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Abstract

In this work, we study the problem of mean-variance hedging with a random horizon
T AT, where T is a deterministic constant and 7 is a jump time of the underlying asset
price process. We first formulate this problem as a stochastic control problem and
relate it to a system of BSDEs with a jump. We then provide a verification theorem
which gives the optimal strategy for the mean-variance hedging using the solution of
the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a
solution via a decomposition approach coming from filtration enlargement theory.

Keywords: Mean-variance hedging, Backward SDE, random horizon, jump processes, pro-
gressive enlargement of filtration, decomposition in the reference filtration.
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1 Introduction

In most financial markets, the assumption that the market is complete fails to be true. In
particular, investors cannot always hedge the financial products that they are interested
in. One possible approach to deal with this problem is mean-variance hedging. That is, for
a given financial product with terminal value H at a fixed horizon time 7" and an initial
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(ANR-11-JS01-0007).

tThe research of the author benefited from the support of the “Chaire Risque de Crédit”, Fédération
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capital =, we need to find a strategy 7* such that the value V®™ of the portfolio with
initial amount x and strategy 7* minimizes the mean square error

IEUV}”’” —H\Q]

over all possible investment strategies .

In this paper, we are concerned with the mean-variance hedging problem over a random
horizon. More precisely, we consider a random time 7 and a contingent claim with a gain
at time T'A 7 of the form

H = H'lye,+ H!1ps,, (1.1)

where T' < oo is a fixed deterministic terminal time. We then study the mean-variance
hedging problem over the horizon [0,T A 7] defined by

infE[[ViT - H[] . (1.2)

Financial products with gains of the form (|1.1)) naturally appear on financial markets, see
e.g. Examples and [2.3] presented in Subsection

The mean-variance hedging problem with deterministic horizon T is one of the classical
problems from mathematical finance and has been considered by several authors via two
main approaches. One of them is based on martingale theory and projection arguments and
the other considers the problem as a quadratic stochastic control problem and describes
the solution using BSDE theory.

The bulk of the literature primarily focuses on the continuous case where both ap-
proaches are used (see e.g. Delbaen and Schachermayer [6], Gouriéroux et al. [10], Laurent
and Pham [23] and Schweizer [25] for the first approach, and Lim and Zhou [2I] and Lim
[20] for the second one).

In the discontinuous case, the mean-variance hedging problem is considered by Arai
[2], Lim [22] and Jeanblanc et al [I4]. In [2], the author uses the projection approach for
general semimartingale price processes model whereas in [22] the problem is considered from
the point of view of stochastic control for the case of diffusion price processes driven by
Brownian motion and Poisson process. The author provides under a so-called “martingale
condition” the existence of solutions to the associated BSDEs. In the recent paper [14],
the authors combine tools from both approaches, which allows them to work in a general
semimartingale model and to give a description of the optimal solution to the mean-variance
hedging via the BSDE theory. More precisely the authors prove that the value process of
the mean-variance hedging problem has a quadratic structure and that the coefficients
appearing in this quadratic expression are related to some BSDEs. Then, they provide an
equivalence between the existence of an optimal strategy and the existence of a solution to a
BSDE associated to the control problem. They have also shown in some specific examples,
via the control problem, the existence of solutions for BSDEs of interest. However the
problem is still open in the general case.

In this paper, we study the mean-variance hedging with horizon T' A 7 given by .
We use a stochastic control approach and describe the optimal solution by a solution to a
system of BSDEs.



We shall consider a model of diffusion price process driven by a Brownian motion and a
random jump time 7. We follow the progressive enlargement approach initiated by Jacod,
Jeulin and Yor (see [I5] and [16]), which leads to considering an enlargement of the initial
information given by the Brownian motion to make 7 a stopping time. We note that this
approach allows to work under wide class of assumptions, in particular, on contrary to the
Poisson case, no a priori law is fixed for the random time 7.

Following the quadratic form obtained in [I4], we use a martingale optimality principle
to obtain an associated system of nonstandard BSDEs. We then establish a verification
result (Theorem which provides an explicit optimal investment strategy via the solution
to the associated system of BSDEs. Our contribution is twofold.

e We link the mean-variance hedging problem on a random horizon with a system of BSDE,
in a general filtration progressive enlargement setup which allows us to work without a
priori knowledge of the law of jump part. We show that, under wide assumptions, the
mean-variance hedging problem admits an optimal strategy described by the solution of
the associated system of BSDEs.

e We prove that the associated system of BSDEs, which is nonstandard, admits a solution.
The main difficulty here is that the obtained system of BSDEs is nonstandard since it is
driven by a Brownian motion and a jump martingale and has generators with quadratic
growth in the variable z and are undefined for some values of the variable y. To solve
these BSDEs we follow a decomposition approach inspired by the result of Jeulin (see
Proposition which allows to consider BSDEs in the smallest filtration (see Theorem
. Then using BMO properties, we provide solutions to the decomposed BSDEs which
lead to the existence of a solution to the BSDEs in the enlarged filtration.

We notice that, for the problem at hand i.e. mean-variance hedging with horizon T'A T,
the interest of our approach is that it provides a solution to the associated BSDEs, without
supposing any additional specific assumptions to the studied BSDEs unlike in [22] where to
prove existence of a solution to the BSDE the author introduces the “martingale condition”
or in [I4] where the existence of a solution to the BSDE is given in specific cases.

The paper is organized as follows. In Section 2, we present the details of the probabilistic
model for the financial market, and setup the mean-variance hedging on random horizon.
In Section 3, we show how to construct the associated BSDEs via the martingale optimality
principle and we state the two main theorems of this paper. The first one concerns the
existence of a solution to the associated system of BSDEs and the second one is a verification
theorem which gives an optimal strategy via the solution of the BSDEs. Then, Section 4
is dedicated to the proof of the existence of solution to the associated system of BSDEs.
Finally, some technical results are relegated to the appendix.



2 Preliminaries and market model

2.1 The probability space

Let (©2,G,P) be a complete probability space. We assume that this space is equipped with
a one-dimensional standard Brownian motion W and we denote by F := (F;);>0 the right
continuous complete filtration generated by W. We also consider on this space a random
time 7, which represents for example a default time in credit risk or in counterparty risk,
or a death time in actuarial issues. The random time 7 is not assumed to be an F-stopping
time. We therefore use in the sequel the standard approach of filtration enlargement by
considering G the smallest right continuous extension of F that turns 7 into a G-stopping
time (see e.g. [15], [16]). More precisely G := (G;)>0 is defined by

gt = mGt-&-aa

e>0

for all t > 0, where Gs := Fy V o(l,<y ,u € [0, 5]), for all s > 0.

We denote by P(F) (resp. P(G)) the o-algebra of F (resp. G)-predictable subsets of
Q x Ry, i.e. the o-algebra generated by the left-continuous F (resp. G)-adapted processes.

We now introduce a decomposition result for P(G)-measurable processes.

Proposition 2.1. Any P(G)-measurable process X = (Xi)¢>0 is represented as
Xe = X{ly<r + XH)Lisr
for all t >0, where X is P(F)-measurable and X is P(F) ® B(R.)-measurable.

This result is proved in Lemma 4.4 of [15] for bounded processes and is easily extended
to the case of unbounded processes. For the sake of completeness, we detail its proof in the
appendix.

