltonian (otherwise it does not exist).

The only remaining case is when {d, s} = {2, 3} and n and 6 are relatively
prime, for which we conjecture GBH(d, n, s, n) has a complete Berge dicycle:

Conjecture 29. If {d, s} = {2, 3}, then there is a complete Berge dicycle in
GBH(d, n, s, n).
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We highlight the particular case when s = d, for which we have a complete
characterization:

Theorem 30. There is a complete Berge dicycle in GBH(d, n, d, n) if, and only
if, one of the following conditions is verified:

1. d ≥ 3;

2. d = 2 and n is an even number;

3. d = 2 and n is a power of 3.

Remark that, for d ≥ 2, these conditions are exactly the same as those im-
plying that GK(d, n) is Hamiltonian (see Theorem 20). It would be interesting
to see if there is a relationship between Theorems 20 and 30. We were able to
find it only when n is odd (see Lemma 5 in Section 6.4).

The rest of this section is devoted to the proof of Theorems 28 and 30.
In Section 6.1, we deal with the easy case d = 1. In Section 6.2, we show
that Theorem 28 is true when gcd (n, d) ≥ 2 and gcd (n, s) ≥ 2 using a special
product of digraphs and the notion of line digraphs. Then, in Section 6.3, we
consider the opposite case, where gcd (n, d) = 1 or gcd (n, s) = 1, and solve all
the cases except {d, s} = {2, 3}, d = s = 2 and d = s = 3. Section 6.4 contains
the lemma which shows the relation with the generalized Kautz digraphs, and
that the conditions of Theorem 30 are sufficient for d = s = 2 and n is a
power of 3. In Section 6.5, by using the Euler’s function, we show that these
conditions are also necessary for d = s = 2. Finally, in Section 6.6, we deal
with the remaining case: d = s = 3 and gcd (n, 3) = 1 and we solve it using a
link-interchange method.

6.1 Case d = 1

Lemma 1. If d = 1, then there is a complete Berge dicycle in GBH(1, n, s, n)
if, and only if, the de Bruijn digraph GB(s, n) is Hamiltonian.

Proof. If d = 1, then every vertex i is only incident to hyperarc Ei. So we
may not distinguish the vertices from the hyperarcs and we get a digraph, the
relations of incidence of which are the relations of incidence between hyperarcs
and vertices in the original dihypergraph. Therefore, Lemma 1 follows.

By symmetry, observe that the case when s = 1 is also solved by Lemma 1.

6.2 Case gcd (n, d) ≥ 2 and gcd (n, s) ≥ 2

In this section, we completely solve the case when gcd (n, d) ≥ 2 and gcd (n, s) ≥
2. The proof is involved; in the particular case d = s, it can be simplified by
using other methods such as the concatenation of digraph dicycles [25].

We will use a subcase of a digraph product introduced in [36, 37]:
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Definition 12 ([36, 37]). Let L1, L2 be two digraphs with the same order n and
with V(L1) ∩ V(L2) = ∅ and let φ: V(L1) → V(L2) be a one-to-one mapping.
Then, L1 ⊗φ L2 is the digraph L such that V(L) = V(L1) ∪ V(L2) and the set
of arcs E(L) is defined by exchanging the out-neighbors of u ∈ V(L1) with the
out-neighbors of φ(u) ∈ V(L2) and vice-versa. More precisely, if u2 = φ(u1),
and (u1, v1) is an arc of L1 and (u2, v2) is an arc of L2, then the arcs (u1, v2)
and (u2, v1) belong to E(L).

Observe that if L1 is the generalized de Bruijn digraph GB(s, n), L2 is the
generalized de Bruijn digraph GB(d, n) and φ is the identity function, then
L1 ⊗φ L2 is the bipartite representation digraph R(GBH(d, n, s, n)).

