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Abstract

When the regenerative braking energy cannot be stored by the metro producing it,
it has to be used instantaneously on the network, otherwise it is lost. In this case,
the accelerating and braking trains need be synchronized to fully benefit from the
regenerative energy, and a metro timetable is energetically optimized when all the re-
generative braking is utilized to power other trains. This synchronization consists in
lining up each braking train with an accelerating one in its neighbourhood. Doing
so, the latter will benefit from the regenerative energy of the former. We propose a
fast greedy heuristic to tackle the problem of minimizing the energy consumption of
a metro timetable by modifying solely the dwell times in stations. This heuristic is
compared to a state-of-the-art meta heuristic called the covariance matrix adaptation
evolution strategy (CMA-ES) and shows similar results with much faster computation
time. Finally, we show that a run of the algorithm on a full timetable may reduce its
energy consumption by 5.1%.

Keywords: Energy Optimization, Regenerative Braking, Metro Timetabling

1 Introduction

Optimizing the use of the regenerative energy produced by trains when braking has be-
come an essential feature in the process of reducing the energy consumption of metro
networks. Greatbanks shows that potential energy savings provided by this technol-
ogy are about 16.5% [1]. When the installation of super-capacitors or flywheels to
store the regenerative energy turns out to be financially irrelevant, a purely software
solution to reduce energy costs consists in optimizing the timetable.

However, metro timetables are primarily set to be consistent with quality of service,
safety and other constraints like drivers’ shifts or weekend periods, required by the
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metro company. Energy considerations are classically not taken into account at first
[2, 3]. This explains why it is hard to create a brand new timetable only to take into
account energy issues. However, it is possible to slightly modify the current off-line
timetables in order to minimize any objective function related to the energy consump-
tion of the metro line. Beforehand, a valuation of the resulting energy consumed on
every time slot is needed to make a proper optimization.

A timetable compiles a collection of trips – linked to a physical metro – defin-
ing the terminal departure time, the dwell times (stopping times in stations) and the
speed profiles in interstations. Typically, these parameters are understood as space-
time points, e.g. the metro X will reach the place Y at time Z. The literature deals
with the modification of these three parameters to minimize a given objective func-
tion. Kim et al. [4, 5] modify only the departure times when Nasri et al. [6] modify the
dwell times in stations, by choosing long or short dwell times. Other quantities can
be modified, like reserve times in [7], but they can be reduced to a combination of the
modification of speed profiles and dwell times. Two different objective function are
minimized, namely the maximum power peak [8, 9] and the global energy consump-
tion [10]. These functions can be computed with an accurate and time consuming
electrical network simulator [6] or with a simple heuristic model [4].

In Section 2 we define the mathematical model of the metro timetable and we
propose a classification of the metro timetabling energy optimization problems given
in the literature. This classification is based on a triple summarizing three essential
features of this class of problems: the objective function to optimize, the modifiable
variables and the way to compute the energy consumption of the line. The problems
of the literature are sorted based on this classification. Then in Section 3 we present a
greedy heuristic to tackle the problem of minimizing the global energy consumption of
a metro line by re-scheduling dwell times in stations. This algorithm takes advantage
of the regenerative energy produced by braking metros along the line. It aims at syn-
chronizing, for every braking metro, an accelerating one running in its neighbourhood.
Every time a dwell time is shifted to better synchronize metros, the algorithm modifies
the timetable accordingly and incrementally recomputes the global energy consump-
tion. Eventually, the Section 4 summarizes the results of this heuristic compared with
a state-of-the-art meta heuristic on 6 benchmark instances. The greedy heuristic shows
competitive results in both computation time and quality of the solutions and is able
to re schedule a full timetable to make it save 5.1% energy.

