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Abstract

Estrogens affect brain development of vertebrates, by impacting activity and
morphology of existing circuits, but also by modulating embryonic and adult
neurogenesis. The issue is complex as estrogens can not only originate from
peripheral tissues, but be locally produced within the brain itself due to local
aromatization of androgens. In this respect, teleost fishes are quite unique because
aromatase is expressed exclusively in radial glial cells, which represent pluripotent
cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is
also strongly stimulated by estrogens and some androgens. This creates a very
intriguing positive auto-regulatory loop leading to dramatic aromatase expression in
sexually mature fish with elevated levels of circulating steroids. Looking at the effects
of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens
inhibit rather than stimulate cell proliferation and newborn cell migration. The
functional meaning of these observations is still unclear, but these data suggest that
the brain of fish is experiencing constant remodelling under the influence of
circulating steroids and brain-derived neurosteroids, possibly permitting a
diversification of sexual strategies, notably hermaphroditism. Recent data in frogs
indicate that aromatase expression is limited to neurons and do not concern radial
glial cells. Thus, until now, there is no other example of vertebrates in which radial
progenitors express aromatase. This raises the question of when and why these new

features were gained and what are their adaptive benefits.
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Introduction

In 1943, Edward A. Doisy (1893-1986) received the Nobel prize for his
discovery of the chemical nature of vitamin K, but Doisy and his colleagues should
also be remembered as the discoverers of estriol, estrone and estradiol [1]. Estradiol
is a cholesterol derivative mostly known for its actions on the cestrus cycle and the
maintenance of female sexual characters. Estradiol was originally considered as a
female hormone [1], until it was found, unexpectedly at the time, that E2 was present
in the urine of the stallion [2]. This finding set the stage for the discovery that
estrogens in fact derive from androgens thanks to the action of cytochrome P450
aromatase, the only enzyme capable of aromatizing the A ring of C19 androgens to
convert them into C18 estrogens. With the exception of suidae, in which there are 5
aromatase genes (also named cyp719a), most vertebrates have a single cyp19a1
gene whose tissue specific expression is driven by multiple aromatase promoters [3].
Apart from the gonads, aromatase is expressed in a large variety of tissues such as
the bones, the skin, the adrenals, the adipose tissue, the fcetal liver, the placenta and
some breast cancers. In addition, aromatase is also well expressed in the central
nervous system of all vertebrates where it is supposed to play complex and still
poorly understood roles [4-6].

Since the seminal work of Alfred Jost on the hormonal control of sex
differentiation in the mammalian foetus [7] and the development of the aromatization
hypothesis [8], our views on aromatase and estrogen functions in the brain are
largely influenced by the mammalian literature. In rodents, there is considerable
evidence that the masculinization effects of testosterone on the organization of male-
specific circuits are caused by aromatization and are in fact mediated by estradiol.
The molecular and cellular mechanisms underlying those estrogenic effects have
been thoroughly studied and involve complex age-, sex- and region-specific actions
on cell proliferation, apoptosis and differentiation [9-11]. This provides evidence that,
at least in this case, estrogens can modulate neurogenesis to cause irreversible
sexual dimorphism of some brain structures. In addition, over the last ten years, a
number of studies reported potential effects of estrogens and xeno-estrogens,
notably bis-phenol A, in either embryonic neurogenesis and/or in the adult
neurogenesis in the hippocampus [12-16]. There has been already several excellent
reviews dealing with the putative functions of aromatase in mammals or birds and the

role of estrogens in modulating brain functions [11, 17-22]. On the other hand, a



number of reports have shown that upon mechanical or chemical lesions, there is an
up regulation of aromatase expression in either reactive astrocytes surrounding the
lesions or in radial glial cells (RGCs) facing the lesions as shown in birds, suggesting
that aromatase expression in cells of the astroglial lineage would be part of the
mechanisms supporting brain repairs after lesion [11, 21, 23-28]. Thus aromatase
can, under certain circumstances, be expressed in cells of the astrocyte lineage,
notably under situation of brain repair, while it is admitted in mammals and birds that
aromatase is expressed primarily in neurons [29, 30].

In contrast to estradiol, testosterone is usually perceived as a male hormone,
but this is not the case in all vertebrates. In fish for example, a wealth of data have
demonstrated that testosterone is present in the blood of both males and females [31,
32] and that fish have some particular non aromatizable androgens, such as 11-keto-
testosterone that is found only in males and triggers male secondary sexual
characters and sexual behavior [33]. Fish are also unique in that they exhibit an
amazing sexual plasticity. They are the only vertebrates capable of total sex change,
either naturally or upon hormonal treatment. Thus, the above-mentioned
aromatization hypothesis probably does not apply to teleost fishes, but it is possible
that this sexual plasticity is linked to some of the remarkable characteristics of
aromatase expression and functions in the brain of teleost fish that will be reviewed
in this article.

Teleost fishes offer an alternative model in which there is a clear
neuroanatomical link between estrogen production in the brain and neurogenesis.
Indeed, in teleost fishes, radial glial cells strongly express aromatase and the
questions are to understand when and why this feature emerged during evolution.
Whether this particular situation is found only in fishes or is also observed in basal
tetrapods is unclear. Recently released information on frogs will also be examined in
this review for evolutive and comparative purposes.