It happens that even if L1 and L2 are both strongly connected, L1 ⊗φ L2

may be disconnected. However, it was proven by Barth and Heydemann the
following sufficient condition:

Lemma 2 ([36]). If L1 and L2 are strongly connected, and if there exist u1
and u2 such that φ(u1) = u2 and there is a loop (u1, u1) ∈ E(L1) and a loop
(u2, u2) ∈ E(L2), then L1 ⊗φ L2 is strongly connected.

We now prove a useful lemma:

Lemma 3. For every i ∈ {1, 2}, let Di be an arbitrary digraph and Li =
L(Di) be its line digraph. If L1 and L2 have the same number of vertices and
φ : V(L1) → V(L2) is a one-to-one mapping, then L1 ⊗φ L2 is also a line
multidigraph L(D), such that V(D) = V(D1)∪V(D2) and the degree of a vertex
in D is the same as the degree of its corresponding vertex in D1 or D2.

Proof. The vertices of Li (i = 1, 2) are the arcs of Di and so they are of the
form (ui, vi), with ui, vi ∈ V(Di). Let V(D) = V(D1)∪V(D2). For each (u1, v1)
of L1, if (u2, v2) = φ((u1, v1)) is its image by φ, we put in D the arcs (u1, v2)
and (u2, v1).

Now, consider the mapping ψ : V(L1 ⊗φ L2)→ V(L(D)) = E(D), defined as
follows: if (u1, v1) is a vertex of L1 and (u2, v2) = φ((u1, v1)) is the associated
vertex in L2, then ψ((u1, v1)) = (u1, v2) and ψ((u2, v2)) = (u2, v1). Observe
that ψ is a one-to-one mapping. To prove the lemma, it suffices to prove that
ψ keeps the adjacency relation.

On one side, by definition of the product, the vertex (u1, v1) is joined in
L1 ⊗φ L2 to the out-neighbors of (u2, v2) in L2 that is to the vertices of the
form (v2, w2), with (v2, w2) an arc of D2. On the other side, in L(D), the vertex
(u1, v2) = ψ((u1, v1)) is joined to the vertices (v2, y1), where y1 is such that there
exists x1 in D1 and w2 in D2, such that (x1, y1) is an arc of D1, φ((x1, y1)) =
(v2, w2) and (v2, w2) is an arc of D2. But, by definition, (v2, y1) = ψ((v2, w2)).
So, ψ((u1, v1)) is joined in L(D) to all the images by ψ of the out-neighbors of
(u1, v1) in L1 ⊗φ L2 and then the adjacency relation is kept for the vertices of
L1. The proof is identical for the vertices of L2.

When s = d, we can prove a stronger result namely that GBλ(d, n) ⊗φ
GBλ(d, n) is the line digraph of GBλ(d,

n

λ
)⊗φ GBλ(d,

n

λ
) [25].
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Remark 4. Note that, if L1 = L(D1) and L2 = L(D2) are Hamiltonian di-
graphs, then D1 and D2 are balanced and so, by Lemma 3, D is a balanced
digraph, i.e. every vertex of D has equal in-degree and out-degree.

Lemmas 2 and 3 enable us to prove the following theorem:

Theorem 31. Let H = GBH(d, n, s, n) be a generalized de Bruijn dihyper-
graph. If gcd (d, n) ≥ 2 and gcd (s, n) ≥ 2, then there is a complete Berge
dicycle in H.

Proof. Let us show that R = R(GBH(d, n, s, n)) is a Hamiltonian digraph.
We recall that R is isomorphic to GB(s, n) ⊗φ GB(d, n), φ being the identity
function. So, for λ = gcd (d, n) and µ = gcd (s, n), the digraph GBµ(s, n) ⊗φ
GBλ(d, n) is isomorphic to a subdigraph of R. As, by Proposition 21, GBµ(s, n)
and GBλ(d, n) are two line digraphs, then, by Lemma 3, GBµ(s, n)⊗φGBλ(d, n)
is also a line digraph L(D). Moreover, since GBµ(s, n) and GBλ(d, n) are
also Hamiltonian digraphs, by Theorem 18, then D is a balanced digraph by
Remark 4. Furthermore, both GBµ(s, n) and GBλ(d, n) are strongly connected
and those two digraphs have a common loop (0, 0). Consequently, by Lemma
2, GBµ(s, n)⊗φGBλ(d, n) is strongly connected, hence D is strongly connected
too.