2 Classification of metro timetabling energy optimiza-
tion problems

A metro line is crossed, along the day, by metros running from terminal to termi-
nal in both directions, performing trips stopping in intermediate stations. The metro
timetable compiles the collection of departure and arrival times of every trip at every
station, from their departure terminal until their arrival terminal. Let us denote by T
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the set of trips crossing the metro line during a given time horizon, and by S the set
of metro stations on the line. The metro timetable consists of the data of the departure
time dept,s for each trip t and station s, and the arrival time arrt,s for t at s:

Timetable =

{
dept,s ∀t ∈ T,∀s ∈ S
arrt,s ∀t ∈ T, ∀s ∈ S

(1)

The metro timetabling energy optimization problem occurs when a metro company
wants to minimize an objective function related to the energy consumption of its metro
line by modifying its timetable. To date, there is no formal classification of energy
optimization problems in metro timetabling. Xun et al. [11] proposed a classification
of approaches focusing mainly on the methods used. In this section, a classification
is proposed based on the mathematical definition of the problems, according to three
main aspects in which the problems may differ, namely: the objective function, the
decision variables and the energy diffusion model.

2.1 The objective function

In terms of energy consumption, two major factors are studied for minimization. The
most studied objective function is the maximum power peak. The maximum power
peak (PP) is the highest instant power demand of the timetable. A power peak occurs
when too many metros are accelerating at the same time. As the metro company is
paying fines if too many high power peaks occur during a time interval [12], reducing
the height and the frequency of these power peak directly decreases the electricity bill.

Also, research is active in decreasing the global energy consumption (G) of a
timetable. The advantage of minimizing this objective function is more obvious as
using less electrical energy shall lead to pay less to the electricity provider.

2.2 The decision variables

The optimization of the objective function is done by modifying some variables in
the timetable. Namely, three variables can be independently modified, changing the
shape of the trips in the timetable and potentially reducing power peaks or the global
consumption of the metro line:

• The departure times (D), or the startin time of a metro at its departure terminal.
This is done by modifying dept,0 for every trip.

• The dwell times (d), or the stopping times in every station but the first one. The
dwell times can be lengthened or shortened by changing the value dept,s for all
trips and stations except the terminal departure one.

• The speed profiles (s). It is common to have several speed profiles for a metro
between two stations ; typically a nominal, a full speed and an economical one.
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A speed profile modification directly changes the length of an interstation trip,
modifying arrt,s.

It is of course possible to combine different variables to optimize the objective func-
tion. For instance, Albrecht changes in [7] speed profiles and dwell times by using the
reserve time of each trip.

2.3 The energy valuation

Both objective functions are computed by evaluating the energy consumption impli-
cated by the metro runs. A metro running is effectively consuming energy, provided
by electric sub stations placed along the line. Also, braking metros produce energy
that can be used by other metros or that can be lost as heat.

Optimization processes can use an accurate energy valuation of a timetable (J),
which require non linear electricity equations, applied on an equivalent electric net-
work of the metro line. An accurate simulator computes exactly what are the transfers
of energy between electric sub stations, accelerating metros and braking metros, eval-
uating the losses induced by Joule effects. This may requires a lot of computation time
and is not well suited for optimization algorithms that make many objective function
evaluations, like evolutionary algorithms.

That is why articles in the literature deal with more simple energy models (woJ)
that allow them to use, for instance, mixed-integer linear programming. These models
cannot aim at giving an accurate evaluation of the energy consumption of a metro line
but can suffice to guide an optimization algorithm towards good solutions in the search
space.

2.4 Problem classification

We propose to classify the energy optimization metro timetabling problems using a
triple which indicates the choice done for the three previous features, namely: the
objective function, the decision variables and the energy valuation. Table 1 shows the
classification of different problems from the literature using these triples.

Triple =
{

1. Objective function

• PP - Maximum power peak

• G - Global energy consumption ,

2. Decision variables

• D - Departure times

• d - Dwell times
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• s - Speed profiles ,

3. Energy valuation

• J Joule effects consideration

• woJ Simple energy model}
Problem Class References
{PP, d, J} Chen et al. [8]
{PP, d, woJ} Sanso et al. [9]
{PP, d-s, woJ} Albrecht et al. [7]
{PP, D, woJ} Kim et al. [4, 5]
{G, d, J} Chang et al. [13], Fournier et al. [14],

Nasri et al. [6]
{G, D-d, J} Peña et al. [10]

Table 1: Classification of some metro timetabling energy optimization problems from
the literature.

3 Greedy heuristic algorithm for (G, d, J)

The literature tackles the metro timetabling energy optimization problems taking ad-
vantage of mixed-integer linear programming techniques [4, 5, 10] or using meta
heuristics like genetic algorithms [6, 7, 8]. Both ways are global methods and have
the advantage to let aside the problem of knowing where to find, in the search space,
high quality solutions. These techniques are guided to good solutions by different
mechanisms which are valid for any kind of problem.

