Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions

Abstract : In this paper, we tackle the question of discovering an effective set of spatial filters to solve hyperspectral classification problems. Instead of fixing a priori the filters and their parameters using expert knowledge, we let the model find them within random draws in the (possibly infinite) space of possible filters. We define an active set feature learner that includes in the model only features that improve the classifier. To this end, we consider a fast and linear classifier, multiclass logistic classification, and show that with a good representation (the filters discovered), such a simple classifier can reach at least state of the art performances. We apply the proposed active set learner in four hyperspectral image classification problems, including agricultural and urban classification at different resolutions, as well as multimodal data. We also propose a hierarchical setting, which allows to generate more complex banks of features that can better describe the nonlinearities present in the data.
Type de document :
Article dans une revue
ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 2015, pp.1--14
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01103078
Contributeur : Nicolas Courty <>
Soumis le : mercredi 14 janvier 2015 - 13:23:41
Dernière modification le : mercredi 2 août 2017 - 10:11:29
Document(s) archivé(s) le : samedi 15 avril 2017 - 17:24:59

Fichier

ActiveSet-jisprs_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01103078, version 1

Citation

Devis Tuia, Rémi Flamary, Nicolas Courty. Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 2015, pp.1--14. <hal-01103078>

Partager

Métriques

Consultations de
la notice

589

Téléchargements du document

1397