D is a balanced digraph that is strongly connected. In other words, D is
an Eulerian digraph and so L(D) = GBµ(s, n) ⊗φ GBλ(d, n) is a Hamiltonian
digraph.

6.3 Case n and d relatively prime, or n and s relatively
prime

In the next proofs, we consider a Hamiltonian dicycle in a Consecutive-d digraph
as a circular permutation σ in Zn. If j is the vertex that follows i in the
Hamiltonian dicycle, then σ(i) = j; if k is the vertex that follows j in the same
dicycle, then σ2(i) = k and so on.

Now we deal with the other case gcd (n, d) = 1 or gcd (n, s) = 1 and will
prove that the Theorem 28 holds in most of the cases. The proof will rely on
the following lemma:

Lemma 4. Let n and d be relatively prime. If the Consecutive-s digraph
G(s, n, ds, 0) is Hamiltonian, then there is a complete Berge dicycle in GBH(d, n, s, n).

Proof. Recall that in G(s, n, ds, 0) a vertex i is joined to the vertices j ≡ dsi+ β
(mod n), for every β with 0 ≤ β ≤ s− 1. Let 0, σ(0), σ2(0), . . . , σn−1(0), 0 be
a Hamiltonian dicycle of G(s, n, ds, 0). We construct the following dicycle in
GBH(d, n, s, n). Vertex i precedes the hyperarc Edi. Since gcd (n, d) = 1, there-
fore d is invertible in Zn and i → di is a bijection between vertices and hyper-
arcs. The dicycle 0, E0, σ(0), Edσ(0), . . . , σ

n−1(0), Edσn−1(0), 0 is then a complete

Berge dicycle in GBH(d, n, s, n); indeed the vertex σk+1(0) ≡ s(dσk(0)) +βk ≡
s(dσk(0)) + βk is in the out-set of Edσk(0).
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Theorem 32. Let H = GBH(d, n, s, n) be a generalized de Bruijn dihyper-
graph such that d 6= 1 and s 6= 1. If n and d are relatively prime or n and s
are relatively prime, then there is a complete Berge dicycle in H if one of the
following conditions hold:

1. d ≥ 4 or s ≥ 4;

2. {d, s} = {2, 3} and n is even or n is a multiple of 3.

Proof. By Theorem 17, we know that G(s, n, ds, 0) is Hamiltonian if one of the
following conditions hold:

• s ≥ 4 and gcd(n, ds) ≤ s;

• or {s = 3 and 2 ≤ gcd(n, 3d) ≤ 3};

• or {s = 2 and gcd(n, 2d) = 2}.

Furthermore, if n and d are relatively prime, we have:

gcd (n, ds) = gcd (n, s) ≤ s (1)

and so, 2 ≤ gcd(n, 3d) ≤ 3 is equivalent to n multiple of 3 and gcd(n, 2d) = 2
is equivalent to n even.

By using these facts and Lemma 4 we get:

• Fact 1: if n and d are relatively prime, then there is a complete Berge
dicycle in GBH(d, n, s, n) when s ≥ 4 or {s = 3 and n is a multiple of 3}
or {s = 2 and n is even}.

• Fact 2: (obtained by exchanging d and s) if n and s are relatively prime,
then there is a complete Berge dicycle in GBH(s, n, d, n), hence, there is
also a complete Berge dicycle in the dual GBH(d, n, s, n), when d ≥ 4 or
{d = 3 and n is a multiple of 3} or {d = 2 and n is even}.

Now, we can conclude as follows:
Let d ≥ 4. If n and s are relatively prime we conclude by using Fact 2.