The drawback is that they do not take advantage of natural paths leading to the
best solutions that can appear when looking closely at how these solutions look like.
Likewise, using these global techniques may lead to scalability problems [6] when the
search space starts growing to the size of industrial problems.

We propose a fast greedy heuristic, scalable to an entire timetable, that minimizes
the energy consumption by lengthening or shortening dwell times of metros in sta-
tions. It tackles problems of more than 10000 variables and is based on the idea
of increasing the synchronization of braking metros with accelerating ones in their
neighbourhood.

3.1 Braking and acceleration phases

The metro interstation runs can be divided into three phases. The first one is the
acceleration phase, when the metro leaves its departure station and accelerates at full
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power. Then, the metro cruises, using a small amount of power to keep its speed
constant, or coasts, using its inertia to keep moving without powering. Finally, the
metro enters a braking phase to stop at its arrival station.

The braking phase allows the metro to regenerate energy to the third rail or the
catenaries. If during the braking phase of a metro, another metro is in its acceleration
phase, then a transfer of energy is possible between them. The accelerating metro will
demand less power to the electric sub stations and the global energy consumption is
thus reduced. Better synchronizing braking and acceleration phases between metros
running in the same time on the line is thus a way to optimize the use of regenerative
energy, minimizing in the same time the global energy consumption.

B is the set of braking phases and A is the set of acceleration phases.

Definition 1. The braking phase Bt,s ∈ B is the interval of time where the trip t ∈ T
is braking, in order to dwell in station s ∈ S. It is characterized by two parameters:
its initial start time start(Bt,s) and its duration length(Bt,s) ; and by one variable:
its cumulated shift shift(Bt,s).

Definition 2. The accelerating phase At,s ∈ A is the interval of time where the trip
t ∈ T is accelerating, in order to leave the station s ∈ S. It is characterized by two
parameters: its initial start time start(At,s) and its duration length(At,s) ; and one
variable: its cumulated shift shift(At,s).

It is worth noticing that every acceleration phase occurs right after a dwell time.
Shifting the starting time of an acceleration phase in the timetable is thus equivalent
to modify the length of the adjacent dwell time.

3.2 Tolerances on the optimization

The optimization algorithm aims at minimizing the global energy consumption by
the sole modification of the dwell times of an initial timetable. Each dwell time can
be modified within an interval defined by a tolerance given by the metro company,
typically of a few seconds. Using it, the algorithm is able to reduce or increase the
duration of every dwell time, increasing the synchronization between braking and
accelerating metros.

Let us denote δt,s ∈ Z the shift applied to the acceleration phase At,s in order to
optimize the global energy consumption. The minimum and maximum shifts that can
be applied to At,s are denoted δt,s ∈ Z− and δt,s ∈ N. The shifts applied on several
dwell times of the same trip cannot reduce or increase the total duration of the trip
– from terminal to terminal – by too much. This is due to the fact that headways
between trips that are following each other have to be fairly constant. Another reason
is the fact that the commercial speed – the time a metro runs its entire trip – is often
contractually set. A trip duration cannot be reduced by more than ∆t and cannot be
increased by more than ∆t:

∆t ≤
∑
s∈S

δt,s ≤ ∆t t ∈ T (2)
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Shifting an acceleration phase modifies its own cumulative shift, but also the cu-
mulated shifts of all the phases of the same trip occurring after in the timetable. The
cumulated shift of a phase of a given trip is thus the sum of the deltas applied on this
trip in previous stations:

shift(At,s) =
∑
u<s

δt,u + δt,s t ∈ T, s ∈ S (3)

shift(Bt,s) =
∑
u<s

δt,u t ∈ T, s ∈ S (4)

3.3 Neighbourhood of a braking phase

The algorithm is shifting, for each braking phase, one neighbour acceleration phase.
Doing so, the use of the regenerative energy is maximized, reducing the global energy
consumption. To facilitate the understanding of the equations, let us denote the starting
time of a phase modified by the cumulative shifts

start∗(At,s) = start(At,s) + shift(At,s) (5)

and the ending time of a phase modified by the cumulative shifts

end∗(At,s) = start(At,s) + length(At,s) + shift(At,s) (6)

