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GIPSA-lab, CNRS & Grenoble University, Grenoble, FRANCE

Abstract. Currently the Riemannian geometry of symmetric positive definite (SPD) matrices is
gaining momentum as a powerful tool in a wide range of engineering applications such as image,
radar and biomedical data signal processing. If the data is not natively represented in the form of
SPD matrices, typically we may summarize them in such form by estimating covariance matrices
of the data. However once we manipulate such covariance matrices on the Riemannian manifold we
lose the representation in the original data space. For instance, we can evaluate the geometric mean
of a set of covariance matrices, but not the geometric mean of the data generating the covariance
matrices, the space of interest in which the geometric mean can be interpreted. As a consequence,
Riemannian information geometry is often perceived by non-experts as a "black-box" tool and
this perception prevents a wider adoption in the scientific community. Hereby we show that we
can overcome this limitation by constructing a special form of SPD matrix embedding both the
covariance structure of the data and the data itself. Incidentally, whenever the original data can
be represented in the form of a generic data matrix (not even square), this special SPD matrix
enables an exhaustive and unique description of the data up to second-order statistics. This is
achieved embedding the covariance structure of both the rows and columns of the data matrix,
allowing naturally a wide range of possible applications and bringing us over and above just an
interpretability issue. We demonstrate the method by manipulating satellite images (pansharpening)
and event-related potentials (ERPs) of an electroencephalography brain-computer interface (BCI)
study. The first example illustrates the effect of moving along geodesics in the original data space
and the second provides a novel estimation of ERP average (geometric mean), showing that, in
contrast to the usual arithmetic mean, this estimation is robust to outliers. In conclusion, we are able
to show that the Riemannian concepts of distance, geometric mean, moving along a geodesic, etc.
can be readily transposed into a generic data space, whatever this data space represents.
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DEFINITION OF DATA MATRICES

In many engineering applications we observe a number of realizations in the form of
generic data matrices
Xi € RIC, (1)

where i is the index of the realization, R is the number of rows, indexed by r € {1,...R}
and C is the number of columns, indexed by ¢ € {1,...C}. For example, X; may be a
black and white image of R x C pixels. Besides images, in this work we employ the
example of data describing the realizations of R random variables of which C samples



are recorded, yielding again an R x C data matrix

X1
X;=|:|eRC 2)

XRi

where x,; € RE is the " row of the data matrix, that is, the i realization of the r*"
random variable. We treat throughout the paper the real case, however the case of
complex data is analogous. In general with real-life data we have R # C. In our first
example (images) both the row and columns refer to a spatial dimension. Our second
example concerns brain electrical event-related potentials. In this case we adopt the
convention that the rows of X; hold the potential recorded at electrodes placed on the
scalp (spatial dimension) and the columns hold temporal samples (temporal dimension).
As we will see, the form of covariance matrix we propose embeds both spatial covariance
structures in the first example and both the spatial and temporal covariance structure
in the second example. More in general, for any data matrix X; the special form of
covariance matrix we propose embeds both the row and column covariance structure,
whatever they represent.

STANDARD COVARIANCE MATRICES

Let 1(y) the N-dimensional vector filled with one everywhere and I ) the N x N iden-
tity matrix. Given realization X; there exist two possible sample covariance matrices,
namely, the "row-covariance"

1
Cir = & (XiH(oH) X[ ) € R, 3)
and the "column-covariance"
1
Cie) = R (X H g Hp)X;) € REE, (4)
where |
Hiy) =1y - (NI(N)I(TN)) (5)

is named the centering matrix ([6], p. 66-68 and p. 349-352). The centering matrix Hy,
has N — 1 equal eigenvalues and one null eigenvalue corresponding to eigenvector 1y).
It has also the following properties:

H=H =H?’;H1=H11" =11"H=0 (6)

As the name suggests, the centering matrix centers the signal around zero, that is, the
centered signal has zero mean, i.e., it holds