1- Estrogen receptors, aromatase and radial glia in the brain of fish

Teleost fish (Teleostei) represent one of three infraclasses of Actinopterygians,
corresponding to the so-called ray-finned fishes. This is a highly diversified group that
arose 280-250 millions years ago and comprises around 26,000 species in about 40
orders and that include most of the living fishes, including the economically-relevant
species that are the topic of intense research. A major characteristic of these animals

is that, compared to tetrapods, they experienced an additional whole genome



duplication that took place early in the emergence of the group. As a result of this
duplication, known as the 3R [34], teleost fish have potentially twice as much genes
than other vertebrates (2:4:8 rule). Although many of these duplicated genes have
been lost during evolution, some of them are conserved and developed new or
exaggerated functions.

1.1- Estrogen receptors in teleost fishes

The first estrogen receptor cloned in fish was that of the rainbow trout [35, 36],
soon after the cloning of the human ERa (esr1) [37]. Compared with the mammalian
ERa, this rainbow trout (rt ERa) of 65 kDa, named ERa short, exhibited at the N-
terminus a deletion of 45 amino acid residues corresponding to the A domain.
However, subsequently a longer ERa form of 71 kDa was retrieved from an ovarian
library [38, 39]. By S1 nuclease protection assays, it was shown that these two
isoforms derived from two classes of mMRNA generated by an alternative usage of two
promoters. Consequently, these mRNA species differ in their 5’-untranslated region
and the presence of an ATG in exon 2a permits adding 45 residues at the N-terminus
of rtERa-long. Analysis of the transcriptional activities of these isoforms in a yeast
cell system demonstrated that, in contrast with rtERa-long, rtERa-short exhibits a
ligand-independent transactivation capacity representing 15-25% of the full-length
receptor activity. Structural analysis of the AF1 function showed that as it is the case
of the mammalian ERa, in the absence of ligand, the A domain of the rtERa-long
interacts with the C-terminal region in the absence of ligand, causing inhibition of the
AF1 activity located in the B domain [38, 39]. Studies in rainbow trout showed that
the full-length ERa is expressed in liver, brain, pituitary, and ovary, whereas
expression of the ERa short is restricted to the liver, demonstrating a tissue-specific
expression of these two ERa isoforms [40].

Following these pioneer studies and the discovery of two estrogen receptors in
mammals [41], it rapidly appeared that teleosts have not only one ERa, but also two
ERRB resulting from an ancient duplication [42, 43]. Zebrafish, probably the best-
documented fish, has three ER, two ERR, ERR1 (esr2b), and ER[R2 (esr2a) and one
ERa (esr1). These three estrogen receptors bind estradiol with a high affinity within
the 0.5-0.7nM range, similar to what has been observed in mammals [43]. They also
have transactivation capacity on reporter genes bearing estrogen responsive element,
with ERB2 exhibiting a little more efficiency than the other two receptors, starting at

107"%-10""M. All three ERs are expressed in a wide variety of tissues including the



brain [43].

One of the characteristics of ERa, at least in the liver, is its spectacular up
regulation by its own ligand. This phenomenon has been first deciphered at the
molecular level in the rainbow trout and is the basis for the strong induction of
vitellogenin expression in the liver upon estrogenic modulation [35]. Such an up
regulation of ERa is also observed in the brain, but the induction is much lower than
what is observed in the liver [44].

1.2 - Estrogen receptors in the brain of teleosts

Estrogen receptor expression has been studied in detail in a limited number of
species, in particular the rainbow trout [45, 46], the zebrafish [43, 47, 48], the
European sea bass [49, 50] and the medaka [51, 52]. As already documented in
mammals, ERa is well expressed in the classical neuroendocrine regions of the brain
such as the preoptic area and the mediobasal and caudal hypothalamus, whereas
ERRBs have a wider distribution in particular along the brain ventricles of the
telencephalon and diencephalon. In the preoptic area and the mediobasal
hypothalamus, it is very likely that the three receptors are expressed in the same
cells (F. Adrio et al., unpublished). Antibodies against the fish estrogen receptors
have been developed only in rainbow trout and they are limited to ERa. Although
these antibodies permitted to obtain excellent stainings in line with the distribution of
the mRNAs, they were rapidly exhausted due to low titer and a necessary purification
enrichment step [45, 46]. Due to the lack of good antibodies, the identity of cells
bearing estrogen receptor expression is not entirely clear. However, there are
evidences that ERa is expressed primarily in neurons, in particular in dopaminergic
neurons of the preoptic region [53], GABA neurons [54], GnRH 3 neurons [52] and
kisspeptin neurons [52, 55, 56]. Because expression of cyp19a1b, encoding
aromatase B in fish, is so strongly regulated by E2 through an ER dependent
mechanism (see below), it would be expected to observe ER in the RGC. In fact, by
increasing the sensitivity of the in situ hybridization techniques, through either
amplification of the signal or using radioactive probes with longer exposure, it
appears that ERR is likely expressed along the brain ventricles, notably in the
telencephalon, preoptic area and mediobasal hypothalamus, but to much lower levels
than in neurons of the preoptic area and hypothalamus (Figure 1).

1.3 - Radial glia progenitors express aromatase in teleost fishes



A striking feature of the brain of teleost fish is the fact that brain aromatase is
massively expressed in radial progenitors of adult animals. Among vertebrates,
teleost fish are unique in having two aromatase genes [57], which clearly derive from
the whole genome duplication that occurred at the emergence of the teleost lineage
[58]. One of these genes, cyp19ala, encodes aromatase A, which is expressed
mainly in the gonads, aromatase B, the product of the cyp79a1b gene, is mostly
expressed in the brain, but also in the gonads [57]. Strikingly, it was found, first in
toadfish [59] and then in rainbow trout and zebrafish [60, 61], that the aromatase B
protein is only expressed in cells resembling radial glial cells. Such cells are present
in the embryonic brain of all vertebrate species, but in mammals, they tend to
disappear at birth to become star shaped astrocytes [62-64]. On the contrary, such
cells remain abundant in the brain of adult fish, amphibians, birds and reptiles [60,
65-68].