The neighbourhood of a braking phase N (Bt,s) is defined as the set of acceleration
phases that can overlap it within the given tolerances. This means that every accel-
eration phase that may start before the end and finish after the beginning of a given
braking phase, belongs to its neighbourhood:

N (Bw,v) = {At,s ∈ A|end∗(At,s) + δt,s > start∗(Bw,v) (7)
∧ start∗(At,s) + δt,s < end∗(Bw,v)} w ∈ T, v ∈ S (8)

3.4 Objective function

The algorithm evaluates the resulting energy consumption of solution timetables by
the means of an electrical consumption simulator. Because of non trivial electricity
equations, the simulator is only capable to compute the instant power demand during
a small period of time. It is indeed possible to assume that, if the time duration is
small enough, metros running on the line produce or consume a constant power and
stay at a constant position.

The timetable is cut in small periods of time, called time slots, and the instant
power demand is a function of the time slot, the acceleration and braking phases and
a distribution matrix which summarizes the potential transfers between metros as a
function of their position on the line. The objective function of the timetable is thus
the sum, over the time slots τ , 0 ≤ τ ≤ T , of the instant power demands:

fobj =
τ=T∑
τ=0

f(Aτ ,Bτ , DMat) (9)
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Aτ and Bτ being the relevant acceleration and braking phases of the time slot τ .

Definition 3. The relevant braking phases Bτ and acceleration phases Aτ of time slot
τ are the subset of B and A of phases that are occurring at time slot τ :

Aτ = {At,s ∈ A|start∗(At,s) ≤ τ ≤ end∗(At,s)} (10)
Bτ = {Bt,s ∈ B|start∗(Bt,s) ≤ τ ≤ end∗(Bt,s)} (11)

3.4.1 Distribution matrix

The distribution matrixDMat is the matrix of size |S|×|S|which compiles the rate of
regenerative energy one metro at a given position on the line is capable to transfer to
another metro accelerating somewhere else on the line. This transfer rate is computed
thanks to an electrical network simulator.

The simulator embeds the entire electrical topology of the line, like the position of
the electric sub stations and the equivalent resistance of the catenaries. It takes into
account Joule effects occurring in cables as well as voltage peak limitations of the
network. Figure 1 illustrates a network where a metro is braking, arriving in station
2, and is regenerating energy that the metro accelerating from station 5 could benefit
from.

The distribution rateDMat2,5 is computed by calculating the resulting energy con-
sumption of the metro line ratio between the situation of a metro accelerating alone in
station 5 and the same metro benefiting of the regenerative energy of the metro brak-
ing in station 2. If we denote the power demand of the network when the regenerative
braking is used Preg, the distribution rate is equal to:

DMat2,5 =
P+ − Preg

P−
(12)

ESS1

+
− 1500V

RESS

ESS2

+
− 1500V

RESS

ESS3

+
− 1500V

RESS
R1,2 R2,3 R3,4 R4,5

P− P+

S1

S2

S3 S4

S5

Si = stations

EESi = electric
sub stations

Figure 1: Equivalent electrical network of the metro line used to compute the distri-
bution rate from station 2 to station 5.
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3.4.2 Computation of the instant power demand

The computation of the instant power demand f(Aτ ,Bτ , DMat) is based on a heuris-
tic that aims at maximizing the energy transfers between braking and accelerating
metros. A braking metro has the capacity to transfer its energy to another metro, ac-
celerating at the same time on the line. The heuristic leads this metro to transfer its
regenerative energy to the metro which has the best transfer rate, in order to minimize
the losses on the line.

Let us denote power(At,s) the power demanded by the trip t accelerating from
station s and power(Bt,s) the power supplied by the trip t braking to station s. These
powers are deduced thanks to the energy profiles of each trip provided by the metro
company. For a given time slot τ , the metros power demand represents the cumulated
power demanded by accelerating trains on the line:

metros power demand =
∑

At,s∈Aτ

power(At,s) (13)

Likewise, the energy saving at time slot τ is the powers supplied by braking metros,
attenuated by a factor determined in the distribution matrix.

