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SOME REMARKS ON THE MEAN VALUE OF
THE RIEMANN ZETA-FUNCTION AND
- OTHER DIRICHLET SERIES—1 -

By K. RAMACHANDRA

$ .  Introduction

‘In the last section of my paper [2], I raised ‘some
questions on the mean value of generalised Dirichlet series. It
looks too ambmous unless we limit ourselves to Dirichlet

series F(s) = z la. n-s (s =0+ it) and that too with some
==
restrictions. © We do not claim to solve all the problems raised.
Let F () be convergent absolutely somewhere in the complex
plane and let F(s) admit an analytic conatinuation in
o>%,t> 1, and there F(s)=O(t*). If o, is large
enough, F(s) is zero free in ¢ > o, and we define (F(s))%
(for any positive real number 2k) as the analytic continuation
of (F(s))* (¢ > o,) along lines parallel to the real axis.
(If such lines contain a zero of F (s) we do not define (F (s) )2
on such lines). Let 3 be a positive constant not exceeding v
and m a non-negative integer. Let T > T;(3) be a real

variable and H a real variable subject to (log T) R <HLT.
Imposing the conditions & < 2k <3~ and 0 <m < & we
define for 0 > §,

m

1 . (rHH
0@ =5 [ | g F D™

Our main problem is to study lower bounds for Q (¢). The
only known progress so far, in this direction is a theorem of
Ingham which gives for fixed ¢ > } and fixed 2k (0 < 2k < 4,
m = 0) an asymptotic formula for Q (¢) in the special case
F(s) = { (s), H= T. Ingham’s proof was complicated and
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Davenport gave a simpler proof of Ingham’s Theorem (fo.
references see [ 5]). Our first object in this note is to give in
$ 3, a satxsfactory lower bound for max Q (0) as @ runs ovef
all real numbers =1+ l“‘l‘;g“"ﬁ—*. However our proof of
lower bound depends very much on the existence of an “*Euler
product” for F(s). (The Euler product condition is general
enough to include the case when F (s) is the zeta-function and
Hecke L-series of algebraic number fields). From such a
theorem we can also get satisfactory lower bounds for Q (}) as
will be seen. Two simple samples of our general results
(subject to the condition 2k > 1) are

: (T+H , 2k k2 A -c
® g fT L@+ 1 dt>(logH) (log logH)
T+H -C

(**) T f . |t’(}+zt)|dt>(log H) (log log H)

where C is a constant depending only on 8, " Our next object
is to deal (in § 4 and § 5) with the case when F (s) has no
Euler product. Here we are forced, for lack of better ideas, to
limit eurselves to the case 2k = 1. To compensate for the
generality the lower bounds we obtain for Q (¢).are not so
satisfactory, but they are still, I hope, of some interest.

The problem of upper bounds for Q (¢) seems hopelessly
difficult. Even with the assumption of Riemann hypothesis j§ -
is not clear how to 1mprove the trivial inequality

2T
™ ?fr IT@+in1d = 0((logT)*).

Foot-Note : The publication of this paper which was ready
by the middle of 1977 was delayed due to
various reasons. In the meanwhile I have

1
replaced (log logH)-¢ in (*) and (**) by ek

Next I have replaced O ( (log T)Y) by O ( (logT))
in (**%) uncond'rtionally ' These (and other)
results will appear in papers Il and iII with
the same title as the present paper.



MEAN VALUE OF THE RIEMANN ZETA-FUNCTION 3

- Acknowledgements

I am thankful to Professors A. Baker and D, R. Heath-
Brown for.their interest in this work. Section..§ 5 is almost
completely due to the ideas of my colleague Dr, R. Balasubra-
manian and my thanks are due to him for allowing” me for
incorporating ghe. r;gplts. of §5. Finally I am thankful to
Dr. R.R. Simha for drawing my attention to a result on -
:subharmenic functions which was useful.

§ 2, \NotatIOn

The letter C with or without subscripts denotes a positive
constant depending only on ¥ The letter K with or thhout
¥ubscripts denotes constants to be chosen later appropnately
in a proof. Also the constaut C may not be the same at each ‘
occurrence.