Remark 2.1. In the case where the studied process X depends on another parameter
x evolving in a Borel subset X of RP, and if X is P(G) ® B(X), then, decomposition
given by Proposition is still true but where X° is P(F) ® B(X)-mesurable and X
is P(F) ® B(R;) ® B(X)-measurable. Indeed, it is obvious for the processes generating
P(G) @ B(X) of the form X;(w,z) = Li(w)R(x), (t,w,z) € Ry x Q x X, where L is P(G)-
measurable and R is B(X)-measurable. Then, the result is extended to any P(G) ® B(X)
-measurable process by the monotone class theorem.

We then impose the following assumption, which is classical in the filtration enlargement
theory.

(H) The process W remains a G-Brownian motion.

We notice that under (H), the stochastic integral fot XsdWy is well defined for all P(G)-
measurable processes X such that fot | Xs|%ds < oo.

In the sequel we denote by NN the process 1,< and we suppose



(Hr) The process N admits an F-compensator of the form [;""7 \dt, i.e. N — [T \dt is
a G-martingale, where A is a bounded P(F)-measurable process.

We then denote by M the G-martingale defined by
tAT
Mt = Nt — / )\st 5
0

for all ¢+ > 0. We also introduce the process A® which is defined by AF := (1 — N;)\,.

2.2 Financial model

We consider a financial market model on the time interval [0,7] where 0 < T' < 0 is a
finite time horizon. We suppose that the financial market is composed by a riskless bond
with zero interest rate and a risky asset S. The price process (S¢)¢>0 of the risky asset is
modeled by the linear stochastic differential equation

t
Sy = Sy +/ S (psds + osdWy + BsdMs) , YVt €[0,T], (2.1)
0

where 1, o and § are P(G)-measurable processes and Sy is a positive constant. For example
S could be a Credit Default Swap on the firm whose default time is 7. We impose the
following assumptions on the coefficients u, o and .

(HS)

(i) The processes p and o are bounded: there exists a constant C' > 0 such that

e + o] < C, vtel0,T], P-—a.s.

(ii) The process o is uniformly elliptic: there exists a constant C' > 0 such that
loe] > C, vtel0,T], P—a.s.
(iii) There exists a constant C' such that

-1 < p < C, Vtel[0,T], P—a.s.

Under (HS), we know from e.g. Theorem 1 in [9] that the process S defined by (2.1)) is
well defined.

2.3 Mean-variance hedging

We consider investment strategies which are P(G)-measurable processes 7 such that

TAT
/ |me|2dt < oo, P—a.s.
0



This condition and (HS) ensure that the stochastic integral fg g=dS, is well defined for
such a strategy m and ¢ € [0, T'A7|. The wealth process V*™ corresponding to a pair (z, ),
where € R is the initial amount, is defined by the stochastic integration

o

0 Sr_

VoT o= x4 as,, Vtel[0,TAT].

We denote by A the set of admissible strategies 7 such that

TNT
E[/ |7Tt|2dt] < 0.
0

For z € R, the problem of mean-variance hedging consists in computing the quantity
;giE[\vjﬂfﬁAi - H[’[, (2.2)
where H is a bounded Gra-measurable random variable of the form
H = Hlp, + H'p>, , (2.3)

where H® is an Fr-measurable random variable valued in R and H® is a cad-lag P(F)-
measurable process also valued in R and such that

|, < oo, and | sup [E7|| < oo, (2.4)
te[0,T 00

where we recall that ||.||« is defined by
IX]. = inf{Cz 0 : P(IX|<C) = 1} ,
for any random variable X.

Since the problem we are interested in uses the values of the coefficients p, ¢ and
only on the interval [0,7 A 7], we can assume by Proposition that u, o and B are
P(F)-measurable and we shall do that in the sequel.

Remark 2.2. For simplicity, we have supposed that the riskless interest rate is equal to
zero. However, all the results can be extended to the case of a bounded P(G)-measurable
interest rate process r. Indeed, for such an interest rate process the mean-variance hedging
problem becomes

it |V~ A

where V&7 and H are the discounted values of V™ and H given by

5 TNAT
H = Hexp ( — / rsds)
0

and
t

Vi = VET exp(—/ rsds> , tel0,T].
0
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From the dynamic of V*™ we see that V*7 satisfies
~ t ~
VT o= o+ / s (fLsds + GsdWs + Bsd M)
0

where
t ¢ N .
oy = e Jo 'r.gdS(Mt —r), 5 = e Jo rsdso.t and B = e~ Jo rsdth

for t € [0,T]. In particular, we get the same model but with coefficients fi, & and B instead
of u, o and B. Since fi, & and f also satisfy (HS), we can extend the results to this model
with new coefficients.

We end this section by two examples of financial products taking the form ({2.3]).

Example 2.1 (Insurance contract). Consider a seller of an insurance policy which protects
the buyer over the time horizon [0, 7] from some fixed loss L. Then if we denote by 7 the
time at which the loss appears, the losses of the seller are of the form

H = _p]lT<T + (L - p)]szT y
where p denotes the premium that the insurance policy holder pays at time O.

Example 2.2 (Credit Default Swap with counterparty risk). Consider a protection seller
who sells a CDS against a credit event to a protection buyer for a nominal N against a
premium payments p with a maturity 7. If the reference entity defaults, the protection
seller pays the buyer the nominal N and the CDS contract is terminated. Moreover, both
the buyer and seller of credit protection take on counterparty risk:

— the buyer takes the risk that the seller of credit protection may default, if the seller
defaults the buyer loses its protection against default by the reference entity,

— the seller takes the risk that the buyer may default on the contract, depriving the
seller of the expected revenue stream.

Denote by 7 the first default time, and by & the random variable such that £ = 1 if the first
default is the reference entity one and £ = 0 otherwise. The losses of the seller are of the
form

T
H = —pNTlr<r + Nl;<re—1 — pN( > /f]lk§7<k+1> Lr<r .
k=0

Example 2.3 (Credit contract). Consider a bank which lends an amount A to a company
over the period [0,7T]. Suppose that the time horizon [0,7] is divided on n subintervals
[k%, (k+ 1)%], k=0,...,n—1, and that the interest rate of the loan over a time subinterval
is r. The company has then to pay (HT) A to the bank at each time kT k=1,...,n. If
we denote by 7 the company default tlme, then the losses of the bank are given by

H = —(Q+7r)"-1)Alr<; + Hlr>,

where the function H® is given by

_ _Z< (1+7)" 1)A]lk%<t§(k+l)%, telo,1].



3 Solution of the mean-variance problem by BSDEs

3.1 DMartingale optimality principle

To find the optimal value of the problem (2.2]), we follow the approach initiated by Hu et
al. [12] to solve the exponential utility maximization problem in the pure Brownian case.
More precisely, we look for a family of processes

{(Jgr)te[O,T] P TE A}
satisfying the following conditions
() JF,, = VT — H|?, for all m € A.
(i) Jyt = Jj?, for all my,m € A.
(iii) (Jtﬂ)te[o,T] is a G-submartingale for all 7 € A.