In an electrical network, Joule effects are naturally minimized. The transfers of
regenerative energy are also following this rule. So, each braking metro t transfers its
regenerative energy to an accelerating metro w on the line such that the distribution
factor DMatt,w is maximized. Eventually, the instant power demand is equal to the
metros power demand minus the energy saving. The following pseudo-code describes
in detail the computation of the instant power demand at a time slot τ .
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Algorithm 1 Computation of the instant power demand at a given time slot τ
Require: Bτ , Aτ , DMat

1: metros power demand =
∑

At,s∈Aτ power(At,s)
2: energy saving = 0
3: while Bτ 6= ∅ do
4: Choose randomly Bt,s ∈ Bτ
5: pbrake ← power(Bt,s)
6: while pbrake > 0 do
7: if Aτ 6= ∅ then
8: Choose Av,w ∈ Aτ such that DMats,w is maximized
9: paccel ← power(Av,w)

10: if pbrake.DMats,w > paccel then
11: pbrake ← pbrake − paccel.DMats,w
12: Aτ ← Aτ\{Av,w}
13: energy saving← energy saving +paccel
14: else
15: paccel ← paccel − pbrake.DMats,w
16: pbrake ← 0
17: energy saving← energy saving +pbrake.DMats,w

18: Bτ ← Bτ\Bt,s

19: return instant power demand = metros power demand − energy saving

3.5 Greedy heuristic optimization algorithm

The idea of the greedy heuristic is to pair every braking phase of the timetable with
an acceleration phase in its neighbourhood. This is done by shifting each acceleration
phase to best synchronize it with its neighbour braking phase and by recomputing the
objective function to check for improvement. The shift that should be applied on an
acceleration phase is computed to bring its starting time closest to the braking phase’s
starting time, fulfilling the constraints on shifting tolerances as follows:

if start∗(Bv,w) > start∗(At,s)

δt,s = min
(
start∗(Bv,w)− start∗(At,s), δt,s,∆t − shift(At,s)

)
(14)

if start∗(Bv,w) < start∗(At,s)

δt,s = max
(
start∗(Bv,w)− start∗(At,s), δt,s,∆t − shift(At,s)

)
(15)

A new synchronization only shifts braking and acceleration phases that occur after
in the timetable as shown in equations (3) and (4). The algorithm sweeps the timetable
chronologically by synchronizing first the braking phases occurring at the beginning
of the timetable. Doing so, when a braking phase has been synchronized with its best
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acceleration interval, it cannot be undone due to another synchronization as this one
will inevitably be done later than the first one.

The algorithm is greedy because once an acceleration phase has been shifted, it is
removed from the pool of phases and cannot be shifted any more for another braking
phase. From an industrial point of view, the greedy algorithm has the advantage of
giving the same output given the same input, contrary to genetic algorithms. It is
also monotonic and only minimizes the objective function. If, for a given braking
phase, no acceleration phase synchronization can improve the objective function, then
the algorithm does not shift any acceleration phase. It is a useful feature for real-time
optimization, as the user is certain not to worsen its current solution. It is then possible
to run automatically the greedy algorithm on a real-time instance and let it enhance
the current solution as it gets better results.

Algorithm 2 Synchronization of acceleration phases with braking phases
Require: A, B, DMat

1: AINIT ← A, BINIT ← B
2: Sort Bt,s ∈ B by start∗(Bt,s) in ascending order
3: for all Bt,s ∈ B do
4: Compute initial objective function f INITobj

5: Initialize best objective function fBESTobj = f INITobj

6: Initialize best shift δBEST = 0
7: Compute set of neighbours acceleration phases N (Bt,s)
8: for all Av,w ∈ N (Bt,s) do
9: Compute the shift δv,w to apply to (Av,w)

10: Incremental objective function f INCobj = f(f INITobj ,AINIT ,BINIT , δv,w)
11: if f INCobj < fBESTobj then
12: fBESTobj ← f INCobj

13: δBEST ← δv,w

14: Apply δBEST on the timetable
15: finish

3.5.1 Incremental computation of the objective function

The equation (9) shows that the instant power demand of the time slot τ is a function
of the relevant braking and acceleration phases and of the distribution matrix. As the
latter is constant given an electrical topology, only the relevant phases are modified
within the optimization process.

