Skip to Main content Skip to Navigation
Journal articles

On a question of Ramachandra

Abstract : For each positive integer $k$, let $$a_k(n)=(\sum_p p^{-s})^k=\sum_{n=1}^{\infty} a_k(n)n^{-s},$$ where $\sigma={\rm Re}(s)>1$, and the sum on the left runs over all primes $p$. This paper is devoted to proving the following theorem: If $1/2<\sigma<1$, then $$\max_k(\sum_{n\leq N} a_k(n)^2n^{-2\sigma})^{1/2k}\approx (\log N)^{1-\sigma}/\log\log N$$ and $$(\sum_{n=1}^{\infty} a_k(n)^2n^{-2\sigma})^{1/2k} \approx k^{1-\sigma}/(\log k)^{\sigma}.$$ The constants implied by the $\approx$ sign may depend upon $\sigma$. This theorem has applications to the Riemann zeta function.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01104228
Contributor : Ariane Rolland Connect in order to contact the contributor
Submitted on : Friday, January 16, 2015 - 1:42:50 PM
Last modification on : Thursday, May 7, 2020 - 10:30:04 AM
Long-term archiving on: : Saturday, September 12, 2015 - 6:29:58 AM

File

5Article2.pdf
Explicit agreement for this submission

Identifiers

  • HAL Id : hal-01104228, version 1

Collections

`

Citation

Hugh L Montgomery. On a question of Ramachandra. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1982, 5, pp.31 - 36. ⟨hal-01104228⟩

Share

Metrics

Record views

175

Files downloads

679