(iv) There exists some 7* € A such that (JJ) is a G-martingale.

te[0,7
Under these conditions, we have
* . ST 2
= el ).
Indeed, using (i), (iii) and Doob’s optional stopping theorem, we have
™ 2
JT < B[] = E{|V;;\T—H\ } , (3.5)

for all m € A. Then, using (i), (iv) and Doob’s optional stopping theorem, we have

o= BT - H] (3.6)

TAT
Therefore, from (ii), and , we get for any m € A
B|[vi —H]] = 5 = 7 < E|ViT-HP.
We can see that

*

I = e[V - HP

3.2 Related BSDEs

We now construct a family {(J{):ejo,r), 7 € A} satisfying the previous conditions by using
BSDE:s as in [I2]. To this end, we define the following spaces.

— S is the subset of R-valued cad-lag G-adapted processes (Y;)¢c[o, 1] essentially bounded

Yls= = | sw il < oo
te[0,7) o0



— 827 is the subset of S of processes (Y2)tefo,r) valued in (0, 00), such that

4], -
— 00 .
Y llse

~ L is the subset of R-valued P(G)-measurable processes (Z;);e[o,r] such that

1Z) = (E[/{)T|Zt\2dt]>% < .

— L?()) is the subset of R-valued P(G)-measurable processes (Ut)e[o,r) such that

1l = (E] /OT”AS\US%])% < o0

To construct a family {(J7)ejo,m, 7 € A} satisfying the previous conditions, we set
o= YVET -+, teloT],
1T : fom in SOt 2 2
Wher (Y,Z,U) is solution in S x Lg x L*(\) to

TAT TNAT TNAT
Y, = 1+/ f(s,YS,ZS,US)ds—/ zaw,— [ vaM,, tel0.T], (37)
t

AT tAT tAT
(Y, Z,U) is solution in S x L& x L%(\) to
TNAT TAT

TAT
), — H+/ g(s,ys,Zs,Us)ds—/ Z.dW, — UdM,, te[0,T], (3.8)
t

AT tAT tAT

and (T, Z,©) is solution in S x L& x L*()) to

TNAT TNT TAT
T, = / b(s,TS,ES,QS)ds—/ =dW,— [ ©udM,, te0,T]. (3.9
t

AT tAT tAT

Remark 3.3. We notice that the jump components U, i and © are also bounded since
Y, Yand T are in Sg°. Indeed, let C be a constant such that

Vs~ < C. (3.10)

Then since Y _ + U is G-predictable, we have

T T
E[/O ]l‘Y;—+Ut|>C)\§}dt:| = E{/O ]l|Yt_+Ut\>CdNt]
= E {]1 Y - +UT|>C,T§T]

= ]E|:11|YT‘>C,TST1|
= 0.

Therefore, we have |Y— + U| < C in L?()\). From (3.10) we get |U| < 2C in L?()\). The

same argument can be applied for ¢/ and ©.

' As commonly done for the integration w.r.t. jump processes, the integral ff stands for f(a,b]'

9



In these terms, we are bound to choose three functions f, g and h for which J™ is a
submartingale for all 7 € A, and there exists a 7* € A such that J™ is a martingale. In
order to calculate f, g and b, we write J™ as the sum of a (local) martingale M™ and an
(not strictly) increasing process K™ that is constant for some 7* € A.

To alleviate the notation we write f(¢) (resp. g(t), h(t)) for f(¢, Yy, Z¢, Uy) (vesp. g(t, Vi, Z¢,Uy),
h(t, Te, E¢, O4)) for t € [0,T].
Define for each m € A the process X™ by

XP o= VA=, telnT].
From It6’s formula, we get
dJ = dM] +dK] , (3.11)
where M™ and K™ are defined by
dM = {QXZF— (7B — Up)(Yi- + Uyp) + |meBe — Ue* (Ve + Up) + | XU + @t}th

+ {2VXT (mon - 20) + ZUXT P+ 2, baw

dK{ = {Y;f[QXZr(T"tNt +9(1) + |mor — Zi°] = [XTP§(t) + 2X7 Zi(moy — Z1)
L CXTU (B — Uy) + AC|mB — U2 (Uy + Y3) — b(t)}dt .
We then write dK™ in the following form
dKT = K(m)dt,

where K is defined by

K(m) = Alr)*+Br+C,, 7eR, te[0,T],
with
Ay = oY+ )\;G’/Bt|2(Ut +Y),
By = 2XT (Y + 012y + N BUL) — 200Y: 2 — 207 By (Vs + Uy)
Cy = —f(O)|XT]?+2X7T(Yig(t) — Ze 2y — N\ Ulhy) + Vi | Ze* + A [Ue*(Us + V2) — b(t)

for all t € [0,T]. To ensure that K™ is nondecreasing for any m € A and that K™ is
constant for some 7* € A, we take K; such that min,ecgr Ki(7) = 0. Using YV € S(EO’+ and
(HS) (ii), we then notice that A; > 0 for all ¢ € [0,T]. Indeed, we have

T
0 = ]E[[YT]i]lTST] = E[[YTf—i_UT]i]]'TST] = E[/O [}/s*"i_Us]ist )

therefore we get that

T T
E[/ [YS+U8]dMS+/ [YS+U5]*A§’ds} - 0.
0 0

10



From Remark the predictable process [Y - 4 U]~ is bounded. Thus we get that the
first integral on the left is a true martingale thus we have

E[/T[YS+US]A§ds] - 0, (3.12)
0

which gives (Y + Us)AS > 0 for s € [0,T]. Therefore, the minimum of K; over 7 € R is
given by

K, := minKy(m) = Ci— |Bt|2.
T TeR 4A;

We then obtain from the expressions of A, B and C' that

Kt = Q(t’XZT|2+%tXZT+€t7
with
B 1Yy + 00 Zy + AE BLUL |2
|0e Y, + AE (B2 (U + V)
w, = of WOt APBU)OF B (Vi + Ur) + 01Yi21)
|04 [2Y: + AF |82 (Ur + Y2)

|00Y: 2y 4+ A8 By (U + Yy)|?

0%, 1 AFIBPT, 4 1)

Qlt = —f(t)

+9(t)Y: — 212 — /\;GUtUt} ;

€ = —b(t) + | Z2Ys + AF (U + Vo) th |2~

For that the family (J™),c 4 satisfies the conditions (iii) and (iv) we choose f, g and b such
that

Qlt:O,iBt:O and Q:t:(),
for all t € [0, 7). This leads to the following choice for the drivers f, g and b

(

|pey + orz + Af’ﬁtUIQ

t,y,2,u — )
o, 2) 0Py + AETBR(u + 3)
alt,y,z,u) = +|Ziz+ AU — (s + 00 & Ae iU (onYiz + A Bu(Us + Yt)U)]
' Yy %y Y; t ‘gt|2Y2+)\§;‘ﬁt’2(Ut+}/t) 7
Y: 2t 4 AC By (Uy + Y7)|?
t’ y 25U = Z2Y—|—)\GU+Y Z/{2—’0-tt ¢
by zu) = BN A O YO N1 P (: + 1)

We then notice that the obtained system of BSDEs is not fully coupled, which allows
to study each BSDE alone as soon as we start from the BSDE (f, 1)E| and end with the
BSDE (h,0). However the obtained generators are nonstandard since they involve the
jump component and they are not Lipschitz continuous. Moreover, these generators are
not defined on the whole space R x R x R. Using a decomposition approach based on
Proposition [2.1], we obtain the following result whose proof is detailed in Section

Theorem 3.1. The BSDEs (3.7), (3.8)) and (3.9) admit solutions (Y, Z,U), (¥, Z,U) and
(T,Z,0) in S x L x L2*(\). Moreover Y € SZ.