Otherwise gcd(n, s) ≥ 2 and n and d are relatively prime. The theorem is
proved by using Fact 1 as either s ≥ 4; or s = 3, but then n is a multiple of 3,
because gcd(n, s) ≥ 2; or s = 2 and gcd(n, s) ≥ 2 implies that n is a multiple of
2.

The case s ≥ 4 can be done similarly (by exchanging d and s, which corre-
sponds to work in the dual).

Now let d = 3 and s = 2. If n is a multiple of d = 3, then by hypothesis
n and s are relatively prime and we conclude by Fact 2. If n is a multiple of
s = 2, then by hypothesis n and d are relatively prime and we conclude by Fact
1. The case d = 2 and s = 3 is done similarly by exchanging d and s.
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6.4 Concatenation of dicycles and relation to generalized
Kautz digraphs

If n is an odd number, then Theorem 30 can be partly proven with a concate-
nation of dicycles.

Lemma 5. If GK(d, n) is Hamiltonian and n is odd, then there is a complete
Berge dicycle in GBH(d, n, d, n).

Proof. We use a variant for the definition of GBH(d, n, d, n). Indeed as noted
in [38], if we label the hyperarc Ej with label En−1−j , we get the incidence
relations of GK(d, n). In other words, GBH(d, n, d, n) can be defined as follows:
vertex i is incident to hyperarcs E−di−d+α (mod n), for every 0 ≤ α ≤ d− 1,
and hyperarc Ej has as out-set the vertices −dj − d + β (mod n), for every
0 ≤ β ≤ d− 1.

Now, by Theorem 20, there exists a Hamiltonian dicycle in the Kautz digraph
GK(d, n) for n odd, and either d ≥ 3 or { d = 2 and n is a power of 3}; let it
be 0, σ(0), σ2(0), . . . , σn−1(0), 0. Let C be the dicycle of GBH(d, n, d, n), where
vertex i precedes hyperarc Eσ(i) and hyperarc Ej precedes vertex σ(j). So,

C = 0, Eσ(0), σ
2(0), . . . , σ2h(0), Eσ2h+1(0), . . . , σ

n−2(0), Eσn−1(0), 0, where 0 ≤
h ≤ n−1. As n is odd, the n vertices and also the n hyperarcs of the dicycle are
all different. Therefore C is a complete Berge dicycle in GBH(d, n, d, n).

Corollary 3. If n is odd and d ≥ 3, then there is a complete Berge dicycle C
in GBH(d, n, d, n).

Corollary 4. If n is a power of 3 and d = 2, then there is a complete Berge
dicycle C in GBH(2, n, 2, n).

In the same way, we can prove that, if GB(d, n) is Hamiltonian and n is odd,
then there is a complete Berge dicycle in GBH(d, n, d, n). However, even if it
would have given the result for GBH(d, n, d, n) with n odd and d ≥ 3, it would
have not been enough to conclude for the case d = 2 and n a power of 3. In
that case, the proof of Lemma 5 plus the fact that, by [28], σ : i→ −2i− 1 is a
Hamiltonian dicycle in GK(2, n), gives the following complete Berge dicycle C
in GBH(2, n, 2, n) (by renaming the edges with the standard definition). In C,
vertex i precedes the hyperarc E2i, and hyperarc Ej precedes the vertex 2j+ 1.
Thus, C contains as consecutive vertices i and 4i+1. Figure 1 shows the dicycle
0, E0, 1, E2, 5, E1, 3, E6, 4, E8, 8, E7, 6, E3, 7, E5, 2, E4, 0, that is obtained in this
way for n = 9 (with dotted red arcs).

6.5 Case d = s = 2

Theorem 31 and Corollary 4 show that there exists a complete Berge dicycle in
GBH(2, n, 2, n) when n is even, or {n is odd and n is a power of 3}. We still
have to prove there is no complete Berge dicycle in the remaining cases. For
that, we need to use the Euler function, in the spirit of the proof of [28].

