J. Cole, J. S. Findlay, and M. L. Pace, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Marine Ecology Progress Series, vol.43, pp.1-10, 1988.
DOI : 10.3354/meps043001

P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole, Handbook of Methods in Aquatic Microbial Ecology, 1993.

P. S. Tabor and R. A. Neihof, Improved micro-autoradiographic method to determine individual micro-organisms active in substrate uptake in natural waters, 1982.

K. Kogure, U. Simidu, and N. Taga, A tentative direct microscope method for counting living marine bacteria, Can. J. Microbiol, vol.27, pp.415-420, 1979.

F. Joux and P. Lebaron, Ecological implications of an improved direct viable count method for aquatic bacteria, Appl. Environ. Microbiol, vol.63, pp.3647-3653, 1997.

R. Zimmerman, R. Iturriaga, and J. Becker-birck, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, 1978.

P. Dufour and M. Colon, The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications, Hydrobiologia, vol.36, issue.3, pp.211-218, 1992.
DOI : 10.1007/BF00013706

F. Joux and P. Lebaron, Use of fluorescent probes to assess physiological functions of bacteriaat single-cell level, Microbes and Infection, vol.2, issue.12, pp.1523-1535, 2000.
DOI : 10.1016/S1286-4579(00)01307-1

T. H. Chrzanowski, R. D. Crotty, J. G. Hubbard, and R. P. Welch, Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater, Microbial Ecology, vol.230, issue.2, pp.179-185, 1984.
DOI : 10.1007/BF02011424

N. Parthuisot, P. Catala, K. Lemarchand, J. Baudart, and P. Lebaron, Evaluation of ChemChrome V6 for bacterial viability assessment in waters, Journal of Applied Microbiology, vol.83, issue.2, pp.370-380, 2000.
DOI : 10.1046/j.1365-2672.1999.00721.x

A. S. Kaprelyants and D. B. Kell, Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry, Journal of Applied Bacteriology, vol.153, issue.5, pp.410-422, 1992.
DOI : 10.1111/j.1365-2672.1992.tb01854.x

G. Rodriguez, G. D. Phipps, K. Ishiguro, and H. F. Ridgway, Use of fluorescent redox probe for direct visualization of actively respiring bacteria, Appl. Environ. Microbiol, vol.58, pp.1801-1808, 1992.

J. P. Gasol, P. A. Del-giorgio, R. Massana, and C. M. Duarte, Active versus inactive bacteria: size-dependence in a coastal marine plankton community, Mar. Ecol, 1995.

P. A. Del-giorgio, Y. T. Prairie, and D. F. Bird, Coupling Between Rates of Bacterial Production and the Abundance of Metabolically Active Bacteria in Lakes, Enumerated Using CTC Reduction and Flow Cytometry, Microbial Ecology, vol.34, issue.2, pp.144-154, 1997.
DOI : 10.1007/s002489900044

M. E. Sieracki, T. L. Cucci, and J. Nicinski, Flow cytometric analysis of 5-cyano- 2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures, 1999.

G. Schaule, H. C. Flemming, and H. F. Ridgway, Use of 5-cyano-2,3-ditolyl- tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water, Appl. Environ. Microbiol, vol.59, pp.3850-3857, 1993.

J. W. Choi, E. B. Sherr, and B. F. Sherr, Relationship between the presenceabsence of a visible nucleoid and metabolic activity in bacterioplankton cells, Limnol, 1996.

S. Ulrich, B. Karrash, H. G. Hoppe, K. Jeskule, and M. Mehrens, Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, 1996.

M. Karner and J. A. Fuhrman, Determination of active marine bacterioplankton: a comparison of universal 16s rRNA probes, autoradiography, and nucleoid staining, 1997.

J. Pinhassi, F. Azam, J. Hemphälä, R. A. Long, J. Martinez et al., Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation, Aquatic Microbial Ecology, vol.17, pp.13-26, 1999.
DOI : 10.3354/ame017013

K. Bartscht, H. Cypionka, and J. Overmann, Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community, FEMS Microbiology Ecology, vol.28, issue.3, pp.249-259, 1999.
DOI : 10.1111/j.1574-6941.1999.tb00580.x

J. W. Choi, E. B. Sherr, and B. F. Sherr, Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition, Aquatic Microbial Ecology, vol.18, pp.105-115, 1999.
DOI : 10.3354/ame018105

E. M. Smith, Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community, Aquatic Microbial Ecology, vol.16, pp.27-35, 1998.
DOI : 10.3354/ame016027

J. Coallier, M. Prévost, A. Rompré, and D. Duchesne, The optimization and application of two direct viable count methods for bacteria in distributed drinking water, Canadian Journal of Microbiology, vol.40, issue.10, 1994.
DOI : 10.1139/m94-132

P. A. Del-giorgio and G. Scarborough, Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates, Journal of Plankton Research, vol.17, issue.10, pp.1905-1924, 1995.
DOI : 10.1093/plankt/17.10.1905

N. Yamaguchi and M. Nasu, Flow cytometric analysis of bacterial respiratory and enzymatic activity in the natural aquatic environment, Journal of Applied Microbiology, vol.83, issue.1, pp.43-52, 1997.
DOI : 10.1046/j.1365-2672.1997.00165.x

J. J. Smith and G. A. Mcfeters, Mechanisms of INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride), and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12, Journal of Microbiological Methods, vol.29, issue.3, pp.161-175, 1997.
DOI : 10.1016/S0167-7012(97)00036-5

B. F. Sherr, P. A. Del-giorgio, and E. B. Sherr, Estimating abundance and single-cell characteristics of respiring bacteria via the redox dye CTC, Aquatic Microbial Ecology, vol.18, pp.117-131, 1999.
DOI : 10.3354/ame018117

D. Kirchman, F. K-'nees, and R. Hodson, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ, 1985.

P. Lebaron, N. Parthuisot, and P. Catala, Comparison of blue nucleic acid dyes for enumeration of total bacteria in aquatic systems, Appl. Environ. Microbiol, vol.64, pp.1725-1730, 1998.

P. Servais, Bacterial production measured by 3H-thymidine and 3H-leucine in various aquatic ecosystems, Arch. Hydrobiol. Beih. Ergebn. Limnol, vol.37, pp.73-81, 1992.

P. Servais, C. Courties, P. Lebaron, and M. Troussellier, Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry, Microbial Ecology, vol.38, issue.2, pp.180-189, 1999.
DOI : 10.1007/s002489900160

L. Bernard, C. Courties, P. Servais, M. Troussellier, M. Petit et al., Relationships between bacterial cell size, productivity and genetic diversity in aquatic environments using cell sorting and flow cytometry, Microb. Ecol, vol.40, pp.148-158, 2000.

S. Ulrich, B. Karrash, and H. G. Hoppe, Is the CTC dye technique an adequate approach for estimating active bacterial cells?, Aquatic Microbial Ecology, vol.17, pp.207-209, 1999.
DOI : 10.3354/ame017207

W. K. Li, J. F. Jellet, and P. M. Dickie, DNA distributions in planktonic bacteria stained with TOTO or TO-PRO, Limnology and Oceanography, vol.40, issue.8, pp.1485-1495, 1995.
DOI : 10.4319/lo.1995.40.8.1485

P. Lebaron, P. Servais, H. Agogué, C. Courties, and F. Joux, Does the high nucleic-aid content of individual bacterial cells allow to discriminate active cells in aquatic systems?, Appl. Environ. Microbiol, 2001.