1 1
¢ HpXili) =0 and - (HXil(g) =0 ™



One may also double-center the data [5] such as
X; H(R)XiH(C)7 )

after which the two conditions X;1) =0 and Xl-Tl(R) = 0 hold simultaneously. Notice
that for the sequel data centering is not a necessary step and we may process as well the
raw X; as they are recorded. The important point here is that if we shuffle the columns
of X; the row-covariance matrix (3) does not change. In the same way, if we shuffle the
rows of X; the column-covariance matrix (4) does not change; thus, neither covariance
matrix taken alone may define exhaustively and uniquely the data matrix X;. However, if
we consider them simultaneously we can do so up to second order statistics. For instance,
the definition is exhaustive if the data follows a multivariate Gaussian distribution.

THE SPECIAL FORM OF COVARIANCE MATRIX

Given realization X; € RE*C consider first the following data expansion:

| X alpgy TXT
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where T = R+ C. Now, consider its associated Gram matrix (covariance structure) scaled
by 1/2a such as

Loyt [
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This matrix holds on the diagonal blocks a regularized and differently scaled version
of the covariance structures (3) and (4) and on the off-diagonal block the original data
matrix itself and its transpose (in the original scaling thanks to the division of the whole
matrix by 2¢). Since it holds both covariance structures, this matrix defines exhaustively
X up to second-order statistics; now any shuffling of columns or rows would result in
a different X;, therefore we have created a bijection between C; and X; such that to
any X; it corresponds one and only one C;. Matrix C; is symmetric by construction,
but not necessarily positive definite. However, there exists a real k¥ > 0 such that C;
is positive definite for any o > k. The larger is o, the stronger the regularization
enforced on the covariance structures, thus in general we may want to choose & as small
as possible provided that the resulting matrices C; are positive definite. The selected
value of o depends on the dynamic range of the original data. Once we have obtained
symmetric positive-definite (SDP) matrices C; we can manipulate them according to our
purpose in the Riemannian manifold of SPD matrices. Now we are able to appreciate
the effect of these manipulations also in the original space of the data. That is to say, any
manipulation of C; on the Riemannian manifold will enforce a unique corresponding
manipulation on its block X;, allowing the interpretation of our manipulations in the
original space of the data matrix X;.



ILLUSTRATIONS

We illustrate the effect of working with the special form of SPD matrix (10) with two
examples.

Example 1

The first example illustrates the manipulation of color and black and white (B&W)
images. A B&W image can be represented by a matrix X; € R¥*C of R x C pixels that
can take integer value O (black) to p (white), where p depends on the resolution of the
image (255 in our example). A color image can be represented by a triplet of images
of the same kind holding each the value of red (R), green (G) and blue (B), which
combination defines the color image. In order not to distort the images we do not center
them and we use (10) with @ = p , which ensures positive-definitiveness of matrices(10).
As an example of manipulation in the Riemannian manifold of SPD matrices we show
how images move along geodesics in this manifold. Given SPD matrices C; and C; in
the Riemannian manifold of SPD matrices we move on the geodesic connecting them

by [2].

2 1/2\B
Ciermenp) = €7 (€200 2) €)% B efo: 1 (11)

For instance, with § = 0 we are at point C;. With f = 1 we are at C,. With f = 0.5 we
reach the geometric mean of C; and C,. Suppose we have a color image at low (spatial)
resolution and the same image in black and white at high resolution. Suppose our goal is
to generate a color image with high resolution (HR) starting only from the color image at
low resolution (LR) and the B&W image at HR. This problem is known in the literature
as pansharpening and arises in satellite imaging. Satellites have several cameras, of
which one camera integrates over a wide light wavelength spectrum, achieving HR but
no color information, and several cameras integrate over a narrow-band light wavelength
spectrum, returning color information at LR. We use a very simple idea: we decompose
the LR color image in its red (R), green (G) and blue (B) component and compute the
special form of covariance (10) for the three LR R,G,B images as well as for the B&W
HR image. Then we move along the geodesic the three R,G,B matrices all toward the
direction of the B&W matrix, as per (11) with a step size close enough to 1 (0.95 in
this example). Finally, we assign to each pixel the saturation of the LR color image.
Figure 1 shows the result of these manipulations. Figure 2 shows the special form of
the covariance matrix (10) for the HR B&W image (top-left), the red component of
the LR image (top-right), the green component of the LR image (bottom-left) and the
blue component of the LR image. In these images the diagonal blocks are the row
and column covariance structures, while the off-diagonal blocks are the image itself
and its transpose, as per construction of (10). Note that since the original picture is
mainly red, the red LR special form of covariance matrix has more detailed covariance
structures as compared to the green and blue components, but still much less detailed
covariance structure as compared to the HR B&W image. We see that moving the special