The finding of aromatase expression in RGCs came as a surprise as no one
had ever reported such an expression pattern in any other vertebrate. In contrast, in
birds and mammals, it is admitted that aromatase expression is strictly confined to
neurons under physiological conditions [29, 30]. When it was first reported that
aromatase is expressed in RGC, virtually nothing was known on this particular cell
type in the brain of any adult non-mammalian vertebrate. Since the pioneer studies
performed in the late 70s and early 80s by the group of Gloria Callard it was known
that the brain of fish exhibits a very high aromatase compared with other vertebrates
[69, 70]. Such a high aromatase was later reported in other species of fish, but the
precise sites of expression were unknown [71-74]. It is only in 2001 that, intriguingly,
aromatase mRNA and protein were reported in GFAP-positive cells and not in
neurons of the toadfish [59, 75]. This finding was later confirmed in several other
species such as the rainbow trout, the zebrafish, the pejerrey, the Japanese eel, and
the medaka [47, 60, 61, 68, 76-78]. In all of these species, aromatase expression is
restricted to RGCs which, according to the original definition of early neuroanatomists,
are defined as cells exhibiting a small nucleus near the ventricular layer and long
processes running radially through the parenchyma and terminating by endfeet at the
periphery of the brain [79, 80]. These cells were originally believed to serve as a
scaffold for migration of new neurons born in the neuroepithelial region [81]. However,
since then, a wealth of studies has documented the fact that these cells belong to the

astroglial lineage and are actually pluripotent cells [63, 82, 83].



Again, the zebrafish is probably the best-documented species when it comes
to aromatase expression and regulation in the brain of fish. In this species the
evidence for aromatase expression in RGCs is based on mRNA in situ hybridization,
immunohistochemistry using two different kinds of antibodies to zebrafish aromatase
B (Figure 2A) and GFP expression driven by cyp19a1b promoter [47, 48, 60, 68, 84].
All these techniques confirm each other and point to the RGCs as the unique cell
type expressing aromatase in the zebrafish brain. Such cells are particularly
abundant in all regions of the telencephalon, at all levels of the preoptic region, in the
thalamus and the hypothalamus, in the optic tectum and the torus semicircularis.
They are also found around the fourth ventricle and in the spinal cord all the way
down to the tail. Very interestingly, in the zebrafish the cyp79a1b messengers are
observed in the soma lining the ventricles, but also in the radial processes and in the
endfeet lining the meninx, where they seem to accumulate [48]. Surprisingly, in the
brain of the rainbow trout, messengers accumulate around the cell nuclei and did not
appear to be massively exported in the radial processes [60]. The reason for these
species differences are unknown at the moment. While no sexual dimorphism in
aromatase expression was found in zebrafish, this is not the case in medaka where,
in most regions, females have a greater degree of expression in the ventricular layer
compared to males, with the optic tectum exhibiting the most conspicuous
predominance in females [78]. It must be pointed out that studies in European sea
bass did not evidence major sexual dimorphism in aromatase activity [74]. It is
possible that sex dimorphism is more obvious in medaka, a species with a strong
genetic sex determination, unlike zebrafish and sea bass.

1.4 - Aromatase expression in the brain of zebrafish is strongly up-regulated by
estrogen receptors

In mammals, at least in rodents, aromatase expression and activity is highest
during embryonic development and then decrease in adults [85, 86]. It is believed
that this peak corresponds to the period of brain sexual differentiation which, at least
in rodents, relies on aromatization of testosterone produced by the XY embryos [8].
In contrast, aromatase activity and expression in the brain of the zebrafish, and many
other fish species, remain low during the embryonic period and start increasing
during the period of sexual maturation corresponding to high levels of circulating
sexual steroids such as estradiol and testosterone [74, 87-89]. In embryos,

aromatase expression can be dramatically increased by exposing the animals to any



estrogenic compound, including at very low doses [60, 84, 90]. In fact, the cyp79a1b-
gene is so sensitive to estrogens that it has been proposed as a biomarker for
estrogenic exposure [90]. For example, the EC50 calculated from dose-response
curves of GFP induction in transgenic cyp19a1b-GFP embryos are 0.48 nM and
0.013 nM for 17p-estradiol and 17a-ethinylestradiol, respectively. This relationship
between sex steroids levels and aromatase activity has been established long time
ago, but it is only in 2005 that molecular dissections of the cyp79a1b promoter
showed that an estrogen-responsive element (ERE) located upstream of the
transcription start site is absolutely mandatory for up regulating of aromatase
expression by estrogens [60]. The presence of functional ER is also mandatory as
shown by in vitro and in vivo studies [60]. Surprisingly, aromatase expression is not
observed at all in the numerous neurons expressing ER in any species of fish [40, 43,
45, 61], indicating that there is a strict cell specificity of expression of aromatase B in
the brain of fish and that, while ER expression is necessary, it is not sufficient. In fact,
it was also shown that a sequence, named GxRE, located just upstream the ERE is
equally mandatory for the response of the cyp79a1b gene to estradiol [91]. The
hypothesis, which is supported by several lines of evidences is that the GxRE would
bind a glial specific factor present in cells of the astrocyte lineage. Indeed, first
experiments aiming at dissecting the molecular mechanisms of the estrogenic
regulation of cyp19aib in zebrafish showed that estradiol promotes expression of
luciferase from a cyp79aib-luciferase reporter construct, transfected together with
any estrogen receptor, only in cells of the astrocyte lineage, such as U251-MG
human astrocytes [60, 91]. Additionally, it was shown that, as the GXRE harbours a
perfect half binding-site for nuclear receptors (AGGTCA), it is likely that such
transcription factors could cooperate with ERs in the context of the cyp19a1b gene. It
was also evidenced by gel shift that the GXRE sequence binds nuclear extracts from
cells of the astroglial lineage [91]. However, the identity of this factor still remains
uncovered. The fact that the RGC phenotype is absolutely mandatory for aromatase
expression is also demonstrated by the observation that, in the transgenic cyp719a1b-
GFP fish, GFP expression is rapidly lost in the new-born neuroblasts generated by
RGC proliferation when they start migrating [90].

