HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

On infinitude of primes

Abstract : Let $K (>1)$ and $k (>1)$ be given integers. In this paper we prove that $e_K(q)\equiv0 \mod k^{[m]}$ for infinitely many primes $q$, where $m=c_k\log\log q$ for a certain $c_k>0$ and $e_K(q)$ denotes the exponent of $K$ modulo $q$. In particular, $q\equiv1 \mod k$ for infinitely many primes $q$.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01104356
Contributor : Ariane Rolland Connect in order to contact the contributor
Submitted on : Friday, January 16, 2015 - 3:40:15 PM
Last modification on : Monday, March 28, 2022 - 8:14:08 AM
Long-term archiving on: : Friday, September 11, 2015 - 6:58:59 AM

File

7Article5.pdf
Explicit agreement for this submission

Identifiers

Collections

Citation

S Srinivasan. On infinitude of primes. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1984, Volume 7 - 1984, pp.21 - 26. ⟨10.46298/hrj.1984.112⟩. ⟨hal-01104356⟩

Share

Metrics

Record views

42

Files downloads

346