Statistical inversion method for binary asteroids orbit determination
Irina Kovalenko, Daniel Hestroffer, A. Doressoundiram, Nicolai Emelyanov, Radu Stoica

To cite this version:
Irina Kovalenko, Daniel Hestroffer, A. Doressoundiram, Nicolai Emelyanov, Radu Stoica. Statistical inversion method for binary asteroids orbit determination. Journées systèmes de référence spatio-temporels, Sep 2014, St Petersburg, Russia. hal-01103904

HAL Id: hal-01103904
https://hal.archives-ouvertes.fr/hal-01103904
Submitted on 15 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
We focus on the study of binary asteroids, which are common in the Solar system from its inner to its outer regions. These objects provide fundamental physical parameters such as mass and density, and hence clues on the early Solar System, or other processes that are affecting asteroid over time. The present method of orbit computation for resolved binaries is based on Markov Chain Monte-Carlo statistical inversion technique. Particularly, we use the Metropolis-Hasting algorithm with Thiele-Innes equation for sampling the orbital elements and system mass through the sampling of observations. The method requires a minimum of four observations, made at the same tangent plane; it is of particular interest for orbit determination over short arcs or with sparse data. The observations are sampled within their observational errors with an assumed distribution. The sampling yields the whole region of possible orbits, including the one that is most probable.

Orbit determination

The astrometric observations are related to the theoretical positions through the observational equation:

\[\varphi = \psi(X) + \epsilon \]

\[p(X|\varphi) = \frac{p(\varphi|X)p(X)}{p(\varphi)} \]

- Observations: \(\varphi = (\rho_1, \theta_1; \cdots; \rho_N, \theta_N) \)
- Sky-plane position: \(\psi(X) \)
- Orbital elements + system’s mass: \(X = (a, e, i, \Omega, \omega, M, m_{\text{sys}}) \)
- Observational errors: \(\epsilon = (\epsilon_{a1}, \epsilon_{e1}; \cdots; \epsilon_{aN}, \epsilon_{eN}) \)

\[p(X|\varphi) \propto p(\varphi|X)p(X) \]

Where

\[p(X) \propto \sqrt{\det \Lambda^{-1}} \]

\[p(\varphi|X) = p_c(\text{observational error p.d.f.}) = \exp\left[-\frac{1}{2} (\varphi - \psi(X))^T \Lambda^{-1} (\varphi - \psi(X)) \right] \]

\[\Lambda = J \cdot J^T \]

The algorithm is run for a large number of iterations until the entire possible orbital-element space is mapped.

Markov Chain Monte-Carlo method

The Metropolis–Hasting algorithm will be used for sampling the parameters \(X \).

\[S = (\rho_1, \theta_1; \rho_2, \theta_2; \rho_3, \theta_3; \rho_4) \]

Select a random set of 4 observations

For each \(t \) iteration:

- \(S' \) - proposal set of observations
- \(S^* \) - last accepted set of observations

\[p_t(S'|S^*) \text{ - proposal density}\]

\[\alpha' \propto G(a_i', \sigma(a_i)), \delta_i' \propto G(\delta_i', \sigma(\delta)) \]

Orbit \(X' \) - monitor the fit to all observations

Acceptance criteria

\[a = p(X'|\varphi)|J'| \]

\[[2] \text{ and } J' \text{ - the determinants of Jacobians from coordinates to orbital parameters } J = \det \frac{\partial \varphi}{\partial X} \]

If \(\alpha \geq 1 \)

\[X^{t+1} = X' \]

If \(\alpha < 1 \)

\[X^{t+1} = X', \text{ with probability } \alpha \]

or

\[X^{t+1} = X^t, \text{ with probability } 1 - \alpha \]

This process is repeated until the stationary a posteriori density is reached.

References

1. R. Palacios 1958 AJ 63, 395 2) D. Oszkiewicz et al. 2013 ,SF2A 237

Acknowledgements

This work is supported by the Labex ESEP (ANR N° 2011-LABX-030).