1.5 - Aromatase-expressing radial glial cells proliferate and give birth to

neurons



It has been know for some time that, in parallel to its dramatic aromatase
expression, the brain of fish keeps growing in adult and exhibits an exceptional
neurogenic activity in many brain regions [92-94]. Thus, the zebrafish is now a well-
recognized model for studying adult neurogenesis under constitutive and
regenerative conditions [68, 95-102]. Using combinations of BrdU treatment, PCNA
and aromatase as a marker of RGCs, it was shown that aromatase-positive radial
cells actively divide to generate newborn cells in many forebrain regions [68]. Such
newborn cells can further divide, as shown by BrdU-PCNA (Proliferating Cell Nuclear
Antigen) double staining (Figure 2A-C). It was also demonstrated that, over time,
new-born cells move away from the ventricles, and migrate along the radial
processes, before differentiating in neurons [68, 95, 98, 100].

Given that the estrogen-synthesizing enzyme aromatase B is only expressed
in RGCs, acting as neural precursors, this strongly suggests a role for estrogens in
constitutive and reactive neurogenesis.

2 - Effects of estrogens on neurogenesis in fish
2.1- Adult neurogenesis

Recent studies addressed the question of the potential roles of estrogens on
zebrafish adult neurogenesis by manipulating the levels of circulating estradiol. For
example, treating animals with the aromatase inhibitor ATD caused total
disappearance of gonadal and brain aromatase activities and a strong decrease in
cyp19ai1b gene expression, as expected. Evaluation of the number of PCNA positive
cells in both males and females showed a consistent increase in brain cell
proliferation that was significant in a limited number of regions [103]. However,
inhibition of estrogen receptors using ICI 182,780, which acts as a high affinity
antagonist for nuclear receptor (IC50 = 0.29 nM) but presents GPR30 agonist
properties, caused a significant increase in the number of PCNA positive cells in the
olfactory bulb/telencephalon junction and the mediobasal hypothalamus [103]. These
data, suggesting that estradiol inhibits rather than stimulates cell proliferation, were
reinforced by the fact that, on the contrary, 17p-estradiol treatment induced a very
significant decrease in PCNA positive cells in the telencephalon, mediobasal
hypothalamus, periventricular pretectal nucleus and along the posterior recess of the
hypothalamus [103]. Furthermore, fish exposure to 17B-estradiol also results in a
decrease of newborn cell migration at the olfactory bulb/telencephalon junction and in

the mediobasal hypothalamus. Cell survival was also affected by estradiol treatment
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resulting in a slight survival decrease at the junction between olfactory bulb and the
telencephalon. Concerning cell differentiation, no differences were reported in this
work [103]. Although these data need to be reinforced, they all suggest that
estrogens inhibit cell proliferation and cell migration in adults.

Recently, cell proliferation pattern in the forebrain of adult zebrafish was
reported to be sexually dimorphic [104]. Ampatzis and colleagues showed that
proliferation is higher in females in the medial zone of the dorsal telencephalic area,
the pretectal nucleus and the periventricular nucleus of the posterior tuberculum,
whereas it is stronger in the dorsal zone of the periventricular hypothalamus in males
[104]. Such data could reflect sex differences in the steroid and neurosteroids
microenvironment and signalling beaten males and females.

2-2 Reparative neurogenesis

In mammals and birds, a wealth of data relates the role of estradiol in the
cellular and molecular mechanisms underlying the neurogenic activity that takes
place under physiological conditions [13, 105-107] but also in the context of brain
repair. Following mechanical and chemical lesions induced in cerebral parenchyma,
de novo expression of aromatase is described in reactive astrocytes around the
injury site in mammals [5, 108] and in reactive astrocytes and radial glial cells in birds
[22, 26, 109] while under normal condition, the enzyme is mainly localized in
neuronal cells. The induction of aromatase mRNA and protein at the injury site is
associated with the onset of a high proliferative activity that is thought to contribute to
the brain repair, suggesting a strong link between locally produced estradiol and
reparative mechanisms. In contrast to the poor capability of the mammalian brain to
regenerate after injury, the fish brain possesses a remarkable capacity to reconstruct
entire brain regions [110]. Different studies in zebrafish have documented the fact
that lesion of the telencephalon causes very high proliferative activity in the
parenchyma and along the brain ventricles, corresponding mainly to the activation of
microglia and oligodendrocytes [111, 112] and to a certain extent of radial glia [103].
However, aromatase B does not appear to be up-regulated in the proliferating cells
[103]. An interesting observation is that, in contrast to birds and mammals,
aromatase B expression was rather inhibited in the vicinity of the damaged area. This
is consistent with the observed inhibitory effect of estradiol on cell proliferation under
physiological situations [103]. Furthermore, treating zebrafish with estradiol or ICI

182,720 does not appeared to affect cell proliferation after lesion [103]. However, E2
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impacts on newborn cells differentiation or migration have not been investigating and
cannot therefore be excluded.