2The notation BSDE (f, H) holds for the BSDE with generator f and terminal condition H.

11



3.3 A verification Theorem

We now turn to the sufficient condition of optimality. As explained in Subsection [3.1] a
candidate to be an optimal strategy is a process 7* € A such that J™ is a martingale,
which implies that dK™ = 0. This leads to

un argmin Ky () ,

which gives the implicit equation in 7*

WY + 01 Zy + AU, oY Zy + AE B (Y- + Uy)
0t 2Y— + AP 1B P(U + Yi-)  |od?Ys- + AP (B (U + Yy-)

o= -V

Integrating each side of this equality w.r.t. g—St leads to the following SDE
o

t G
* * prY,— + o Zyp + )‘r ByU,  dS,
VvV o= R vl 3.13
R [ v e Ty (319)
t oY, - Z, + \8BU.(Y,- +U,)dS
Ul R Sk el Ll te[0,TAT].
f o e s (eI A
We first study the existence of a solution to SDE (3.13)).
Proposition 3.2. The SDFE (3.13)) admits a solution V* which satisfies
E[ sup |Vt*|2} < . (3.14)

te[0,TAT]

Proof. To alleviate the notation we rewrite (3.13|) under the form

dvy = (B — Fy)(uedt + oidWy + BydMy)

where E and F' are defined by

(Y- + 01 Zy + A7 BUy

Et - )
04 |2Y;- + AP B2 (Ur + Y- )

B _MBUEE +U) + pnYe Vi FAPBUY + 0iZidie + 02V
|04 |2V + AF1Be|2(Ur + Y;-) ’

for all t € [0,T]. We first notice that from (HS) (ii), and since Y € S(EO’+ and A\C(Y +U)
is nonnegative, there exists a constant C' > 0 such that

oYy + AP BT+ Vi) > €, Pedt—ae.

Therefore, using (Y, Z,U), (Y, Z,U), (Y,E,0) € S x L& x L*(\), Remark [3.3|and (HJS),
we get that E and F' are square integrable

E[/OTQEA?HF#)dt} < 0.

12



Using It6’s formula, we obtain that the process V* defined by

te [0, TAT), (3.16)

V;* = (.ZU + \Ilt)q)t s
and Vji(/\T = ]lTST [(1 + ETBT)V:— - T/BT] + ]17'>T(37 + ‘IJT)(I)T )
where
t 1 t
o, = exp(/ (ES(uS—Afﬁs) - 2|05E5|2>ds+/ asEdes) :
0 0
and
t Fs t Fs
U, = _/ [uS—AEBS—|ESO'S|2:|dS—/ o dWs ,
0 Ds 0 Ds

for all ¢ € [0, T, is solution to (3.13]).
We now prove that V* defined by (3.16]) satisfies (3.14]). We proceed in two steps.

Step 1: We prove that
E[\V{ﬁwﬂ < . (3.17)

Since V* satisfies (3.15)), we have V* = V®™ where 7* is given by
;= EVI-F, tel0,T].

Ty =
We therefore have Y|V%_— Y|?> = J7 — T and from (3.11) and the dynamics of Y given

by (3.9), we have
d(YilVir = Vi?) = dMy +dKT —h(t)dt

where M* is a locally square integrable martingale with Mj = 0. From the definition of

K™ and using the fact that
Xtﬂ_* (,U,tY;gf + UtZt + )\?ﬁtUt) + O'tY;f—Zt + /\?ﬁtut(th + Ut)

0¢|2Y- + AF B2 (U + V)

*
ﬂ-t -

we get K[ =0 for all t € [0,T A 7]. Therefore, from the definition of b, we get

TNAT
YrrelVine = Yrarl? = Yolo — Yol? + Mja, + / [|Zt,2yt + AP (U + V)|t |?
0

|oYi 2+ AF B (U + Yt)|2}dt
|04 [2Y: + AF (B2 (U + Y2)

Since M* is a local martingale, there exists an increasing sequence of G-stopping times

(vi)ien such that v; — +o0 as ¢ — oo and
T/\T/\I/i
Ylo =0 +E [ [PV P+ YO
0

Y, Z, + \& U+ Y2
_low t2 t tGﬂtut; e+ V)| ]dt. (3.18)
lo¢|2Y: + A7 |Be|*(Us + Yy)

E [YT/\T/\Vi |V7f/\fr/\ui - yT/\T/\Vz' ‘2]

13



Since Y € S(EO " there exists a positive constant C such that
* 2 * 2
E“VT/\T/\VZ' - yT/\T/\l/i| ] S CE [YT/\T/\V¢|VT/\7—/\VZ- - yT/\T/\l/i| ] .
Therefore, using (3.18]), we get that

T
EVinenn = YreonP] < C(vole =D +E [ [122% + 280+ ViuaP]ar)

Since Y, U and U are uniformly bounded and Z € L2, there exists a constant C such that

1 < C.

EHV;/\T/\VZ- - yT/\T/\l/i
From Fatou’s lemma, we get that

’l < cC.

E[|Vin = Vrael'] < lminfE[|Vin, = Yearns

Which implies that
E(|[Vine )] < C+2E[Vin,Yrar] -

Finally, using the Young inequality and noting that ) is uniformly bounded, it follows that
there exists a constant C' such that

E[|[Vin]Y] < C.
Step 2: We prove that

E{ sup |Vt*|2} < 0.
te[0,TAT]

For that we remark that V7 is solution to the following linear BSDE

TNAT L TANAT TAT
Vine = Vias —/ 22 2.ds —/ 2edW, — usdMs , t€[0,7], (3.19)
t t

At Os AT tAT
with
e, (Vi = Vi) 1Yy + 0t Zs + AP BUL) + oYy~ 2o + AF By (Yy- + Uy)
o o PYe + AP (U + Vi) |
v = f (Vee = Vi (Ys- + 002 + AP BiUL) + oYy 2o 4+ AF By (Yi- + Uy)
t = B

0¢|2Y;- + AP B2 (Ur + Y- ) ’

for all t € [0,7]. Applying Ito’s formula to |V*|> we have

TAT L TNAT TNAT
E|Vi, 2 = E|Vi.|? — 2IE/ V. reds — E/ |zs|2ds — E/ |us|*Ngds
t t

SAT
tAT Os AT AT

for all ¢t € [0, 7). Using (3.17), (HS) and the Young inequality we obtain the existence of
a constant C' such that

TAT TAT

T
E|Vt*AT|2+IE/ 28]2ds+IE/ lusPAds < 0(1 +E/ |
tAT tAT t

Viuel?) -

14



We then deduce from the Gronwall inequality that

TNAT TAT
sup IE]V;/\TZ—FE/ |zs|2ds+E/ lus|*Asds < 400 . (3.20)
t€[0,T 0

Now from (3.19)), we have

t/\‘r
B e Wil < 3(Wa P+ 2] sup \/ o]
tefo,T te[0,7]

tAT tAT
—HE sup ’/ zsdWy —i—/ Ug
te[OT]

1)

From (HS) and the BDG inequality, there exists a constant C' such that

TAT TAT
E[ sup ]V;\T]Q] < C(l +E/ |252d5+IE/ |u8|2)\sds) .
t€[0,7] 0 0

This last inequality with (3.20]) gives (3.14]). O

As explained previously, we now consider the strategy m* defined by

Ve = V)Y + 01 Zi + AP BU) + 01Yy- 2o 4+ AF Bk (Y- + Uy)

‘o 0PV PP+ 1) e
for all ¢t € [0,T]. We first notice from the expressions of 7* and V* that
| A (3.22)
for all t € [0,7T]. Using (3.14)) and (3.22)), we have
IE[ sup |Vtmr*|2} < o00. (3.23)

te[0,TAT]
We can now state our verification theorem which is the main result of this section.

