S. L. Price, A. Stone, J. Price, S. L. Stone, A. et al., A six-site intermolecular potential scheme for the azabenzene molecules, derived by crystal structure analysis, Molecular Physics, vol.8, issue.3, p.569, 1984.
DOI : 10.1080/00268978400100401

G. Karlstrom, P. Linse, A. Wallqvist, and B. Jonsson, Intermolecular potentials for the water-benzene and the benzene-benzene systems calculated in an ab initio SCFCI approximation, Journal of the American Chemical Society, vol.105, issue.12, p.3777, 1983.
DOI : 10.1021/ja00350a004

R. Best, C. Wu, J. W. Ponder, P. Ren, P. Claverie et al., CNRS library number A.O. 8214. (c) Claverie, P, J. Chem. Theory Comput.Localization and Delocalization in Quantum Chemistry, issue.9 18, p.4046, 1970.

A. Pullman, C. Zarkzewska, and D. Perahia, Molecular electrostatic potential of the B-DNA helix. I. Region of the guanine-cytosine base pair, International Journal of Quantum Chemistry, vol.45, issue.2, p.395, 1979.
DOI : 10.1002/qua.560160219

A. Pullman, D. Perahia, and . Theoret, Chim. Acta, 1979, 50, 351; c) Perahia, D

B. Pullman, . Theoret, and . Chim, Acta 1979, 51, 349; d) Pullman, B.; Perahia, D.; Cauchy, D, Nucleic Acids Res, vol.10, p.3821, 1979.

R. Lavery, A. Pullman, B. Pullman, and M. De-oliveria, . IV. The potentials and steric accessibilities of sites associated with the bases, Nucleic Acids Research, vol.8, issue.21, p.5095, 1980.
DOI : 10.1093/nar/8.21.5095

A. Stone, 233. b) Stone A, J. Chem. Phys. Lett. J.; Alderton, M. Mol. Phys, vol.83, issue.56, p.1047, 1981.

G. Karlstrom, P. Linse, A. Wallqvist, and B. Jonsson, Intermolecular potentials for the water-benzene and the benzene-benzene systems calculated in an ab initio SCFCI approximation, Journal of the American Chemical Society, vol.105, issue.12, p.3777, 1983.
DOI : 10.1021/ja00350a004

M. Andersson and G. Karlstrom, Conformational structure of 1,2-dimethoxyethane in water and other dipolar solvents, studied by quantum chemical, reaction field, and statistical mechanical techniques, The Journal of Physical Chemistry, vol.89, issue.23, p.4957, 1985.
DOI : 10.1021/j100269a014

. Chem, 24, 997; b) Chipot, C.; Angyan, J. H. New J. Chem, p.29, 2003.

M. Freitag, M. S. Gordon, J. H. Jensen, and W. J. Stevens, Evaluation of charge penetration between distributed multipolar expansions, The Journal of Chemical Physics, vol.112, issue.17, p.7300, 2000.
DOI : 10.1063/1.481370

D. R. Garmer, W. J. Stevens, M. Leboeuf, and D. R. Salahub, 93, 8263. 36. a) Gresh, Modeling the Hydrogen Bond, 1989.

J. N. Murrell and J. J. Teixeira-dias, The dependence of exchange energy on orbital overlap, Molecular Physics, vol.26, issue.4, p.521, 1970.
DOI : 10.1063/1.1748100

W. J. Stevens and W. Fink, Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer, Chemical Physics Letters, vol.139, issue.1, p.15, 1987.
DOI : 10.1016/0009-2614(87)80143-4

N. Gresh, Energetics of Zn2+ binding to a series of biologically relevant ligands: A molecular mechanics investigation grounded onab initio self-consistent field supermolecular computations, Journal of Computational Chemistry, vol.155, issue.7, p.856, 1995.
DOI : 10.1002/jcc.540160705

T. Clark, M. Hennemann, J. S. Murray, and P. Politzer, Halogen bonding: the ??-hole, Journal of Molecular Modeling, vol.23, issue.2, p.291, 2007.
DOI : 10.1007/s00894-006-0130-2

. Chem, P. J. Theory-comput-hobza, and . Chem, DOI: 10, 1021.

G. Tiraboschi, B. P. Roques, and N. Gresh, Joint quantum chemical and polarizable molecular mechanics investigation of formate complexes with penta- and hexahydrated Zn2+: Comparison between energetics of model bidentate, monodentate, and through-water Zn2+ binding modes and evaluation of nonadditivity effects, Journal of Computational Chemistry, vol.3, issue.13, p.1379, 1999.
DOI : 10.1002/(SICI)1096-987X(199910)20:13<1379::AID-JCC5>3.0.CO;2-0

H. Guo, N. Gresh, B. P. Roques, and D. R. Salahub, Many-Body Effects in Systems of Peptide Hydrogen-Bonded Networks and Their Contributions to Ligand Binding:?? A Comparison of the Performances of DFT and Polarizable Molecular Mechanics, The Journal of Physical Chemistry B, vol.104, issue.41, p.9746, 2000.
DOI : 10.1021/jp0012247

M. D. Beachy, D. Chasman, R. B. Murphy, T. A. Halgren, and R. A. Friesner, Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields, Journal of the American Chemical Society, vol.119, issue.25, p.5908, 1997.
DOI : 10.1021/ja962310g