Taking advantage of the cyp79a71b-GFP transgenic fish line [84], our
laboratory also showed that estradiol treatment on brain slices results in a rapid
modulation of PGC and neuron activities [113]. Indeed, challenging these
preparations with 17B-estradiol leads to a rapid increase of intracellular calcium
levels in radial glia along the posterior recess of the hypothalamus and also in other
cell-types probably corresponding to neurons according to their localization. Such
effect of estrogens could possibly occur through the membrane-associated receptor
G protein-coupled estrogen receptor 1 (GPER or GPR30), recently reported to be
expressed in the adult zebrafish brain [114]. However, further investigations are
necessary in order to confirm the presence of Gper in RGCs and to dissect the
mechanisms of the rapid modulation on neural stem cell activity and neurons.

2 -3 Embryonic neurogenesis

We and other groups have shown, that the three estrogen receptors (esr7,
esr2b and esr2a) are expressed during early development in zebrafish [115-117].
The messengers for the three receptors, in particular esr2a, are present in the eggs
where they are maternally inherited. Transcripts levels drop down around 4-6 hpf
(hour post-fecundation) and start increasing again when the embryonic genome is
activated. All three receptor transcripts show a marked increase between 24 hpf and
48 hpf [117]. Furthermore, esr2a, esr2b and to a lower extent esr1, are detectable by
in toto hybridization in different brain areas, mainly the hypothalamus and the
preoptic area between 24 and 48 hpf [117]. In addition, cyp79a7b mRNA show
parallel increase, notably between 24 and 48 hpf indicating that aromatase B
expression temporally correlates with that of esr [117]. Furthermore, using the
cyp19a1b-GFP embryos, we could show that GFP expression in RGCs can be
induced as early as 24 hpf, an effect that can be blocked by ICI182,780, indicating
that esr are already functional at this time [117].

These results were confirmed recently by use of the morpholino (MO)
approach showing that esr are fully functional at early developmental stages and
exert regulatory actions on estrogen-target genes. Surprisingly, esr2b was the only
MO that could block the induction of cyp79a1b [118]. The development of the lateral

line was also studied using MO to block via esr2a showing that this receptor is
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essential for hair cell development, an effect that could involve interaction with the
Notch signalling pathway [119].

Finally, recent studies also suggest a role of the G-protein-coupled estrogen
receptor 1, Gper or GPR30 estrogens in brain development of zebrafish [120]. Gper
seems to be strongly expressed in various regions of the developing brain and Gper
knockdown by specific morpholinos leads to defects in brain development, causing
decreased proliferation in the brain, increased apoptosis and defects in development
of sensory and motor neurons [120].

3 - Effects of estrogenic endocrine disrupting chemicals on brain development
in fish

Because of the above mentioned data showing that estrogens can influence
neurogenesis in adults, the impact of estrogenic endocrine disruptors (EDs) on brain
development requires attention. It is now clear that the developmental window is
critically influenced by many exogenous factors and because these species are very
precociously exposed, the structural and functional alterations induced by Eds may
lead to significant changes and developmental failures. In light of the observations
made in the natural environment, most studies covering the impact of EDs on fish
reproduction have focused on the peripheral effects of these molecules. Thus, many
data provide information about alterations of gonadal development, egg quality,
sperm quality or vitellogenesis disruption [121]. Although the peripheral impacts of
EDs are clearly established, their actions at the level of the brain are not sufficiently
explored and need further considerations.

Based on the extreme sensitivity of the cyp79a1b gene to estrogens, we have
used transgenic zebrafish to screen the potential impact of a large spectrum of
natural and synthetic molecules (including estrogens, progestagens, androgens) or
industrial chemicals (bisphenol A, pesticides). Approximately half of the 45
compounds investigated in that study stimulate in a dose-dependant manner the
cyp19aib-driven GFP expression in radial glia in 5 days larvae. This indicates that
many chemicals present in the water can readily access the brain and modify gene
expression in brain stem cells. The cyp19a1b gene is not the only gene to be
modulated by estradiol or estrogenic EDs. Estradiol, bisphenol A and
diéthylstilbestrol also up-regulate expression of ER [116, 122] and nuclear

progesterone receptors in zebrafish embryos [123]. One can expect that a large set
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of genes is affected by early exposure to estrogens and xenoestrogens with a wide
spectrum of consequences in term of brain development and functioning.

Among the potential EDs affecting brain ontogeny, 17a-ethinylestradiol (EE2)
is a potent estrogenic molecule widely used in contraceptive pills production and
therefore found in waters released from water treatment units. It has been shown that
low doses of EE2 disrupts the development of GnRH neuronal network in zebrafish
embryos and larvae by increasing the number of GnRH-immunoreactive neurons and
fibers in the forebrain and by modifying the migration pattern of GnRH neurons [124,
125]. However, the underlying mechanisms are unknown. Recent data in our
laboratory indicate that exposure to low concentrations of EE2 (107" and 107'M)
causes abnormal development, increase esr and npr transcript levels and reduces
expression of pcna in the brain (A. Nasri et al., unpublished).