form of covariance matrix of the R,G,B components along the geodesic toward the HR
B&W image amounts to progressively matching the covariance structures of the three
R,G,B components with the covariance structures of the B&W image, i.e., in this case, it
amounts to increasing the spatial resolution loosing progressively color information; by
construction of (10) such matching is reflected in the image itself (top-right off-diagonal
block).

FIGURE 1. Simulation of satellite images of a car parking. From left to right and top to bottom: a)
a color low-resolution image, b) its B&W high resolution version, c) its color high-resolution version
(here used as a benchmark, but it cannot be generated by the satellite) and d) the color image we have
reconstructed using a) and b) only.

Example 2

The second example estimates for the first time the "geometric mean" of event-related
potentials (ERP). ERP data were gathered using the Brain Invaders brain-computer
interface [4]. X; in this case holds the brain electrical signal recorded for a short time
period (one second in this example) starting at time "zero" corresponding to an external
stimulation sent to the brain (a visual stimulation in this case) and it is named a "trial".
Each row x,; € RE of X; as per (2) is the electric potential difference recorded at the rh
electrode with respect to a cephalic reference. These potential changes are stereotypical
in a given experimental condition and are time- and phase-locked to the stimulus,
1.e., they have similar form and amplitude in different trials. However, an inter-trial
variability is present. Moreover, potential changes are very small in amplitude (a few
uV) as compared to the spontaneous electroencephalography in the background (tens of
uV), hence the signal-to-noise variance ratio (SNR) for a single trial is -20dB or smaller,



FIGURE 2. Color-coded (white=0, black=max) images of the special form of covariance matrix (10)
computed from the high resolution B&W image (top-left), the red component of the low resolution color
image (top-right), the green component of the low resolution color image (bottom-left) and the blue
component of the low resolution color image (bottom-right).

that is to say, the ERP is invisible on raw data. To increase the SNR the ERPs are usually
averaged (sample-by-sample arithmetic mean) in order to enhance the stereotypical
response, while spontaneous activity and artifacts, being not time- and -phase locked
to the stimulus and oscillating around zero, cancel out across trials in the summation. In
this example the spatial structure of a trial depends on what areas of the brain contribute
to the signal and on the electrode placement on the scalp, whereas the temporal structure
depends on the timing of their activity. The data has been presented in [3], to which the
reader is referred for details on data acquisition and experimental procedures. We present
data obtained on one subject for which 58 ERPs were recorded. 16 electrodes (R = 16)
were used. As only preprocessing, data was band-pass filtered in the frequency region
1-20Hz and down-sampled at 128 samples per second (C = 128). Each trial holds one
second of data post-stimulus, therefore our data matrices X; have dimension 16 x 128.
In order to compute the "geometric mean" of ERPs we use (10) with double-centering
(8) as PSD characterization of the trials. Before double-centering the data and applying
(10) (with ¢ = 1), in this example we reduce the dimension of the data by "reducing"
each trial X; such as
X; «+ UTX;V, (12)

