Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns

Gaurav Sharma 1, 2 Frédéric Jurie 1
1 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : We propose a new image representation for texture categorization and facial analysis, relying on the use of higher-order local differential statistics as features. It has been recently shown that small local pixel pattern distributions can be highly discriminative while being extremely efficient to compute, which is in contrast to the models based on the global structure of images. Motivated by such works, we propose to use higher-order statistics of local non-binarized pixel patterns for the image description. The proposed model does not require either (i) user specified quantization of the space (of pixel patterns) or (ii) any heuristics for discarding low occupancy volumes of the space. We propose to use a data driven soft quantization of the space, with parametric mixture models, combined with higher-order statistics, based on Fisher scores. We demonstrate that this leads to a more expressive representation which, when combined with discriminatively learned classifiers and metrics, achieves state-of-the-art performance on challenging texture and facial analysis datasets, in low complexity setup. Further, it is complementary to higher complexity features and when combined with them improves performance.
Type de document :
Pré-publication, Document de travail
Accepted for publication in International Journal of Computer Vision and Image Understanding (CVIU). 2015
Liste complète des métadonnées

Littérature citée [67 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01104221
Contributeur : Gaurav Sharma <>
Soumis le : vendredi 2 octobre 2015 - 11:29:26
Dernière modification le : jeudi 20 septembre 2018 - 07:54:02
Document(s) archivé(s) le : dimanche 3 janvier 2016 - 10:41:37

Fichier

sharma_lhs_cviu.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Gaurav Sharma, Frédéric Jurie. Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns. Accepted for publication in International Journal of Computer Vision and Image Understanding (CVIU). 2015. 〈hal-01104221v4〉

Partager

Métriques

Consultations de la notice

421

Téléchargements de fichiers

102