While 4-nonylphenol (4-NP) is not estrogenic, nonyphenol mixtures released in
water from manufacturing industries and wastewater treatment units possess weak
estrogenic activity [90]. The potential effects of NP mixtures on brain development
have not been studies so far, however similar to EE2, NP mixtures affect the
development of the GnRH systems in developing zebrafish [115[90].

Bisphenol A (BPA), a plastic monomer, has been identified as a xeno-estrogen
that can interfere with endogenous estrogen signalling. Since 1950, BPA is a
component of a large variety of consumer products, including food containers. Whole
mount in situ hybridization has revealed that BPA (5 to 10 uM) induces a strong
expression of aromatase B in the brain of developing zebrafish, an induction that is
largely dependant of ER nuclear receptors [126]. In the EASZY screening assay that
makes use of cyp719a1b-GFP transgenic zebrafish, the EC50 of BPA is 3 uM,
confirming that BPA behaves as a weak estrogen. At this concentration, found in
some locations near BPA manufacturing sites [127], BPA exposure for 5 days
induces expression of GFP in radial glial cells indicating that some disruption occurs
with unknown consequences [126]. Whole mount in situ hybridization has revealed
that BPA exposure (10 to 75 pM) impairs the normal development during early
embryogenesis leading to cell fate determination disruption and organogenesis
defects [126]. In BPA-exposed zebrafish, there is a clear disturbance of the early
brain regionalization processes as revealed by inappropriate and unorganized
expression of neuronal organization markers as pax2a, otx2, krox2 and eng2b. As a

result of these abnormal expressions of regionalization markers during 24 hours of
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BPA-exposure, rhombomeres are completely unstructured, the mid-hindbrain
boundary minimized in size as the midbrain structure [126]. It must however be
pointed out that the dose of BPA (50uM) employed in this study is rather high. Still in
zebrafish embryos, BPA treatment (1-15uM) also had adverse impact on motor
behavior. The locomotion changes induced by BPA results from an abnormal axonal
growth of spinal motoneurons leading to a strong deficit of spontaneaous and
stimulated swimming activity of embryos and larvae [128, 129]. The use of
transcriptomic analysis of BPA-exposed zebrafish larvae of 5 days reveals that
several muscular and neuronal markers (including synaptic long-term potentiation or
axonal guidance molecules) may be de-regulated by the xeno-estrogen larva [128,
129]. BPA exposure (from 10°M to 10™*M) was also shown to cause dose-dependent
malformations of the otic vesicle in zebrafish and in Xenopus embryos. However, this
effect seems to be independent of estrogen receptors or thyroid-hormone receptors
[130]. BPA (from 0,01 to 1 uM) probably permanently affects brain and behavior
development during early life-stages because transient exposure of zebrafish
embryos from 8 hpf to 120 hpf elicits in adults long term learning deficits as
evidenced by T-maze testing protocol [131]. Recently, it has been shown that early
exposures to halogenated-BPA analogs have permanent effects on lipid metabolism
in the larvae but also in juveniles. The accumulation of lipids observed in zebrafish
treated with halogenated-BPAs correlates with PPARYy (peroxysome proliferator-
activated receptor gamma), a key nuclear factor in the regulation of adipogenesis.
These results strongly suggest that BPA and its analogs may constitute obesogenic

compounds whose role in the onset of obesity is increasingly suspected [132].

4 - Estrogen receptors and aromatase in the brain of amphibians

Until recently, there was no accurate information on the sites of aromatase
expression in amphibians, which share common ancestors with the large synapsid
group including all mammals. Therefore, it is relevant here to review the available
information regarding the situation in amphibians.
4 .1- Estrogen receptors in the brain of amphibians

Two (ERa, ERB) or three (ERa1, ERa2, ERp) isoforms of estrogen receptor
has been identified in Xenopus Laevis or Xenopus tropicalis, respectively [133-136].

Analyses of the estrogen receptors expression in the central nervous system were
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restricted to specific developmental stages (NF51; 60 and 66) and based on Q-PCR
studies [137, 138]. In Xenopus tropicalis, ERa and ERM[ genes are expressed at low
level in the brain at larval stage 51 (before gonadal sex differentiation which occur
between NF54 and NF59 stages), but become extremely abundant in the larva at
stage 60 (metamorphic climax). They remain expressed at relatively high levels after
metamorphosis, i.e at juvenile stages [137, 139]. The precise distribution of estrogen
receptors mRNA or proteins have not been studied during development in amphibian
species. To the best of our knowledge, estrogen receptors have only been localized
in adult animals, using in situ hybridization, in the brain of the tungara frogs
(Physalaemus pustulosus) and, using immunohistochemistry methods, in the male
roughskin newt (Taricha granulosa) [140-142].. In Physalaemus pustulosus, ERa and
ERB expressions were found mostly in limbic areas (e.g. preoptic areas,
hypothalamus, nucleus accumbens, striatum, septum, amygdala), parts of thalamus,
in the laminar nucleus of the torus semicircularis and the pallium (medial and dorsal).
Males and females had similar anatomical distributions of ERa and ERR expression
in the brain. Importantly, no sex differences in the expression levels of ERs were
found in the preoptic area, hypothalamus and septal region. However, females had
higher ERR and ERa expression than males in the laminar and principal nuclei of the
torus semicircularis [140]. ERR expression was many-fold higher than ERa in the
preoptic area suggesting that ERR plays an important role in modulating sexual
behavior in anurans.
4.2- Cyp19a1 gene expression and regulation in the brain of amphibians

In amphibians also, there is now clear evidence that the brain is a
steroidogenic organ, and that neurosteroids might play important developmental or
physiological roles in the brain [143-145]. Studies based on in vitro biochemical
analyses performed with brain extracts identified estrogen synthesizing enzyme
activity, and therefore possible neuroestrogen synthesis in various adult brain areas
of some amphibian species. Briefly, aromatase activity has been detected in the
preoptic area, hypothalamus and amygdala of Rana catesbeiana (Necturius
maculosus) [69]. A high level of aromatase activity was also detected in the
hypothalamus of female Rana catesbeiana [142].