23



Definition 13. The Euler function, denoted by ϕ, associates to a positive inte-
ger n, the number ϕ(n) of positive integers that are lower than n and relatively
prime to n.

The Euler function satisfies the following properties (the three first ones are
immediate consequences of the definition and the fourth one is known as Euler’s
theorem):

1. ϕ(1) = 1;

2. If p is a prime number and m ≥ 1, then ϕ(pm) = (p− 1)pm−1;

3. If a and b are relatively prime, then ϕ(ab) = ϕ(a)ϕ(b);

4. If a and b are relatively prime, then aϕ(b) ≡ 1 (mod b).

Lemma 6. If n is odd, then there is a complete Berge dicycle in GBH(2, n, 2, n)
if, and only if, n is a power of 3.

Proof. Let us suppose that there is a complete Berge dicycle C inGBH(2, n, 2, n).
We distinguish two cases: either there exists a vertex i, such that i precedes in
C the hyperarc E2i and we will show this holds for all the vertices; or any vertex
i precedes in C the hyperarc E2i+1. To prove this claim, consider that some
vertex i precedes E2i in C. Since gcd (2, n) = 1, we have that 2 is invertible in
Zn. Thus, i′ = i − 2−1 cannot precede E2i′+1, as 2i′ + 1 = 2i. So, i′ precedes
E2i′ too. Consequently, since 2−1 is a generator element of Zn, any vertex i
precedes in C the hyperarc E2i.

Similarly, we can prove that either every hyperarc Ej in C precedes the
vertex 2j, or every hyperarc Ej in C precedes the vertex 2j+1. Therefore, if we
consider only the vertices of the dicycle C and we denote by σ(i) the successor
of i in C, we have exactly four possibilities for σ, namely: σk(i) = 4i + k with
0 ≤ k ≤ 3.

Since 4 · 0 = 0, the solution k = 0 does not generate a complete Berge
dicycle. Furthermore, if gcd (n, 3) = 1 the equation σk(i) ≡ i ⇐⇒ 4i + k ≡ i
⇐⇒ 3i ≡ −k, has always a solution for 1 ≤ k ≤ 3. Therefore, none of the other
values of k works, when gcd (n, 3) = 1.

It remains to consider the case n = c3p, p ≥ 1 and gcd (3, c) = 1. By

induction, we have that σhk (0) =
k(4h − 1)

3
(mod n).

Let ϕ be the Euler function; by Properties 2 and 3, ϕ(n) = ϕ(c)ϕ(3p) =
2ϕ(c)3p−1. Since gcd(n, 2) = 1, then, by Property 4, 2ϕ(n) ≡ 1 (mod n). There-

fore, 4ϕ(c)3
p−1

≡ 1 (mod n) and, since ϕ(c)3p−1 < n, σ3 never generates a
complete Berge dicycle either.

Moreover, since 2 is invertible in Zn, then we also know that σ2 generates
a complete Berge dicycle if, and only if, this is also the case for solution σ1.
Actually, when we choose σ1, we choose σ2 in the dual, and reciprocally. So,
let us concentrate now on σ1. The equation σh1 (0) = σh

′

1 (0) is equivalent to

4h ≡ 4h
′

(mod 3n). Again, Property 4 of Euler’s function implies that 4ϕ(c)3
p

≡
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1 (mod 3n). But the only value of c such that ϕ(c) = c is c = 1. Therefore, if
n is not a power of 3, σ1 and σ2 do not generate a complete Berge dicycle.