Theorem 3.2. The strategy m* given by (3.21)) belongs to the set A and is optimal for the
mean-variance problem (2.2). Thus we have

E|[Vi —H] = minE[|VET - H| = Yoo - P + Yo

where Y, Y and Y are solutions to (3.7)-(3.8))-(3.9)).

To prove this verification theorem, we first need of the following lemma.
Lemma 3.1. For any w € A, the process M7, _ defined by (3.11)) is a G-local martingale.

Proof. Fix m € A. Then from the definition of V*™, (HS) and the BDG inequality, we
have

E{ sup |Viur 2} < 0. (3.24)
te[0,7)
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Define the sequence of G-stopping times (v, )n>1 by
Vp = inf{s >0 : “/;Xﬂ Zn} )

for all n > 1. First, notice that (,),>1 is nondecreasing and goes to infinity as n goes to
infinity from (3.24])). Moreover, from the definition of v,,, we have

|Vszm]ls€[0,un/\r) | < n

for all s € [0,T]. Then, since 7 € A, Y,V € S and Z, Z,E € LE, we get

2dt} < o0,

TAULNT
E[/ ‘QYtXZT(ﬂ'tO't*Zt)+Zt|XZT|2+Et
0
for all n > 1. Moreover, since U,U, O € L%(\), we get from Remark

TAULNT
E[/o ‘(2Xt7r— + B — Up) (B — Up) (Vi + Uy) + | X [Us + @t‘)\f’dt} < oo,

for all n > 1. Therefore, we get that the stopped process M7 ,,, is a G-martingale. O

Proof of Theorem As explained in Subsection we check each of the points (i),
(ii), (iii) and (iv).
(i) From the definition of Y, ) and T, we have

Tine = YoulVES —H + Xrar = |V~ HP,

for all m € A.
(ii) From the definition of the family (J™)zca, we have
JE = Yollg"" = Mo’ + Yo = Yolz — o> + Yo,

for all m € A.

(iii) Fix 7 € A. Since Y, Y, T € SZ°, we have from the definition of J™ and the BDG
inequality

IE[ sup \Jﬂ] < 400 (3.25)
t€[0,T

Now, fix s,t € [0, 7] such that s < ¢. Using the decomposition (3.11)) and Lemma there
exists an increasing sequence of G-stopping times (I/Z')izl such that v; - +o00 as 1 — 400
and

BT 0] = T, (3.26)

for all # > 1. Then, from (3.25)), we can apply the conditional dominated convergence
theorem and we get by sending i to oo in (3.26])

E[J7IG) = JT,
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for all s,t € [0, 7] with s < .

(iv) We now check that 7* € A i.e. EfOTAT |7*|2ds < oo. Using the definition of 7* and

(3.22) we have that V7™ is solution to the linear BSDE

. TNAT L TNAT TNAT
Vt;mr* _ VY‘F/’@ —/ L —/ zsdWs — usdMs, te€[0,7T],
t t

At Os AT tAT

with
Zt = 0’,571'2k and ur = ,Btﬂ'zk,

for all t € [0,T]. Therefore, using (3.23), (HS), applying It6’s formula to |V®™|2, using
the Young inequality, the BDG inequality and the Gronwall inequality (see e.g. the proof
of Proposition 2.2 in [3]), we get

TNAT
E[/ |7r;|2ds} < .
0

We now check that J™ is a G-martingale. Since K™ is constant, we obtain from
Lemma that J™ is a G-local martingale. Then, from the expression of J™ and since
Y, Y, T € 5, there exists a constant C' such that

ELGS[%%}UZF*@ < CO_FELG[?FIPATH%LW*’QD'

Using (3.23)), we get that

IE{ sup \Jf*\] < +o00.
te[0,7)

Therefore, J™ is a true G-martingale and 7* is optimal. O

4 A decomposition approach for solving BSDEs in the filtra-
tion G

We now prove Theorem via a decomposition procedure. We first provide a general
result which gives existence of a solution to a BSDE in the enlarged filtration G as soon as
an associated BSDE in the filtration F admits a solution. Actually the associated BSDE
is defined by the terms appearing in the decomposition of the coefficients of the BSDE in
G given by Proposition We therefore introduce the spaces of processes where solutions
in F classically lie.

— SF° is the subset of R-valued continuous F-adapted processes (Y:);c(o,7) essentially
bounded

IVls= = | sw will| < oo
t€[0,T] oo
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— 8% is the subset of S of processes (Y2)tefo,r) valued in (0, 00), such that

7l <
Y |l goo o .

— L is the subset of R-valued P(F)-measurable processes (Z¢)ie[o.r] such that

1Z) = (E[/OT|Zt\2d1t]>é < .

Finally since the BSDEs associated to our mean-variance problem have generators with
superlinear growth, we consider the additional space of BMO-martingales: BMO(P) is the
subset of (P, F)-martingales m such that

1
[mllemo@) = sup HE[(m>T_<m>V‘]:V]2 <,

veTr[0,T]

where Tr[0,T7] is the set of F-stopping times on [0,7]. This means local martingales of the
form m; = fot ZsdWs, t € [0,T], are BMO(P)-martingale if and only if

: T 1
H/O ZsdWs BMO®) VG%I[I&T]‘KE[/V |Zt‘2dt‘}—VD2 -

4.1 A general existence theorem for BSDEs with random horizon

< 0.

We provide here a general result on existence of a solution to a BSDE driven by W and
N with horizon T'A 7. We consider a generator function F': Q x [0,7] x R x R x R — R,
which is P(G) ® B(R) ® B(R) ® B(R)-measurable, and a terminal condition ¢ which is a

Gra—measurable random variable of the form

¢ = Qlrer + s, , (4.27)

where £? is an Fp-measurable bounded random variable and ¢¢ € Sp°. From Proposition

and Remark we can write
F(t, 14, = F°(t,)4<,, t>0, (4.28)

where F? is a P(F) ® B(R) ® B(R) ® B(R)-measurable map. We then introduce the following
BSDE

T T
YP = §b+/t Fb(s,Y;b,Zf,fg—YSb)ds—/t zbdw,, tel0,T].  (4.29)

Theorem 4.3. Assume that the BSDE (4.29) admits a solution (Y, Z°) € S x L2. Then
BSDE

TAT TAT TAT
Y, = §+/ F(s,YS,ZS,US)ds—/ ZdW, — UdN,, tel0,T], (4.30)
t

AT tAT tAT
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admits a solution (Y, Z,U) € S x L% x L*(\) given by

Y, = Ylior + s,
Zy = ZMier, (4.31)
U = (&§-Y))l<-,

for all't € [0,T].