The cytochrome P450 aromatase, is encoded by a single cyp79a1 gene in
amphibians. In Xenopus laevis and Pleurodeles waltl, cyp19al1 gene expression

leads to two gonadal and one brain transcripts differing in their 5-untranslated region
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(UTR), but containing an identical open reading frame [146, 147]. During
development, brain expression of cyp19a1 was investigated by RT-PCR experiments
in Xenopus [146, 148-150] and Pleurodeles waltl [151]. In both species, the cyp19a1
gene is expressed in the brain from early developmental stages to metamorphosis
and no sex differences in aromatase activity was detected at any larval stages [151].

Recent results in Xenopus laevis provided the first detailed information on the
distribution of cyp79a’ mRNAs in amphibian during pre- and in post-metamorphic
development. It was found that cyp79a1 expression in the brain is initiated from early
larval stage (stage NF42) and remains elevated until post-metamorphic stages [152].
The highest expression was detected during developmental stages in the preoptic
area and in the caudal hypothalamus; two regions known for their implication in
calling and sexual behavior. Minor sites of cyp79a1 expression were also detected in
the septum, bed nucleus of the stria terminalis, amygdala and ventral thalamus.
Importantly, using various cellular markers, it was fond that cyp79a1 transcripts are
strictly expressed in neuronal cells, and not in radial glial or progenitor cells located in
the ventricular layers of developing Xenopus laevis brain. Recent data also provide
evidence that adult males and females exhibit similar expression levels and
distribution patterns (P. Coumailleau et al., unpublished). Several attempts were
made to localize the aromatase protein, notably in Rana esculenta (Pelophylax
esculentus) using commercial antibodies [153]. These data, based on
uncharacterized heterologous antibodies, do not fully match aboved in situ
hybridization data based on the use of specific X.laevis riboprobe. It thus appears
that similar to mammals, immunohistochemistry of aromatase is difficult to achieve in
amphibians.

The molecular mechanism underlying the brain-specific cyp719a1 gene
expression in Xenopus laevis is depending on a recently identified brain specific
promoter, promoter L|f, exhibiting potential cis-elements for several transcriptional
factors, such as Oct-1, c-Myc, the GATA gene family, but no estrogen-responsive
element [154]. Virtually nothing is known on the potential effects of steroids on brain
sexual differentiation. It is admitted that gonadal aromatase plays a key role in the
sex differentiation of Xenopus gonads [155-157]. In this later species, aromatase
activity level fluctuated throughout the reproductive cycle in females with the highest
levels during the breeding and recovery periods [142]. Sex steroids are involved in

gonadal differentiation in frogs [158] and amphibians, including Xenopus laevis, are
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relatively sensitive to steroid hormones when exposed during the critical period of
sexual determination and differentiation of the gonads [155, 157]. Interestingly, in
Xenopus laevis, cyp19at is expressed at 5-fold higher level in the brain than in the
gonads at the time of sex differentiation [146, 150].
4.3- Endocrine disrupting compounds (EDC) in amphibians

Aromatase is considered as one of the potential targets of the many
environmental chemicals (EDC) that can interfere with the endocrine system affecting
the reproductive biology of aquatic vertebrates [159-161]. In Xenopus, EDCs can
interfere with the hypothalamic-pituitary-gonad (HPG) axis and affect various aspects
of reproduction via (anti)estrogenic and (anti)androgenic modes of action [162-164].
In addition, a significant correlation exist between exposure to potent xenoestrogens
and delay of metamorphosis in various amphibian species [161, 165]. The
mechanism by which estrogenic substances inhibit larval development might be due

to a crosstalk between estrogen receptor and thyroid hormone receptor [161, 166].

5 — Evolutive consideration and conclusions

The data obtained recently in Xenopus [152] clearly highlight the apparently
unique features of the teleost brain regarding aromatase expression and regulation in
radial glial cells. There is a single report in the mammalian literature suggesting that
aromatase and ER are expressed in RGCs of the developing cortex of mouse where
estrogens would stimulate cell proliferation [167]. However, despite our efforts, we
could not confirm theses observations. Thus, teleost fish remain the only vertebrates
in which aromatase is so strongly and exclusively expressed in RGCs.