where U € RE*F and V € REXQ are taken, respectively, as the first P = Q = 8 left



and right singular vectors of the arithmetic mean of target trials X;. That is, if UT WV is
the singular value decomposition of the average ERP, the columns of U and V span an
orthogonal basis of the signal subspace for the spatial (U) and temporal (V) covariance
of the average ERP. Once data dimension have been reduced by (12) matrices C; (10)
have dimension 16 x 16 only. As algorithm for computing the geometric mean of trials
(10) we use the well-known gradient descent algorithm that can be found, for instance,
in [3]. The geometric mean is known to be more robust to outliers as compared to the
arithmetic mean. In order to verify this feature on ERPs, on one trial only (out of 58
available) we added -500 uV (an aberrant voltage value) to samples 5 to 15 of the first
electrode. This simulates a strong square-wave transient artifact. See caption of Fig. 3 for
the results. Note that the filtered arithmetic mean is very similar to the arithmetic mean
obtained on the raw data. This merely states that the generation of the ERP involves
no more than eight active dipoles (row, spatial components) acting on no more than
eight temporal windows (column, temporal components). This is well-known in the
ERP literature. Processing the data without the simulated outlier the arithmetic mean
(AM) and the geometric mean (GM) are similar, but not identical; in both cases we can
observe three major peaks of the global field power (see pointing arrows in Fig. 3): a
positive deflection at 280 ms, a negative deflection at 450 ms and a positive deflection at
650 ms. For the GM a forth positive deflection at 580 ms is better visible. Also, the first
two GFP peaks are sharper and better separated for the GM mean.

CONCLUSIONS

We have presented a special form of covariance matrix that can be computed starting
from any generic data matrix. Such special covariance matrix de facto allows the ma-
nipulation of generic data matrices using the tools of Riemannian geometry in the SPD
manifold. Furthermore, this special form of covariance matrix is unique for each data
matrix (for a given «), thus may be used, for instance, to classify directly any kind of
data matrix using Riemannian methods as shown for example in [1] and in [3]. In sum-
mary, the presented special form of covariance matrix has two interesting properties:

1. it allows the visualization of manipulations on the Riemannian manifold of SPD
matrices in the original space of the data that have generated the SDP matrices.

2. It allows an exhaustive and unique characterization of a data matrix by describing
both the covariance structure of its rows and of its columns.

The only practical limitation of the method is that each data matrix X; analyzed must be
of the same size. Our first example (satellite images) has illustrated how any data matrix
can be moved along geodesics toward any other data matrix. This may be very useful in
some applications, however the method used in the example is not meant to represent
a competitive option for pansharpening. In the second example we have estimated the
"geometric mean" of 58 ERPs. This is the first time the concept of geometric mean on the
SPD manifold is translated to ERP data. The example demonstrates that the geometric
mean may be robust to outliers, thence such estimation deserves further investigation
in the field of neuroscience. The choice of parameter ¢ is not trivial. It should be high
enough so that the C; matrices are positive and well enough conditioned. On the other
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FIGURE 3. 1-sec average ERP estimations for one subject recorded at 16 electrodes. For consistency
with neurological convention, a positive voltage deflection is plotted downward. The voltage scale of each
plot is arbitrary but consistent within each plot. The shaded grey area is the global field power (GFP), that
is, the total energy (sum of the squared potential across electrodes) at each sample. The GFP is scaled
arbitrarily in each plot. The first three plots are, from left to right, the arithmetic mean of the raw ERPs
X, the arithmetic mean of the ERPs after filtering of the trials as per (12) (given by X; < UTX,V) and the
geometric mean of the trials obtained as the top-right off-diagonal block of the geometric mean of trials
represented by (10), ri-expanded in the original dimension by X; +— UX;V”. The next three plots are the
same three mean estimations obtained with the outlier, which is well visible at the beginning of the trace
of the first electrode only in the arithmetic means.

hand, increasing o amounts to move the points C; on the manifold all toward the point
ol. Such region of the SPD manifold (the hyper plane of SPD diagonal matrices) is
the least curved therein - in fact, this hyper plane is log-Euclidean, see [3] - . Thus,
increasing o will not only progressively reduce the radius of the ball containing the
points C;, but also as o increases we expect to observe less and less difference in
between the geometric and arithmetic mean of the data matrix blocks X; embedded in
these points. This suggests that several "mean ERP" may be estimated varying o within
a suitable range leaving to the investigator the choice of the most suitable mean. Further
research will elucidate the implications on the choice of & we have touched on.
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