This proof for d = 2 and n odd could be shortened using the characterization
of the Hamiltonian Consecutive-1 digraphs. Indeed, we prove there are only four
possibilities for having a complete Berge dicycle in GBH(2, n, 2, n). In the orig-
inal proof, we deal with them as applications σk of Zn, for 0 ≤ k ≤ 3. But these
four solutions are also equivalent to some Consecutive-1 digraphs. They cor-
respond, respectively, to the relations of incidence in G(1, n, 4, 0), G(1, n, 4, 1),
G(1, n, 4, 2) and G(1, n, 4, 3). Then, deciding whether one of these four solutions
generate a complete Berge dicycle is the same thing as deciding whether one of
these four Consecutive-1 digraphs is a Hamiltonian digraph. Furthermore, by
Theorem 17, we know whether one of those digraphs is Hamiltonian, depending
on the value of n. For all n, G(1, n, 4, 0) and G(1, n, 4, 3) are never Hamilto-
nian. Moreover, G(1, n, 4, 1) and G(1, n, 4, 2) are Hamiltonian if, and only if, n
is a power of 3. Since the Hamiltonicity of at least one of these digraphs is a
necessary and sufficient condition for H = GBH(2, n, 2, n) to have a complete
Berge dicycle, then there is a complete Berge dicycle in H if, and only if, n is a
power of 3.

6.6 Case d = s = 3

To finish the proof, it remains to deal with the case n even, d = s = 3 and n and
d relatively prime. Note that, for d = 3, we do not know when the Consecutive-3
digraph G(3, n, 9, 0) is Hamiltonian, and so, we cannot use the same proof as in
Lemma 4. We will use a method, introduced in [28], that is different from the
previous ones. This method enables us to merge two disjoint dicycles of R(H)
into one dicycle.

Definition 14. Let C1, C2 be two dicycles, that are subdigraphs of the same
digraph D. A pair {x1, x2} with x1 ∈ C1 and x2 ∈ C2 is called an interchange
pair if the predecessor y1 of x1 in C1 is incident to x2 in D, and the predecessor
y2 of x2 in C2 is incident to x1 in D too.

If {x1, x2} is an interchange pair, then we can build a dicycle containing
all the vertices of C1 ∪ C2 by deleting (y1, x1) and (y2, x2) and adding the arcs
(y1, x2) and (y2, x1).

Lemma 7. If n is even and n and 3 are relatively prime, then there is a complete
Berge dicycle in GBH(3, n, 3, n).

Proof. Let R be the bipartite representation digraph of GBH(3, n, 3, n). To
every vertex i we associate the hyperarc E3i+1 and, similarly, to every hyperarc
Ej we associate the vertex 3j + 1. Since gcd (n, 3) = 1, the digraph R is
partitioned into pairwise vertex-disjoint dicycles. If there is only one dicycle in
this partition, we are done as it is Hamiltonian. Otherwise, we use interchange
pairs to merge successively the dicycles till we have only one. But we have to
be careful to do independent interchanges.
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Figure 4 shows an example for the case n = 8, where we obtain the 4 dicycles:
C0 = (0, E1, 4, E5), C1 = (1, E4, 5, E0), C2 = (2, E7, 6, E3), C3 = (3, E2, 7, E6).

1 5

0

4

3

7

2 6

Figure 4: An application of the link-interchange method to the de Bruijn dihy-
pergraph GBH(3, 8, 3, 8).

We first claim that, if i and i+ 1 belong to two disjoint dicycles C1 and C2,
then {i, i + 1} is an interchange pair. Indeed, let Ej be the predecessor of i in
C1 and Ej′ the predecessor of i + 1 in C2. By construction, 3j + 1 = i and

3j′ + 1 = i+ 1. Consequently, 3j + 2 = i+ 1 and so there is an arc from Ej to
i+ 1. We also have 3j′ = i and so there is an arc from E′j to i. Therefore, the
claim is proved. For n = 8, {0, 1} is an interchange pair and we can merge C0

and C1 by deleting the arcs (E5, 0) and (E0, 1) (in dashed blue in Figure 4) and
adding the arcs (E5, 1) and (E0, 0) (in blue).