During the optimization process, only one acceleration phase is shifted at a time
before re-evaluating the objective function. As only one dwell time is modified, many
time slots comprise the exact same relevant braking and acceleration phases between
two objective function computations, keeping the instant power demand constant on
these. The equation

f INCobj = f(fobj,A,B, δt,s) (16)
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shows that the incremental objective function f INCobj is a function of the initial objective
function fobj , the braking and acceleration phases, and a shift δt,s applied on At,s ∈ A
such that:

shift(At,w)← shift(At,w) + δt,s t ∈ T,∀w ≥ s ∈ S (17)
shift(Bt,w)← shift(Bt,w) + δt,s t ∈ T, ∀w > s ∈ S (18)

The evaluation of f INCobj consists in recomputing the sole instant power demands on
time slots where the relevant phases are modified by the shift. It avoids recomput-
ing known values, increasing by an order of magnitude the computation time of the
algorithm.

3.5.2 Restarts

The algorithm sweeps the timetable by synchronizing the braking phases taken in
chronological order. Since the sweep does not go backwards, once a braking phase
has been synchronized with its best acceleration neighbour, it can not be modified
anymore. Once the sweep is done however, the output optimized timetable can be
utilized as an input timetable and it is possible to re-run the optimization process,
based on this new solution.

The optimization algorithm can be thus done once, or with restarts until conver-
gence of the objective function. The algorithm with restarts stops when a sweep does
not improve the objective function anymore.

Figure 2 shows the minimization of the objective function on a benchmark instance
over time, using restarts. It shows that, even if the first run is the one that optimizes
most of the timetable, re-runs allow significant improvement, increasing also the ro-
bustness of the final solution.

4 Results

4.1 Comparison with the CMA-ES evolutionary algorithm

To validate our optimization algorithm, we shall compare it with a state-of-the-art
global search algorithm. We compare our greedy heuristic with a powerful evolution-
ary algorithm, namely the covariance matrix adaptation evolution strategy (CMA-ES)
of N. Hansen [15]. CMA-ES is a meta-heuristic for solving optimization problems
given with any arbitrarily complex objective function. It computes at each step a
population of solutions, randomly generated through some multi-variate normal dis-
tribution. At each step, the distribution is updated by moving the mean in the most
promising direction, and by adapting the standard deviation through an estimation of
the covariance matrix as illustrated in Figure 3.

Due to the lack of benchmark instances in the literature, we propose a set of 6
instances to compare the different methods. These instances are drawn from real data
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Figure 2: Evolution of the objective function on a benchmark instance during the
optimization process with restarts.

Figure 3: Modification of the multi-variate normal distribution of the population used
at each step of the CMA-ES optimization process in a simple quadratic optimization
problem (source Wikipedia).
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and represent relevant portions of the timetable, i.e. peak (p) and off-peak (op) parts
of size of 15 minutes and one hour. The tolerances on shifts are constant for all 6
instances as follows:

δt,s = −3 ∀t ∈ T,∀s ∈ S (19)

δt,s = 9 ∀t ∈ T,∀s ∈ S (20)
∆t = −30 ∀t ∈ T (21)

∆t = 30 ∀t ∈ T (22)

Table 2 summarizes the energy savings and the computation time on each of the 6
benchmark instances. CMA-ES is compared with the one-run heuristic and with the
heuristic restarting until convergence. The heuristic with restarts gives the best re-
sults on 4 of 6 instances and is faster than CMA-ES on these. The one-run heuristic
gives similar results than CMA-ES in terms of energy savings, gaining one order of
magnitude in terms of computation time.