§ 3. The case of Euler product -
Let ine>1, F(s) Be defined by
F(s) = (1 (p) )—a,

where { x (p) } and {ap} are bounded sequences of complex

(p runs over all.primes)

numbers, and tx(p) | <p i for every prime p. We assume
énther of the following condmons on F ). '

(i) There exists a constant po such that whenever a, # 0
and p > p, we have | a | > a, whereais a posmve constaant.
Cx | x(p))®

pl
m 92 > ] can be contmued analytlcally in a nexghbourhood of
§ = l and has a simple pole at s = 1.

1apl
Further the function o« (1 - ) * which is analytnc

||
(i) Suppose thataso > + 0, (« (1 L ) % ))

(v — 3)- -l1es petween (Log *‘*—-) and (log i)

where a > 0 and b ., By are three real constants.
We can now state

)
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Theorem |

With the notation explained already,

-c
max 0 (9)>(log H)""""'l (log log H)
0 log log H
log H

where C is a positive constant, and m, == m or min (m, 1)
according as we have (ii) or (i).

As a corollary we can deduce the results for  (} + i)
quoted in the introduction. More generally we have

Theorem 2

Let L (s) denote either the Dedekind zeta-function or the
Hecke L-series of an algebraic number field of degree n and
according as it is Galois or not we put a = n or 1 and also
m, = m or min (1, m). Then we have with 2k > 1,

1 T+H
T f o IL@+it | de>(log H)**(log log H)=¢

1 T+H a
72 fT |L(m)(§+it) |dt >(log H)**™ (log log H)~¢

where C is a positive constant. Further the condition 2k > 1 is
unnecessary if we assume the hypothesis that L (s) # 0 for
o> 1.

Remark : Theorem 2 gives an improvement on theorem 3
of my paper [3]. It will be seen later that m, can also be
replaced by m, = max (m,, mn-1),

Deduction of Theorem 2 from Theorem |

Let F(s) = L(s). Weput s = o 4 it, w = u + iv, where

¢ is the number at which max Q (o) is attained. We limit

ourselves to the case 2k > 1, m = Qor 2k = 1, m = 1. The
proof in both the cases are similar and we consider the first

; H 3H
case2k = 1,m = 0. Weimpose T + a <t<T+*;.

If now b is an odd positive integer which is fixed to be a large
integer depending on 3§, we have by Cauchy’s Theorem

1 (W—s)2b  dw
F(s)";ifF(W)e W’_——;
R
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where R is the rectangle with corners } + i (T + H), 3} + iT,
2 4+ iT, 2 + i (T + H). Because b is large we can check that
the horizontal portions coutribute a bounded quantity to the
integral. The same is trivially true of the line ¥ = 2. Thus

) W—_sypb dw 2
IF(s)l2k:0(( f lF(W)e( o WS]) + 1)
=O(l+u.=f% (F(W )% e W s

u=}
(S0

Theorem 2 now follows on integrating with respect to s and
log log H
log H
remember that if the field is Galois, condition (ii) is satisfied ;

otherwise the condition (i) is satisfied.

(W—s)2 dW

also using the fact that ¢ — } > We have to

To prove Theorem 1, we assume that it is false with C = 1.

We now prdceed to prove by a series of lemmas the truth
pf the theorem for some C > 1. We can certainly choose the
latter constant and this would prove the Theorem 1. Accord-
ingly we begin with

Lemma 1: We have

max 1 (TH ak2+m
loglog # f ), 1F(@+in%di<(logH) log logH.

=¥ log H

)
\Y
b—l

Proof : Trivial since, for
d)

. (F 2 + it),%* | is bounded.

0<jg ¥,

Lemma 2: The maximum of | F (o + it)| taken over all

2log log H

T > log H ° T+1<t<T+ H—1, does not exceed H2.
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Proof : Follows from the fact | F (s) |** is subharmonic.
However we supply a proof. If F(s)# 0 in |s —s | <7

1 27 i9
we have log | F(sg) | = an) log | F(so + re ) |4d0.

0
The first quantity is less than the second if F(sp = O
Assuming now F (S;) # 0 and defining

r* — (P — 5,) (5 — %)

¢t = Fox(—"5 =

where P runs over all the zeros of F(s)in | s — 5o | < 7, we
see that log | F(sp) | < log | ¢ (s,)| and that on |[§ — 5, |

=r wehave | F(s)| = |9 (s) | . This proves -
m
1 i9
log | F(s,) | <3 f 1081 F(so+ re )1do.
0

This gives easily
. |
log | F(Sp) | < x f log | F(s) | av
[s—sol<r

where dv is the element of area of the disc. We multiply this
by 2k and apply the arithmetico-geometric inequality (in the
limiting form to suit integrals) and we obtain

1
|F(sa‘|2“<;‘—;2 f | F(s)]| 2 dv.

ls—Sol <r
log log H

m— we get the lemma.

