Quantifying uncertainties on excursion sets under a Gaussian random field prior

Abstract : We focus on the problem of estimating and quantifying uncertainties on the excursion set of a function under a limited evaluation budget. We adopt a Bayesian approach where the objective function is assumed to be a realization of a Gaussian random field. In this setting, the posterior distribution on the objective function gives rise to a posterior distribution on excursion sets. Several approaches exist to summarize the distribution of such sets based on random closed set theory. While the recently proposed Vorob'ev approach exploits analytical formulae, further notions of variability require Monte Carlo estimators relying on Gaussian random field conditional simulations. In the present work we propose a method to choose Monte Carlo simulation points and obtain quasi-realizations of the conditional field at fine designs through affine predictors. The points are chosen optimally in the sense that they minimize the posterior expected distance in measure between the excursion set and its reconstruction. The proposed method reduces the computational costs due to Monte Carlo simulations and enables the computation of quasi-realizations on fine designs in large dimensions. We apply this reconstruction approach to obtain realizations of an excursion set on a fine grid which allow us to give a new measure of uncertainty based on the distance transform of the excursion set. Finally we present a safety engineering test case where the simulation method is employed to compute a Monte Carlo estimate of a contour line.
Type de document :
Article dans une revue
SIAM/ASA Journal on Uncertainty Quantification, ASA, American Statistical Association, 2016, 4 (1), 〈http://dx.doi.org/10.1137/141000749〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01103644
Contributeur : Azzimonti Dario <>
Soumis le : mardi 12 avril 2016 - 21:59:33
Dernière modification le : samedi 18 février 2017 - 01:09:40
Document(s) archivé(s) le : mercredi 13 juillet 2016 - 13:10:37

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01103644, version 2
  • ARXIV : 1501.03659

Citation

Dario Azzimonti, Julien Bect, Clément Chevalier, David Ginsbourger. Quantifying uncertainties on excursion sets under a Gaussian random field prior. SIAM/ASA Journal on Uncertainty Quantification, ASA, American Statistical Association, 2016, 4 (1), 〈http://dx.doi.org/10.1137/141000749〉. 〈hal-01103644v2〉

Partager

Métriques

Consultations de
la notice

387

Téléchargements du document

63