Instance |A|

Initial Optimized Consumption (kW.h)
Consumption Computation Time (s)

(kW.h) CMA-ES
Heuristic Heuristic

MILP
without restart with restarts

op1 (15 min) 127 2514
2401 (-4.51%) 2411 (-4.10%) 2394 (-4.77%) 2433 (-3.22%)

256 7.31 45.6 0.73

op2 (15 min) 129 2516
2402 (-4.54%) 2403 (-4.50%) 2376 (-5.56%) 2421 (-3.78%)

223 7.51 38.0 1.14

op3 (60 min) 449 9956
9719 (-2.38%) 9642 (-3.15%) 9556 (-4.02%) 9555 (-4.03%)

782 52.5 648 1500 (10.62%)

p1 (15 min) 173 3433
3296 (-4.00%) 3293 (-4.08%) 3262 (-4.98%) 3308 (-3.64%)

503 18.3 178 207

p2 (15 min) 186 3651
3516 (-3.37%) 3505 (-4.00%) 3442 (-5.72%) 3496 (-4.25%)

669 25.7 291 95

p3 (60 min) 670 13067
12696 (-2.84%) 12801 (-2.04%) 12713 (-2.71%) 12725 (-2.62%)

1030 168 1500 1500 (20.44%)

Table 2: Energy saved by three different optimization methods on six benchmark
instances.

4.2 Full timetable optimization

The heuristic has been applied to a full timetable used for weekdays revenue service
on a major metro line. As the optimized timetable shall be utilized in a real context,

14



Instance

Initial Optimized Consumption (kW.h)
Consumption MILP objective: Overlap time (s)

(kW.h) Heuristic Heuristic
MILP

Overlap time (s) without restart with restarts

op1 (15 min)
2514 2411 (-4.10%) 2394 (-4.77%) 2433 (-3.22%)
12.48 105.6 101.8 318.1*

op2 (15 min)
2516 2403 (-4.50%) 2376 (-5.56%) 2421 (-3.78%)
11.48 105.8 159.1 351.6*

op3 (60 min)
9956 9642 (-3.15%) 9556 (-4.02%) 9555 (-4.03%)
45.97 729.5 817.9 1637 (10.62%)

p1 (15 min)
3433 3293 (-4.08%) 3262 (-4.98%) 3308 (-3.64%)
250.5 374.6 414.8 772.5*

p2 (15 min)
3651 3505 (-4.00%) 3442 (-5.72%) 3496 (-4.25%)
279.1 510.7 533.8 835.8*

p3 (60 min)
13067 12801 (-2.04%) 12713 (-2.71%) 12725 (-2.62%)
1019 1423 1576 3003 (20.44%)

Table 3: For MILP results: * means optimal value ; (X.XX%) is the bounds gap ratio.

the constraints on shifts have been tightened to:

δt,s = −3 ∀t ∈ T,∀s ∈ S (23)

δt,s = 3 ∀t ∈ T,∀s ∈ S (24)
∆t = −15 ∀t ∈ T (25)

∆t = 15 ∀t ∈ T (26)

The metro line comprises 31 stations and is crossed by 694 metros from 6am to 1am.
The size of the problem is of 9585 variables to optimize and is intractable by CMA-
ES. The use of the incremental computation of the objective function and the algo-
rithm strategy allows the greedy heuristic to find very competitive solutions faster
than global methods. The heuristic sweeps the timetable in 20 minutes The figure
4 compares the energy consumption of the initial timetable and the optimized one.
The initial timetable consumes 194.0 MW.h and the optimized timetable consumes
184.0 MW.h, saving 10 MW.h and representing 5.1% of the global energy consump-
tion. It appears that more energy is saved during peak hours. This is due to the fact
that, according to the distribution matrix, the energy transfers can be done only be-
tween metros that are very close from each other. This case would appear more often
during peak hours, when the density of metros on the line is higher. The extrapolation
of these savings could save to the metro company 3.65 GW.h of electrical energy per
year.
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Figure 4: Compared energy consumption by intervals of 30 minutes of a full weekday
timetable between the initial solution and the optimized solution.

5 Conclusion

We have proposed a classification of metro timetabling energy optimization problems
based on their mathematical definition and have sorted the problems of the literature
based on this classification.

We have then proposed a greedy heuristic to tackle optimize the energy consump-
tion of a metro line by shifting the acceleration phases of metros to synchronize them
better with braking phases of other metros. This algorithm finds solutions that are
competitive with state-of-the-art meta heuristics on 6 benchmark instances, improv-
ing the computation time by an order of magnitude.

The results simulated on a full timetable show savings of the total energy consump-
tion by 5.1%. This optimized timetable remains to be validated by running it in real
conditions. The fast computation by the heuristics makes it possible to contemplate
the re-optimization of a timetable in real-time after minor perturbations.
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