Propagation of epileptic spikes revealed by diffusion-based constrained MEG source reconstruction

AC Philippe(1), T Papadopoulos(1), C. Bénar(2), JM. Badier(2), M Clerc(1), R Deriche(1)

(1) Athena Project-Team, INRIA, Sophia Antipolis - Méditerrannée, France
(2) INSERM, UMR 751, Marseille, France

Goal: Study of the propagation of an epileptict spike.

Method: 1- cortex parcellation via structural information coming from diffusion MRI (dMRI)
2- MEG inverse problem on a parcellated source space
3- study of the propagation of an epileptic spike via the active parcels

Results on real data allowing to study the spatial propagation of an epileptic spike.

Preprocessing
1- Co-registration of the T1wMRI and dMRI
2- Surface meshes extraction
3- Computation of the leadfield matrix G

Surface meshes extraction
Computation of the leadfield matrix G
Co-registration of the T1wMRI and dMRI
Pre-clustering via Brodmann's atlas

5.1- Computation of the CP-based correlation matrix R
5.2- K-means algorithm on R

Study of the propagation of an epileptic spike

At each time sample, we want to determine the cortical areas at the origin of the activity. We call \(\mathcal{A}_t \) the set of these areas, for a time sample \(t \).

For each time sample \(t \), we compute the power \(\mathcal{P}_{p,t} \) of each area \(p \) on a sliding time window \([t - \alpha, t + \alpha] \):

\[
\mathcal{P}_{p,t} = \frac{1}{2} \sum_{i=t-\alpha}^{t+\alpha} |s(p,i)|^2.
\]

\(\mathcal{A}_t = \{ p_a : \mathcal{P}_{p_a,t} > F \times \max(\mathcal{P}_{p,t}), \forall p \} \)

with \(F \) a percentage.

Results & Conclusion

- Almost the same parcels are activated for all epileptic spikes.
- The direction of propagation changes: from the back of the frontal lobe to the front or opposite direction.
- The time of activation of each parcel characterizes the spike.

Results on 3 epileptic spikes of a single subject.

- The parcellation allows an easier representation of source space.
- The method reveals differences between spikes (direction of propagation and time of activation of parcels).
- Future works will be to analyse the structural network supporting the propagation.

The authors acknowledge support from the ANR grant ViMAGINE, the Regional Council of Provence Alpes Cote d‘Azur and the INRIA associate team BrainConnectivites