Hamiltonicity of large generalized de Bruijn cycles

Guillaume Ducoffe 1
1 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : In this article, we determine when the large generalized de Bruijn cycles BGC(p, d, n) are Hamiltonian. These digraphs have been introduced by Gómez, Padró and Pérennes as large interconnection networks with small diameter and they are a family of generalized p-cycles. They are the Kronecker product of the generalized de Bruijn digraph GB(d, n) and the dicycle of length p, where GB(d, n) is the digraph whose vertices are labeled with the integers modulo n such that there is an arc from vertex i to vertex j if, and only if, j ≡ di + α (mod n), for every α with 0 ≤ α ≤ d − 1.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [15 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01103786
Contributor : Guillaume Ducoffe <>
Submitted on : Thursday, January 15, 2015 - 1:52:07 PM
Last modification on : Thursday, February 7, 2019 - 2:51:38 PM
Document(s) archivé(s) le : Friday, September 11, 2015 - 6:50:21 AM

File

Hamiltonfinal.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Guillaume Ducoffe. Hamiltonicity of large generalized de Bruijn cycles. Discrete Applied Mathematics, Elsevier, 2013, 161, pp.2200 - 2204. ⟨10.1016/j.dam.2013.02.027⟩. ⟨hal-01103786⟩

Share

Metrics

Record views

207

Files downloads

218