Proof. We proceed in three steps.
Step 1: We prove that for ¢ € [0,T], (Y, Z,U) defined by satisfies the equation
. We distinguish three cases.
Case 1: 7> T.
From (4.31)), we get Y; = Y®, Z, = Z0 and U, = ¢ — Y for all t € [0, T]. Then, using that
(Yt Z%) is a solution to , we have
T T
Vo= &+ [ P Y zavgis— [ 2w,
¢ ¢

Since the predictable processes Z and Z° are indistinguishable on {7 > T}, we have from
Theorem 12.23 of [11], ftT ZdWs = ftT Z%dW, on {r > T}. Moreover since ¢ = ¢° and
tj/:/T\T UsdNg =0 on {7 > T} we get by using |i

TAT TAT TAT
Y, = f—i—/ F(s,Y},Zs,Us)ds—/ ZsdWy — UgdNg .
t

AT tAT tAT

Case 2: 7 € (t,T].
From (4.31)), we have Y; = Y;?. Since (Y?, Z?) is solution to (4.29), we have

T T
Vi = vie [ Peyhzhe - yhas— [z,
t t
Still using (4.28) and (4.31f), we get

Y, = §g+/ F(s,Ys,Zs,Us)ds—/ ZLdw, — (€2 —Y?) .
t t

Since the predictable processes Z1 ., and Z°1 ., are indistinguishable on {7 >t} N {r <

T}, we have from Theorem 12.23 of [I1], tTAT ZsdWs = tTAT Z%W, on {1 > t}n{r < T}.

Therefore, we get
Y, = & +/ F(s,Ys, Zs,Us)ds —/ ZodWys — (€2 = YD) .
t t

Finally, we easily check from the definition of U that ftTAT UsdNs = £ — Y. Therefore,

we get using (|4.27))

TANAT TNAT TAT
Y; = f—l—/ F(S,YS,ZS,Us)ds—/ ZsdWs — UsdNg .
t

AT tAT tAT

Case 3: 7 <.
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Then, from (4.31)), we have Y; = £¢. We therefore get on {7 < t} by using (4.27)

TAT TAT TAT
Y; = f—i—/ F(S,Y;,Zs,Us)ds—/ ZsdWy — UsdNg .
t

AT tAT tAT

Step 2: We notice that Y is a cad-lag G-adapted process and U is P(G)-measurable since
Y? and €% are continuous and F-adapted. We also notice from its definition that the process
Z is P(G)-measurable, since Z° is P(IF)-measurable.

Step 3: We now prove that the solution satisfies the integrability conditions.
— From the definition of Y, we have
Vil < YO +1g, te(o.T]. (4.32)
Since Y € S and €% € S, we get that ||Y||s= < +oo.
— From the definition of the process Z, we have Z € Lé.
— From the definition of U, we have
U < Y+l tefoT).

Since Y? € 8g°, €% € S&° and X is bounded, we get U € L%()).

0

Using this abstract result we prove the existence of solutions to each of the BSDEs (3.7)),
(3.8) and (3.9)) in the following subsections.

4.2 Solution to the BSDE (f, 1)

Following Theorem [4.3] we consider for coefficients (f, 1) the BSDE in F: find (Y, Z%) €
S2° x L2 such that

Ayt =

b b 2

(g ap e Az e,
Yh o= 1.

(4.33)

To solve this BSDE, we have to deal with two main issues. The first is that the generator

f has a superlinear growth. The second difficulty is that the generator value is not defined

for all the values that the process Y can take. In particular the generator may explode if

the process Y goes to zero. Taking in consideration these issues we get the following result.

Proposition 4.3. The BSDE 1' has a solution (Y, Z) in Sg> x L2 with J; Z2baw €
BMO(P).
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Proof. We first notice that the BSDE (4.33)) can be written under the form
t — MBr)
o2 |oe*

|o¢[?
|0 2P + N + (AifB — Aﬁffz‘ ‘ b
IotPYtHAt\ﬁtP }dt+thWt, telo,T],

— G, |2 PCAE: 2
ayp = {MY;_ 1] it — MBe|? — A + MY+ (w (0eZ¢ + M)

i = 1.

Since the variable Y appears in the denominator we can not directly solve this BSDE.
We then proceed in four steps. We first introduce a modified BSDE with a lower bounded
denominator to ensure that the generator is well defined. We then prove via a change of
probability and a comparison theorem that the solution of the modified BSDE satisfies the
initial BSDE.

Step 1: Introduction of the modified BSDE.
Let (Y¢, Z¢) be the solution in S x L2 to the BSDE

e — MB? el B ? 2 2(pt — A\efBr)
dYg = {71/5— - —MFNY + ——— (0 2 + A
; 2 T o | tA t5t| ¢+ AYy + o7 (0t Z; + Aifr)
o025 + Mefe + (e — ) Y| }dt 7 AW, te0,T]
) E ) 9y
o 2(Yy Ve) +/\t|5t|2 e
Y; = 1,
(4.34)
where ¢ is a positive constant such that
T 2
—A
exp ( - / (/\t + W)dt) > e, P—as. (4.35)
0 ot

Such a constant exists from (HS). Since the BSDE (4.34)) is a quadratic BSDE, there exists
a solution (Y4, Z¢) in S° x L2 from [I8].

Step 2: BMO property of the solution.
In this part we prove that [; Z°dW € BMO(P). Let k denote the lower bound of the
uniformly bounded process Y¢. Applying Itd’s formula to |Y¢ — k|2, we obtain

T T
E[/ |Z§|2ds’fy} — kP |YE kP 215:[/ (YE — k) f<(s, Y2, Z;‘)ds‘fy} . (436)

for any stopping times v € Tr[0, T, with

|t — B B M| Be|? 2(pt — M)

f(ty,2) o7 7] e — MBel® = Ao+ My + B (o2 + M\efBt)
lotz + XeBt + (MefBr — ut)%ﬁff’z
o (y v &) + Al Bl ’
for all (¢,y,z) € [0,T] x R x R. We can see that
fe(ta Y, Z) > It + th + th ) (437)
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for all (¢,y,z) € [0,7] x R x R where the processes I, G and H are given by

( /\ — A
Iy = |t|ﬁt| e = AeBel® = Ao + 2)\tﬂt(ut’0t|;ﬁt) ;
- A
Gy 7““ ;Bt‘ + A,
|0t
H = 2 (pt — Aefr) ’
gt

for all t € [0,7]. We first notice that from (HS), the processes I, J and K are bounded.

Using (4.36) and (4.37)), we get the following inequality

T T
IE[/ |Z§|2ds’fy} < -k - 215:[/ (Y — k) (I, + G YE —|—HSZ§)ds)}",,} .

v

From the inequality 2ab < a? + b? for a,b > 0, we get

T T

E[/ |Z§\2ds‘}"y} < 1—kP? - 21[«:[/ (Y2 — k), +G5Y§)ds’fl,}
Y T Y 1 T
+2E[/ \H,2|YE —k|2ds‘]-',,] +2E[/ |Z§]2ds‘}],} .
Since I, G, H and Y¢ are uniformly bounded, we get
T
8 [ 1z:paln) < c.

for some constant C' which does not depend on v. Therefore, [; Z¢dW € BMO(P).

