Computing isogenies between elliptic curves over $GF(p^n)$ using Couveignes's algorithm

Abstract : The heart of the improvements of Elkies to Schoof's algorithm for computing the cardinality of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies' approach is well suited for the case where the characteristic of the field is large. Couveignes showed how to compute isogenies in small characteristic. The aim of this paper is to describe the first successful implementation of Couveignes's algorithm. In particular, we describe the use of fast algorithms for performing incremental operations on series. We also insist on the particular case of the characteristic 2.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2000, 69 (229), pp.351-370. 〈10.1090/S0025-5718-99-01081-9〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01102025
Contributeur : Reynald Lercier <>
Soumis le : dimanche 11 janvier 2015 - 23:05:15
Dernière modification le : vendredi 17 novembre 2017 - 19:40:32

Identifiants

Citation

Reynald Lercier, François Morain. Computing isogenies between elliptic curves over $GF(p^n)$ using Couveignes's algorithm. Mathematics of Computation, American Mathematical Society, 2000, 69 (229), pp.351-370. 〈10.1090/S0025-5718-99-01081-9〉. 〈hal-01102025〉

Partager

Métriques

Consultations de la notice

174