By taking a suitable radius say

Lemma 3: Let N (J, T,, T3) denote the number of zeros of

] 3log logH
F(_s)mc>cl(ol>&+ TlogH

Then if T + (log Hf < t < T + H — (log H)?,
N, t, t + 1) < (log H)*.
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Pr0ﬂf Follows from Jensen’s 1nequahty
(see page 126 of [6])

r 27

f"—i—’)dx_ floglF(2+zt+re 0| o
0 —log| FQ2 + it) |,

where n(x) denotes the number of zerosof F(s) in a
disc of radius x with centre 2 + it. We have to select a
suitable r and use Lemma 2. Note that fo<x, <r
we have

r
n(x) . r
f r dx > n (x,) log %"

0

Lemma 4:  For

3loglog H T
>4+ logH 7!

T, =T + H — (log H)S,

T + (log H),

we have N(L, T,, Ts) < H' — €1 = 1o 1)C2

Proof: We select a “ well-spaced’’ system of zeros
connected in N (d, T, T,) and proceed to - estimate their
number by the zero detecting function F (s) My (s) — 1 where
My (s) is the sum of the first H terms of the Dirichlet series for
(F (s))'. Note that if ¢, (s) is she zero detecting function in
question and Re s = 1 then

2w i f S, (s+ W) T (W)XW dw

Re W=2

is a very good approximation to ¢, (s) if we set X = HCs
where Cg is a large constant. Fairly routine considerations
lead to the lemma. (An excellent reference to our ideas of
deduc_:ing ‘““density estimates’’ which was also found by
Gallagher in a more perfect form is Gallagher’s paper [ 1]).
In the proof we have of course to use Lemma 1.
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Kyloglog H
—-———-—*log 77 where K,

is a large constant. Then N (L, T,, T,) < H.(log H)—K’
where K, +o as K, — ©. (Hereafter T\, T, will be as in
Lemma 4 and o as in this Lemma).

Lemma 5: Letnow J = oy = 3 +

v Proof : This lemma is a Corollary to Lemma 4.
We pext divide the ¢ interval T, <f< T, into equal

intervals of length (log H) Ky (K5 > 10) ignoring a small bit
at one end. Let I, run through those intervals which do not
K, log log H
log H
intervals. Let I3 run through the intervals I, with f intervals
of length (log H)? removed both above and below. Plainly
the intervals I3 cover the interval T, <t < T, except certain
K

contain a zeroin ¢ > § + and- I, the rest of the

bits of total length not exceeding H (log H) ~—

+ H(logH)z_K3 . We put s, = o + it (cl fixed and
‘ log log H g .
=>d, + ot I’ and set out to obtain an asymptotic

formula for
O ) =3 S I F(s;) 1% dr.

Iy I
- We prove
loglog H
Lemma 6: Let K; = K and d>d, + ——— 5 where
log H
K,loglog H
de =3 + log H Then we have,
e ~2d Ci—iK,
Q,'d)=H3 l‘. di (n)12n  +O(H(ogH) )
n=

Cy —1a(d—olo
+O(H(logH) H ),
. o )
where dx (n) are defined by the expansion (F(s))k = 3 di (n) n~*
n=1
validin e > 1. Also K, -+ © as K, — » .
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Proof : The proof of this lemma is nearly standard. We
will merely sketch the proof. For ¢ in I; we have with

1
X = H* and the notation introduced already,

X |z
]

[o o]
F(s)) =P()+ E P{t) =3 dc(n)n
: n=1

_s°e

1 aw
where E =, f(F(So+W))k FW+1)XW 7+ 0 (H1).
[ImW;<(logH)%, Re(W+d)=0dl,
From Lemma !,3 S| E{*dt=0O(H(logH) Cs X-‘é(ol—olo)-)
I3 13

Next we note that [(F(sy))¥12= |P(t)12 +O{ (F(so)) — P(1)i)
+ O(I(F s0)— P(1)) P(t)1).