Similarly, we have that if Ej and Ej+1 belong to two disjoint dicycles then
{Ej , Ej+1} is an interchange pair. We have to be careful not to use twice the
same vertex in an interchange pair, as the predecessor has changed when doing
the first merging. Here we will use only some interchange pairs of the form
{2i, 2i + 1} and {E2j+1, E2j+2}, which are pairwise independent because n is
even.

We proceed as follows: if there exists an i such that 2i and 2i+ 1 belong to
different dicycles we merge these dicycles using the interchange pair {2i, 2i+1}.
After at most n/2 merge operations, we get a set of disjoint dicycles such that,
for all i, 2i and 2i + 1 belong to the same dicycle. In the example for n = 8,
we merge C0 and C1 using the interchange pair {0, 1} and C2 and C3 using the
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interchange pair {2, 3} (see Figure 4). We now have 2 dicycles.
Then, consider two vertices of the form 2i and 2(i+3−1). Suppose that they

belong to two different dicycles C1 and C2. The vertex 2i+ 1, which is also in
C1 precedes the hyperarc E6i+4 in C1 and the vertex 2(i+ 3−1) precedes E6i+3

in C2. Moreover, we claim that {E6i+3, E6i+4} is an admissible interchange pair
that we can use to merge the two dicycles, because 6i + 3 is odd whereas n is
even, and so, 6i+ 3 (mod n) is odd. Finally, since 3 and n are relatively prime,
3−1 is a generator element in Zn and so we can consider successively the possible
i such that 2i and 2(i+ 3−1) belong to two different dicycles and merge all the
dicycles.

Observe that for the example in Figure 4, when n = 8, we have that 3−1 = 3.
We now use the construction for i = 0. Vertices 0 and 6 are in two different
dicycles, and {E3, E4} is an admissible interchange pair. So we can merge the
two dicycles by deleting the arcs (6, E3) and (1, E0) (in dashed red in Figure 4)
and adding the arcs (1, E3) and (6, E4) (in red) to get the final complete Berge
dicycle C = 0, E1, 4, E5, 1, E3, 3, E2, 7, E6, 2, E7, 6, E4, 5, E0, 0.

6.7 Complete Berge dicycles in Kautz Dihypergraphs

The Kautz dihypergraphGKH(d, n, d, n) is close to the dihypergraphGBH(d, n, d, n),
but the existence of complete Berge dicycles in it is much harder to prove due
to its asymmetry. Indeed, the relations of incidence from its vertices to the
hyperarcs are not the same as the relations of incidence from its hyperarcs to
the vertices.

Nonetheless, we have been able to show the existence of complete Berge
dicycles in GKH(d, n, d, n) for some particular values of (d, n). Remark that
R(GKH(d, n, d, n)) is isomorphic to the bipartite digraph BD(d, n) (see [39]).
The proof of the following theorem uses the same tools as for GBH(d, n, d, n)
and can be found in [25]

Theorem 33. Let H = GKH(d, n, d, n) be a Kautz dihypergraph. There is a
complete Berge dicycle in H if one of the following conditions is verified:

1. d ≥ 4;

2. d = 3 and n is even;

3. d = 2 and n is even or n is a power of 5 (otherwise it does not exist);

4. d = 1 and n ∈ {1, 2} (otherwise it does not exist).

We also have the following conjecture concerning complete Berge dicycles in
GKH(d, n, d, n):

Conjecture 34. Let H = GKH(d, n, d, n) be a Kautz dihypergraph. If d ≥ 3,
then there is a complete Berge dicycle in H.
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7 Conclusions

In this paper, we showed that it is an NP-complete problem to decide whether
a dihypergraph is Eulerian (or Hamiltonian). We presented a generalization
of some results concerning Eulerian digraphs, in the case where the studied
dihypergraphs are uniform and regular. Then, we studied the Eulerian and
Hamiltonian properties of generalized de Bruijn and Kautz dihypergraphs.

We let as open questions Conjectures 29 and 34. It would also be nice to find
a relationship between Theorems 20 and 30, since both have similar conditions
and different implications.
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