Unfortunately, very little is known in basal groups of vertebrates, which makes it
difficult to know what exactly was the ancestral situation in basal vertebrates and how
this situation might have evolved over time. Clearly, the role of aromatase and
estrogen receptors in the brain of lampreys and sharks would bring valuable
information from an evolutive point of view. To our knowledge, there is no report
regarding aromatase in lamprey, but it is know that the dogfish exhibits significant
aromatase and 5a-reductase activity in the brain [69]. In the stingray, a chondrostean
fish, a single gene has been cloned with expression in both the brain and the gonad.
In the brain, transcripts were found in all major brain divisions, however the precise

sites of expression are unknown [168].
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Recently, information was released on the Japanese eel, a basal teleost
species, belonging to the Elopomorph order in which there is a single cyp19a1 gene,
which is expressed in both the gonads and the brain [169]. Specific antibodies could
be produced against the aromatase protein produced by this single gene and it was
found, very interestingly, that both cyp79a1 transcripts and protein were
unambiguously present in RGCs of both males and females [76]. It was also shown
that aromatase expression in the brain is up-regulated by sex steroids notably
estrogens [170, 171 ]. Thus, this single gene most likely has a brain promoter driving
expression and regulation of aromatase in a way similar to what is found in other
teleosts with two cyp79a7 genes. As it is known that eels have 8 hox complexes
[172] and thus underwent the teleost specific whole genome duplication, it is
suggested that from an ancestral gene having brain and gonad functions similar to
those found in other teleosts, the 3R whole genome duplication gave birth to two
copies that evolved differently in Elopomorphs (Eels) and other teleosts. Soon after
the duplication, eels probably lost one copy of the cyp79a71 gene and the remaining
copy retained brain and gonad functions. In other teleost fishes, a
subfunctionalization process probably occurred that led to partition of functions
between the two copies, cyp79aia (gonad) and cyp79a1b (brain) [76]. This could
mean that the ancestor of the cyp79a7 gene in basal actinopterygian fishes already
had such characteristics. However, unfortunately, in the actinopterygian lineage,
information is limited to teleosts and data are not available in chondrostei nor in
holostei.

The only really clear function that has emerged since researchers started to
delve into the potential roles of aromatase expression in the brain is its implication on
the masculinization and defeminization of the developing rodent brain, causing
irreversible sexualization [8]. Clearly, this cannot apply to teleost fishes, in which one
can find a very large sample of sexual strategies, ranging from strict gonochorism to
simultaneous hermaphrodism. Some fish species can rapidly change sex depending
on social cues or determine their sex according to the availability of partners [33].
Steroid or neurosteroid-dependent expression of aromatase in progenitors and
effects of estrogens on neurogenesis certainly open the door to unique possibilities in
terms of brain plasticity. However, until conditional knock-out of cyp79a7a and
cyp19aib are performed, it will be very difficult to fully understand what makes the

fish so special compared to other vertebrates.
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Another interesting point of discussion concerns the fact that several studies
mentioned aromatase expression in astrocytes of birds and mammals following
chemical or mechanical lesions [23, 25, 26]. In addition, there are reports indicating
that reactive astrocytes can be neurogenic [173-176] and that astrocytes retain the
property of generating neurons under some physiological situations [177]. Teleost
fishes, at least in the forebrain, do not possess bona fide astrocytes and it is likely
that RGCs in fish share some common features with reactive astrocytes. Because
reactive astrocytes are critical for the process of brain repair, we cannot exclude that
the outstanding capacity of the teleost brain to regenerate after lesions is linked to

these common characteristics.
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Legends to figures:

Figure 1 (A-L): Expression of esr2a on a series of transverse sections of the
telencephalon and preoptic area in an adult male (A-F) and female zebrafish (G-L)
as shown by radioactive in situ hybridization. Note that the highest expression is
detected in the preoptic area (BC) and the ventral hypothalamus (J). However, lower
expression is observable in many other regions, in particular along the brain
ventricles and their recessi (arrows). Bar= 100um

ATN: anterior tuberal nucleus; CA: anterior commissure; Cpop: Postoptic
commissure; CM: Corpius mammilaris; CO: optic chiasma; CP: Posterior
commissure; Dc: central zone of dorsal telencephalic area; DI: lateral zone of dorsal
telencephalic area; Dm, medial zone of dorsal telencephalic area; Dp: posterior zone
of dorsal telencephalic area; Hav: ventral habenular nucleus; Hc: central zone of
periventricular hypothalamus; Hv: ventral zone of periventricular hypothalamus; MT:
Midbrain tegmentum; OT: Optic tract; PGa: anterior preglomerular nucleus; PGl,
lateral preglomerular nucleus; PGm: medial preglomerular nucleus; PPa:
parvocellular preoptic nucleus, anterior part; PPp: parvocellular preoptic nucleus,
posterior part; PTN: posterior tuberal nucleus; RL: lateral recess; RP: Posterior
recess; SC: Suprachiasmatic nucleus; TeO: Optic tectum; TLa: torus lateralis; TPp:
periventricular nucleus of posterior tuberculum; Vd: dorsal nucleus of dorsal
telencephalic area; Vv: ventral nucleus of dorsal telencephalic area; VM:
ventromedial thalamic nucleus; VI. lateral nucleus of dorsal telencephalic area; ZI:

zona limitans.

Figure 2: Aromatase B-positive cells in the brain of zebrafish exhibit active
proliferation. Example of aromatase B positive cells (A) at the level of the nucleus
recessi posterioris (NRP) surrounding the posterior recess (rp) of the third ventricle
(11). (B) shows that 24 hours after BrdU exposure, BrdU-positive nuclei are visible at
the level of the NRP and correspond to the nuclei of aromatase B positive cells as

shown in (C) (arrowheads). Bar = 50um.

Figure 3: Schematic representation of aromatase positive-cells RGCs (green cells) in
the brain of zebrafish. RGCs can proliferate and generate neuroblasts (red cells) that
migrate along the radial processes and give birth to neurons (orange cells. RGCs can

produce estrogens that can either act on neighboring neurons or on RGC themselves
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to modulate their neurogenic activity. RGCs are also target for peripheral steroids

and xeno-hormones.

Figure 4. Summary of the known characteristics of cyp19a1 genes in vertebrates
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