Hence
S LI F(so)i2kdt =3 f | P(t)|2 dt + E' where
]3 13 13 13
T+H
0( z flEl"dt+(f|E|2dt)1} (Zf|P(t) |2 dt )&
1315
T+H Cs

It is easy to see that f° | P (t) |2 dt=0O(H(logH) ),and
T

T+H G

5
‘1{‘ | P(t)i*dt = O(H {log H) )and so the O-term is

O (H (log H)C“X—i (d_dO)) Also
f { | P(t)12 dt Tj‘TletIW dt + O (H (log H)C g ),
and
.I'T+Hl P(t)12dt = .I'T+Hl 3 dy (n) n—so 12 dt+O(H-1%)
T 7 n<X(logX)?

and this by standard arguments (see for instance Lemma 9
below) is
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2n

_ SR
(H+ 0 (X (log X)) D 1di(ien e X +0(H ™)
. n<X (logX)?2 '
w ’
- —2l — %
Let S =Zldk(n) 12 n 2°(and S, = ka(n)]? n e X
n=1 . n<X(logX)?

n

Then using 1 —e X_o *A—,")for n< X and O(1) for n>X we have

Rl = 0(%21 demyEn % 'Z'd" Ol )

n< X n=X
=0X (log H) ).
This proves Lemma €. g
‘ dm 1 \ak?’+m
Lemma 7: In case (i) we have @S!>>(d'—_; ,

. ak? 1 \b:k? .

and in case ii) we have S (d—3) is > (log d_%) i
1 b, k?
< ( log -3 *) )

Proof : We leave this as an exercise to the reader.

!
"Lemma 8: Let f(x) be m times continuously differentiable in

the interval of the integration below. Then for any positive
number d we have,

f(x)—(n:)f(x+d)+ ('Z)f(x-q-zd)-;-......

e = I)"_' (::)f(x + md)

2n -
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Proof : This can be proved by induction on m. Details
arc left to the reader.
From Lemmas 6,7 and 8 we can ‘deduce Theorem 1 as

follows.  We first assume condition .i*.  Define
K, log log H
=4+ oz and olg, ccoceses oo weey elmey bY Slj =
. C
. (G—=1) (log log H)~® .
oy log H ']: 2. .. «.., m + 1) where C; is a

large constant. Takmg K, a large constant we see’ that

9

1 +m -G )
H 0, (d,) > (iog H) (log log H) ‘and this leads to

Theorem 1 with C = max (1, C;), incase m =0. Ifm>1,
we see that @, (ol,) dominates O, (L)), (/ = 2).

C
(loglogH) ¢
2k n —
So takmg f(d) (F (cl+lt)) » X = OL[, = log H

we see that

2:['fu0~(?)fu»+(2)fuy+ ......

lsg 13
w e (0) oo |
d d (m)
<Of ...... _j'( 2 SIS Ly + uy+ .. +um) | dt)duy...duy.

I3 13
This shows that the max Q,(¢)H* and so of Q(¢) in

2

log log H ak? + m -
“log g exceeds (log H) (log log H)

and this proves Theorem 1 with C = max (1, Cy).

Next we prove Theorem 1 subject to the condition (i)
The case m = 0 can be disposed off as before. Let m > 1 and
the theorem be false with a large constant C. Then in addition
to Lemma 1 we also have

T+H
max H f | o (F(s) )% | dt =

>+

2

ak®+m,
O ((log H) (log log H)-¢).
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‘We choose o, and o, as before and we have

Ef(lf(oh)l—lf(cln |)dt<2f|f(ol)—f(cl)ldf

Iy Iy I3 I
. ak®+m, -1 ~%s
Here the left side exceeds H (log H) ,(log log H) :
; - ik ak?+m, —1 C,—C
while the right side is O(H{log H) (log log H) )

which is a contradiction if we choose C = C; + Cy + 1. This
proves Theorem 1| with C = C; + Cg + 1.

Before ]eailing this section we remark that if instead of
condition (ii) we-are given that the product

"‘( X(p)plz)liesbetween(a—i)— (log %)

and (o0 — 1}) ( )og = )blZ where

a >a>0,0b,, b, are four real constants then we can conclude
ak®+ ma(a’)~!
max Q (o) > (log H) (log log H)-¢.
log log H
log H
This explains the second part of our remark below Theorem 2
since for non-Galois number fields we can take a’ = n.