Step 3: Change of probability.
Define the process L¢ by

— M) _|_2 ot (A + Ic‘fﬁlt2 (Aehe — pue)) " |04 [*Z5
o ot P(YE V) + Al B o P(YEVe) + Al Bl
for all ¢ € [0, T]. Since Y*© € Sg°, [; Z°dW € BMO(P), we get from (HS) that [; L°dW €

BMO(P). Therefore, the process £( [; LsdW) is an F-martingale from Theorem 2.3 in [I7].
Applying the Girsanov theorem we get that the process W defined by

L; = 2('ut

t
Wt = Wt—i-/LidS,
0

for all t € [0, T, is a Brownian motion under the probability Q defined by

- 5(—/0TL§dWS> .

We also notice that under Q, (Y, Z¢) is solution to

dP | 7,

T 2 _ 2 _
R R R -t AR R LY
t

oa] EAE |os|?
Ly ‘)\sﬁs + ()\sﬁs - /\|0|'5|52| ‘ d /T ZadW t 0.7 (4 38)
S e ’USIQ(KEVE)“v‘As’ﬁsP } 5T t * . E[ ’ ] '
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Step 4: Comparison under the new probability measure Q.

We first notice that the generator f¢ of the BSDE (4.38) admits the following lower

bound
_ 18,12 .
Fty,2) = t‘ﬁtl e — MeBel® + Ao — Ay — 2)\tﬁtM
o o
Al |2
e — AifBe|? | AeBr + (MiBe — ue) IcfPl }
R |2 Lxipio
|1t — AeBe|?
— _)\ _
tY EAE ,

for all (¢,y,2) € [0,T] x R x R.
We now study the following BSDE

T 2 T
s_)\s S T
Y, — 1+/ [—As—i‘” 5| }sts—/ ZdW,, te[0,T]. (4.39)
t t

‘03‘2

Since this BSDE is linear, it has a unique solution given by (see e.g. [§])

Y, = E@[GXP<—AT(AS+MW)ds)‘B], tel0,T].

|‘78|2

Applying Theorem 2.2 of [§] for BSDEs (|4.38) and (4.39) we have

Y;fe > Ztv tE[O,T].

By (4.35)), we have ¢ <Y, for any t € [0,7]. Consequently, Y;7 > ¢ for any ¢ € [0,T], and

(Y¢, Z%) is solution to (4.33)).

We now are able to prove that the BSDE (f, 1) admits a solution.

0

Proposition 4.4. The BSDE (3.7) admits a solution (Y,Z,U) € S x L& x L*(\) with

Y esy.

Proof. From Theorem and Proposition we obtain that the BSDE ([3.7) admits a

solution (Y, Z,U) € S x L4 x L*(\), with Y given by
YV, = Yoo+ 1, te[0,T].

with Y? e S§0’+ from Proposition Therefore Y € S(EO’Jr.

4.3 Solution to the BSDE (g, H)

We first notice that the BSDE (g, H) can be rewritten under the form

ayy = { (Y + 0121 + )\;GﬁtUtxgtY;Zt + )‘ggﬁt(Ut + Yi)Ur) _ ézt
. Yi(|ot[2Y: + AP B (Ur + 7)) Yi
— AUy, - Af’ut}dt + Z,dW, + UdN,, te [0, T AT],
yT/\T = H.
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Since Y;l;e; = Y14, and Udi<r = (1— Ytb)]lth, we consider the associated decomposed
BSDE in F: find (), 2%) € S x L2 such that

dyb — {((Mt — MB)Y) + 00 ZY + M) (oY 2P + MBeHY — MBiIY)
' \ Y?tb)g|o-t|2}/tb + el Bil?)
b
- b2 - CRHP 4+ Sopfdt+ 2w, e 0.1], (441)
¢ t t
Ve = HP.

We notice that this BSDE has a Lipschitz generator w.r.t. the unknown ()°, 2°). However
the Lipschitz coefficient depends on Z° which is not necessarily bounded. Thus we cannot
apply the existing results and have to deal with this issue.

Proposition 4.5. The BSDE (4.41)) admits a solution (Y°, Z°) in Sg°x L% with IN Zbaw ¢
BMO(P).

Proof. We first define the equivalent probability Q to P defined by its Radon-Nikodym
density ‘é%‘ 7 =& fOT ptdW;) where p is given by

VA O’t((,ut — MB)YL + 02 + )\tﬁt)

el . telfo,T].
vy i PYE A 0.7

Pt

Since [; Z°dW € BMO(P), Y € Sg>" and the coefficients y, o and 3 satisty (HS), it
implies that [; pdW € BMO(P). Therefore, Wy := W; — fg psds is a Q-Brownian motion.
Hence, the BSDE (4.41)) can be written as

dyf = at(yf — Hta)dt—i-Zdet , t€ [O,T] 5 (4 42)
yfll)”/\f = Hb’ |

with

Ao 2V — A —MB)YYP + 0 20
4 = t|oe 7Yy ' tﬁtg(ﬂ;ﬁ tﬁt); + 01 Zy)  teo,T].
Y (loePYY + Ae| Bel?)

By definition of @ we can see that fo adW € BMO(P) since the coefficients p, o, 8 and A
are bounded, Y?* € Sg° and IN ZbdW € BMO(P). Using Theorem with Q; = P and
Q9 = Q, we get fo adW € BMO(Q). Therefore, there exists a constant I’ > 0 such that
IEQ[fVT las|?ds|F,] <1 for any v € Tp[0,T]. We now prove that the process )° defined by

b L'y b 4 L's a
W= EQ[fH + —asHsds‘]-}} . te[0,1],
Iy ¢ It

with Ty := exp(— fg asds), is solution of the BSDE 1’ We proceed in four steps.

Step 1. Integrability of the process I.
We first prove that for any p > 1 there exists a constant C' > 0 such that the process I
satisfies for any ¢ € [0, 7]

T
EQ[ sup |—
t<s<T I 't

p’ft} < C. (4.43)
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Since ]EQ[fVT las|?ds|F,] < I for any v € Tg[0,T], we get from Proposition that there
exists a constant J such that 0 < § < ll, and

safon (s [ ltad}r] < 2y

We get forany 0 <t <s<T

5
Iy

P ° 2 1P
(d]ar| +@)dr>

T) exp (6 /OT ]ar\er) .

IN

-

g‘ﬁN’«\

< e

Consequently, we get

r
EQ[ sup |—

P 2 1
‘}}} < exp <p—T)
t<s<T 1 L't

456~ /1 =6l

Step 2. Uniform boundedness of V°.
We now prove that Vb e Sp°. For that we remark that by definition of Y we have the
following inequality
b b FT a T 2 a T FS 2
V< IH oEo [T |7 + NHs<Eg| [ lasds| 7] + | H s<Ba| [ |22| ds|7]
t t t t

Therefore, we get that Y € Sp°.