N. Gresh, S. A. Kafafi, J. Truchon, and D. R. Salahub, HF/MP2, DFT, and polarizable molecular mechanics study, Journal of Computational Chemistry, vol.11, issue.6, p.823, 2004.
DOI : 10.1002/jcc.20012

F. Rogalewicz, N. Gresh, and G. Ohanessian, Interaction of neutral and zwitterionic glycine with Zn2+ in gas phase:ab initio and SIBFA molecular mechanics calculations, Journal of Computational Chemistry, vol.63, issue.11, p.963, 2000.
DOI : 10.1002/1096-987X(200008)21:11<963::AID-JCC6>3.0.CO;2-3

URL : https://hal.archives-ouvertes.fr/hal-00904630

C. H. Faerman and S. L. Price, A transferable distributed multipole model for the electrostatic interactions of peptides and amides, Journal of the American Chemical Society, vol.112, issue.12, p.4915, 1990.
DOI : 10.1021/ja00168a043

B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, vol.371, issue.6499, p.683, 1994.
DOI : 10.1038/371683a0

G. A. Evangelakis, J. P. Rizos, I. E. Lagaris, I. N. Demetropoulos, . Comput et al., 78 a) Zheng, J.; Yu, T Phys Chem Chem Phys J .Comput Chem, vol.46, issue.26, p.1579, 1987.

S. Hare, S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, Retroviral intasome assembly and inhibition of DNA strand transfer, Nature, vol.25, issue.7286, p.232, 2010.
DOI : 10.1038/nature08784

E. Hage, K. Piquemal, J. Hobaika, Z. Maroun, R. G. Gresh et al., Could the ???Janus-like??? properties of the halobenzene CX bond (X???Cl, Br) be leveraged to enhance molecular recognition?, Journal of Computational Chemistry, vol.34, issue.4, p.210, 2015.
DOI : 10.1002/jcc.23786

E. Hage, K. Piquemal, J. Hobaika, Z. Maroun, R. G. Gresh et al., Substituent-Modulated Affinities of Halobenzene Derivatives to the HIV-1 Integrase Recognition Site. Analyses of the Interaction Energies by Parallel Quantum Chemical and Polarizable Molecular Mechanics, The Journal of Physical Chemistry A, vol.118, issue.41, p.9772, 2014.
DOI : 10.1021/jp5079899

K. Kitaura and K. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, International Journal of Quantum Chemistry, vol.97, issue.2, p.325, 1976.
DOI : 10.1002/qua.560100211

A. Glasauer, L. A. Sena, L. P. Diebold, A. P. Chandell, and N. S. , Targeting SOD1 reduces experimental non???small-cell lung cancer, Journal of Clinical Investigation, vol.124, issue.1, p.117, 2014.
DOI : 10.1172/JCI71714DS1

D. Lietha, X. Cai, D. F. Ceccarelli, Y. Li, M. D. Schaller et al., Structural Basis for the Autoinhibition of Focal Adhesion Kinase, Cell, vol.129, issue.6, p.1177, 2007.
DOI : 10.1016/j.cell.2007.05.041

B. De-courcy, J. Piquemal, C. Garbay, and N. Gresh, Polarizable Water Molecules in Ligand???Macromolecule Recognition. Impact on the Relative Affinities of Competing Pyrrolopyrimidine Inhibitors for FAK Kinase, Journal of the American Chemical Society, vol.132, issue.10, p.3312, 2010.
DOI : 10.1021/ja9059156

URL : https://hal.archives-ouvertes.fr/hal-00494585

D. Jiao, P. A. Golubkov, T. A. Darden, and P. Ren, Calculation of protein-ligand binding free energy by using a polarizable potential, Proceedings of the National Academy of Sciences, vol.105, issue.17, p.6290, 2008.
DOI : 10.1073/pnas.0711686105

C. Roux, N. Gresh, L. E. Perera, J. Piquemal, and L. Salmon, Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase fromCandida albicans studied by polarizable molecular mechanics and quantum mechanics, Journal of Computational Chemistry, vol.104, issue.5, p.938, 2007.
DOI : 10.1002/jcc.20586

T. H. Dunning, 90, 1007; b) Feller, D, J. Chem. Phys. J. Comput. Chem. J. M. Comp. Phys. Comm, vol.107, issue.102, p.252, 1571.

R. Chaudret, N. Gresh, C. Narth, L. Lagardere, T. A. Darden et al., S/G-1: An ab Initio Force-Field Blending Frozen Hermite Gaussian Densities and Distributed Multipoles. Proof of Concept and First Applications to Metal Cations, The Journal of Physical Chemistry A, vol.118, issue.35, p.7598, 2014.
DOI : 10.1021/jp5051657

URL : https://hal.archives-ouvertes.fr/hal-01287208

P. Nicolini, D. Frezzato, C. Gellini, M. Bizzarri, and R. Chelli, Toward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: A steered molecular dynamics simulation route, Journal of Computational Chemistry, vol.7, issue.18, p.1561, 2013.
DOI : 10.1002/jcc.23286

N. Gresh and J. Sponer, 103, 11415; b) Gresh, J. Phys. Chem. B. N.; Sponer, J. E, 1999.