Efficiency of simulation in monotone hyper-stable queueing networks

Jonatha Anselmi 1, 2 Bruno Gaujal 3
1 CQFD - Quality control and dynamic reliability
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
3 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : We consider Jackson queueing networks with finite buffer constraints (JQN) and analyze the efficiency of sampling from their stationary distribution. In the context of exact sampling, the monotonicity structure of JQNs ensures that such efficiency is of the order of the coupling time (or meeting time) of two extremal sample paths. In the context of approximate sampling, it is given by the mixing time. Under a condition on the drift of the stochastic process underlying a JQN, which we call hyper-stability, in our main result we show that the coupling time is polynomial in both the number of queues and buffer sizes. Then, we use this result to show that the mixing time of JQNs behaves similarly up to a given precision threshold. Our proof relies on a recursive formula relating the coupling times of trajectories that start from network states having 'distance one', and it can be used to analyze the coupling and mixing times of other Markovian networks, provided that they are monotone. An illustrative example is shown in the context of JQNs with blocking mechanisms.
Type de document :
Article dans une revue
Queueing Systems, Springer Verlag, 2014, 76 (1), pp.51-72. 〈10.1007/s11134-013-9357-7〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01102977
Contributeur : Jonatha Anselmi <>
Soumis le : mardi 13 janvier 2015 - 17:23:18
Dernière modification le : mercredi 14 décembre 2016 - 01:08:39
Document(s) archivé(s) le : mardi 14 avril 2015 - 11:25:49

Fichier

couplingtime.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jonatha Anselmi, Bruno Gaujal. Efficiency of simulation in monotone hyper-stable queueing networks. Queueing Systems, Springer Verlag, 2014, 76 (1), pp.51-72. 〈10.1007/s11134-013-9357-7〉. 〈hal-01102977〉

Partager

Métriques

Consultations de la notice

231

Téléchargements de fichiers

91