High aspect ratio deep etching in GaInAsSb/AlGaAsSb system by ICP-RIE plasma

Brice Adelin, Alexandre Larrue, Aurélie Lecestre, Pascal Dubreuil, Yves Rouillard, Guilhem Boissier, Aurore Vicet, Antoine Monmayrant, Olivier Gauthier-Lafaye

To cite this version:

Brice Adelin, Alexandre Larrue, Aurélie Lecestre, Pascal Dubreuil, Yves Rouillard, et al.. High aspect ratio deep etching in GaInAsSb/AlGaAsSb system by ICP-RIE plasma. Plasma Etch and Strip in Microtechnology (PESM) 2014, May 2014, Grenoble, France. hal-01102388

HAL Id: hal-01102388
https://hal.archives-ouvertes.fr/hal-01102388
Submitted on 12 Jan 2015
High aspect ratio deep etching in GaInAsSb/AlGaAsSb system by ICP-RIE plasma

B. Adelin,1,a, A. Larrue,1,b, A. Lecestre,1,b, P. Dubreuil,1,2, Y. Rouillard,1, G. Boissier,1, A. Vicet1, A. Monmayrant1,b, and O. Gauthier-Lafaye2,3

1LAAS-CNRS, 7 avenue du Colonel Roche, BP 54200, 31072 Toulouse cedex 4, France
2Institut d’Electronique du Sud (IES), Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
3Institut de Physique du Globe de Paris-CNRS, 61 avenue de l’Observatoire, 75014 Paris, France

Context

Target

- Mid infrared tunable diode laser spectroscopy for trace gas detection in the 2-5 µm wavelength range.

Approach

- Array of 2nd-order DFB singlemode, all-photonic-crystal (PhC) lasers: We replace a laser which would be tunable over a wide range of wavelengths by an array of N lasers tunable over a range of wavelengths N times smaller. We call this method MTDLAS: multiplexed tunable diode laser absorption spectroscopy.

Issue

Towards the realization of laser diodes all PhC electrically pumped in GaSb system

- Heterostructure AlGaAsSb / InGaAsSb for an emission around 2.3µm

- Etching of submicron patterns with high aspect ratio in the heterostructure:
 - Characteristic dimensions: Ø - 375 nm, H - 3.5 µm
 - Aspect ratio: 1:9

- System tool: SPTS ICP-RIE: Trikon-Omega201

- Operating range:
 - Gas: SF6, O2, Cl2, Ar, N2
 - RF plasma powers (13.56 MHz): $P_{ICP} < 660$ W
 - 2 mTorr < P_r < 50 mTorr

Problem

Optimization of the process of chlorinated ICP-RIE etching III-V materials

- Influence of ICP power
- Influence of pressure

- Limit redeposition (verticality):
 - Adding Argon

Previous work

Masking strategy adopted

<table>
<thead>
<tr>
<th>Etching process by ICP-RIE</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>P MMA</td>
<td>ZEP520A</td>
</tr>
<tr>
<td>GaAs by Cl$_2$/N$_2$</td>
<td>0.5</td>
</tr>
<tr>
<td>SiO$_2$ by CHF$_3$</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

Development of a multi-step etching process combining Cl$_2$/N$_2$, O$_2$ and N$_2$ ICP plasma etching

Figure 1. Absorption lines strength from 2 to 5 µm. (HITRAN 96 database)

Figure 2. Etching of submicron patterns with high aspect ratio in the heterostructure.

Principle of the spectroscopy using an array of single frequency lasers and tunable over a small wavelength range.

Conclusion

- Establishment of a high aspect ratio deep etching process in GaInAsSb/AlGaAsSb system
 - Improvement:
 - Verticality \Rightarrow angle of 2-3°
 - Etched sidewalls \Rightarrow less notching
 - Low roughness

- Successful insertion of this technological step in a complete process

- Record high aspect ratio
- Sensitivity to aluminum concentration
- Profile improvement

Acknowledgments: This work was supported by the French National Research Agency (ANR) under Grant ANR-2011-NANO-028 01 (ANR MIDAS).