>3+

§ 4. The case of no Euler product : In this and the next
section we assume instead of the Euler product a condition of
the type, 3 1 a,|8 = O (x (log x)') where k' is a positive

n<x
constant and x > 2. (The condition can be relaxed, but we
do not want to go into such questions). The main result of
this section is

Theorem 3 Suppose that as o—} + 0, | F(20) | exceeds

1 a I by
s §) (Iog - %) where a > 1 and by are two real

constants. Then with 2k = 1, m = 0, we have,
T+H
a—1 -C

1
af \Fa+inid=0@) > (logH) (oglogH) -
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Proof : It suffices to prove that max Q {(¢) for ¢ >
log log H
log H
Theorem 3 follows from this just as Theorem 2 follows from
Theorem 1. (The constants C, K with er without subscripts
should not be confused with the earlier constants. Also to
save space the proof will be only sketchy). We assume that
this is false. Lemma 2 has its analogue without modification.
2 loglog H log log H
fog f Pl FhiF T g
and put s = ol + it. We divide the interval
T,=T+(logHB <t < Ty=T+H—(log H)® into equal intervals
J of length (log H)X, ignoring a bit at one end. We put
(&= 3 _n+s P ()= 3 H@mne
¥ n<Y Y n<Y
where ¥ = HY. It is not hard to prove that if @ (s)

=C () {*(s)—1 and M (J) denotes the maximum of
Y Y
1@ (s,) | for t in J,

3 (M (7)) = O (H (log H)** yl-2d,

a_ l i Cl
, exceeds (log H) (log log H) and

We put .11 =%+

‘We omit those intervals J for which M(J) > } and denote the

rest of the intervals by 7. The number of intervals J which

are excluded is O (HYI—Z“[ (log H)*%). If K is a sufficiently
Klog log H

large constant and [ =% + '—I(EIT-‘ we proceed to prove

that 3 f | F(s,) | dt > H(log H)a—l (log log H)_Cg.
11

L) —Sy - N
We write F(s,)=Fy(s5)+ Ey(so)where Fy(sg) = Sann e Y ,
n=1
T+H Ca o[—eh
and we have | Ey | dt = O (H(log H) Y ).
i ;

‘We can replace the integrand’

i F(so)1 by | F (5o) T (s0) Ty (So) | without
Y Y
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disturbing the left side very much. Then we replace

T+ H :
i .{ | ..ldtby S | ... | dt without much error- Next we:
T .

use the fact that the last integrai is bounded below by

T+ H e
| S Fo(s55) T1(s0) T (so)dt .
T Y Y Y

To see that this is >> H| FQ) | (ol — }), we use the
following lemma and some simple computations and this would
complete the proof of Theorem 3.

Lemma 9: If { x, } and { y, } are two sequences of complex
numbers, then, '

T ® ©®  _
J 3 xamit)( 3 p,nit)dt
) n=1 n=1
00 - o0 * oo *
=T 3 X, y+0( 3 nixa12)*( 3= nlyal?)?)
n=1 n=1 n=1

Remark. For a simple proof of this lemma see [4].
§ 5. Balasubramanian’s remark

Theorem 4. Inthe case2k = 1, m = 0 as before, we have,
T+H

2 1FGrn d=0@»max (1,87 5, log logh)
T

x o ) -2l
where S, = 3 | a, 12 n— °‘L, Sg = 3 la, |2 d(n)n ,
n=1] n=1
Clog log H
log H
d (n) is the usual divisor function.

d=4+ (where C is a large positive constant) and

Proof : As before we assume max Q(¢) for o >

log log H

: + log H does not exceed Szg Ss"1  (Note that this is
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0 ((log H:). Next we write ~so=ol +it, F(s0)=Fe(s0)+ Er,
n

a B
where Y=H}, Fy (s9)= = a, n~% ¢ . We have am
n=1

+
asymptotic formula for S | Fy (s9) 12 dt, and also a
T

T+H
good upper bound for ][ | Fy (so) |* dt. Using
TLH T+H \
S | Fy (s0) 12 di< (S | Fy (so) | dt)®
T T
T+H 1.
(]"f | Fy (so) 1* dt)¥

we are led to the theorem. The details are left to the reader..
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