Step 3. Dynamics of V.
We now prove that )? satisfies (4.42). For that we introduce the Q-martingale m defined
by

t
my = Ftyf+/ Ta,Heds, tel[0,T].
0

We first notice that m is Q-square integrable. Indeed, from the definition of m, there exists
a constant C such that

E@[Imtlg] < C(E@[\Ftyfﬂ +E@[/Ot \FsasH?|2dSD :

for all t € [0,T]. Since Y* € S, we get from 1' and from Cauchy-Schwarz inequality
the existence of a constant C such that

safimf] < c(@aflnf] +yal( [ nf'e)] el e T )

for all ¢ € [0,7]. Since [;adW € BMO(P) we have from Theorem J; adW € BMO(Q),
and we get from Proposition and ({4.43))

E@[ymﬂ < 00, telo,T].
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Therefore, there exists a predictable process Z such that Eg] fOT |Z,|?ds] < oo and
t t
Ftytb +/ FsangdS = my +/ stWS , te [O,T] .
0 0

From It0’s formula and the definition of y:l} we have

T T
W = HY- / as(Y? — HY)ds — / ZbdW,, tel0,T]. (4.44)
t t
where the process Z? is defined by
Z
zb = 2L telo,T).
Iy

We now prove that fo ZbdW € BMO(Q). Using 1' there exists a constant C' such that

g b2 by2 2 g 2
sup_Eq| / 282as| R < O 15 + 1H13e) sup Eg / a.f?ds| 7.
veTr|0,T] v veTF[0,T] v
b2 b2
HIEIZ + 195 ) -
Using Y’ € Sg°, (2.4) and [;adW € BMO(Q), we get that [; Z°dW € BMO(Q). Thus,
using % Fp = E(— [; pAW)7 and Theorem with Q; = Q and Q2 = P we obtain that

/' ZbqW = / ZPdW — </' zbdv‘v,/' pdW) € BMO(P).

0 0 0 0

To conclude we get from (4.44) and the definition of W that ()%, Z°) is a solution to the
BSDE (&.41). O
We now prove the existence of a solution to the BSDE (g, H).

Proposition 4.6. The BSDE (3.8) admits a solution (¥, Z,U) € S x L%} x L2(N).
Proof. From Theorem and Proposition we obtain that the BSDE ({3.8]) admits a
solution (Y, Z,U) € S x L& x L%(\). O
4.4 Solution to the BSDE (h,0)

We recall that the BSDE (b, 0) is

T Y, Zs + A8 BUs(Us + Y3 12
Y, — (2821/5 (U, 1 V)27 YsZs + AT Bls (Us + Y )ds
t / R PR A R A
TAT TAT
_ / = dW, — 0,dM,, tel0,T]. (4.45)
tAT tAT

Using the definitions of Y, U, Z and U, we therefore consider the associated decomposed

BSDE in F: find (Y%, =) € S x L2 such that

o Y2ZD A B (HE — VO
|0s[PYY + AsBs?

T
T = / (12Pv2 + Az - V2P A ds
t

T
— / =baw,,  tel0,T]. (4.46)
t
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Proposition 4.7. The BSDE (4.46)) admits a solution (Y% =°) € Sg° x L2.
Proof. Denote by R the process defined by

o2l + MB(HE = D))

Re = |ZY2YP + AJHE — VPP o PYE+ NIBE
t

for t € [0,T). Define the process Y by
~ T S
T = IE[/ Rye~ o ’\“d“ds‘]-}] . telo,1].
t

From (HS), A is bounded, Y? € S§°’+, H e &g, Ve Sp° and fo ZbdW € BMO(P), we
get from Proposition that T € Sp° and the process T + fo Ree= Jo Mudugg ig o square
integrable martingale. Hence there exists a process =0 € LIQF such that

T T
Ti’ — / Rse*fo Audu g _/ EgdWs , tel0,T].
t t

From Ité&’s formula we get that the processes (Y7, =%) defined by
~ t ~ t
TP = Thelidds and = = el e

—t —

satisfy 1' Since = € L% and X is uniformly bounded we get that Bl ¢ L%. Finally,
since TP € Sp° we get that TP € Sp°. O

Finally, we prove the existence of a solutin to the BSDE (b, 0).
Proposition 4.8. The BSDE (3.9) admits a solution (T,Z,0) € S x Lé x L2(\).

Proof. From Theorem and Proposition we obtain that the BSDE ({3.9) admits a
solution (Y, Z,U) € S x L% x L?(\). O

A Appendix

A.1 Proof of Proposition [2.1

We first suppose that X is a nonnegative P(G)-measurable process. For n > 1, we define
the process X™ by

X" = X,An, tel0,T].

Then X" is a bounded G-predictable process, and from Lemma 4.4 in [15], there exist a
P(F)-measurable process X" and a P(F) ® B(R, )-measurable process X" such that

X! = XP"yer + XYM Lsy, t€[0,7T). (A.1)

Since the sequence (X™), is nondecreasing, we can assume w.l.o.g. that the sequences
(X%, and (X®™),, are also nondecreasing. Define the processes X¢ and X by

X% = lim X™® and X°” = lim X™.

n—oo n—o0
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Then X¢ is P(F) ® B(R, )-measurable and X? is P(F)-measurable and sending n to infinity
in , we get

Xy = XMMyer + X)) ysr, t€0,7T7]. (A.2)
For a general P(G)-measurable process X, we write X = Xt — X~ where Xt = max(X,0)
and X~ = max(—X,0) and we apply the previous result to the nonnegative processes X+
and X . From the linear stability of the decomposition (A.2) we get the result. ]

A.2 BMO Stability

Theorem A.1. Let Qi and Qg2 be two probability measures on (2,G). Let M and N be
two continuous (F, Q1)-local martingales with N € BMO(Qq). Suppose that Q1 and Q2 are

equivalent with % Fp = E(N)r. If M € BMO(Qq) then M — (M, N) € BMO(Q3).
Proof. This result is a direct consequence of Theorem 3.6 in [17]. O

A.3 An estimate for conditional moments

Proposition A.1. Let A be a continuous increasing F-adapted process. Fix at > 0 such
that there exists a constant C > 0 satisfying

E[At_As‘Fs] < Ca
for any s € [0,t]. Then, we have for any s € [0,t] and any p > 1
E[|A; — AlP|F] < pllCP

and
1
<
- 1=6C"

E[exp (6(Ar — Ay)) }}"S}

for any § € (0, ).

Proof. Let A be a continuous increasing F-adapted process satisfying E[4; — As|Fs] < C
for any s € [0,¢]. We first prove by iteration that E[|A; — As[P|Fs] < p!|C|P for any p > 1.

e For p = 1, we have by assumption E[4; — A4|F,] < C.

e Suppose that for some p > 2, we have E[|4; — A )P F.,] < (p— 1)!|CP~". Since A is a
continuous increasing F-adapted process we have

t
A=A =p [ 1A= 4, aA,
for any s € [0,t]. Consequently we get

t
B[4 - AP|7] = pB[ [ 14— Apldd,

7|

t
pE[/S E[\At - AU\P—l‘fu} dA, fs}
p!‘C’p_lE[At - As’Fs]

PO .

IA A
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e Since the result holds true for p = 1 and for any p > 2 as soon as it holds for p — 1, it
holds for p, we get

E[|A; — As["|F] < pl|CIP,

for any p > 1.
From this last inequality, we get for any ¢ € (0, %)
1 1
ZUSIPIA, — AP P _
B[S Pl — AP|R] < YI6CP = 157
p=>0 p>0

which is the expected result. O
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