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Abstract—This paper introduces a novel multicore scheduling method

that leverages a parameterized dataflow Model of Computation (MoC).

This method, which we have named Just-In-Time Multicore Scheduling

(JIT-MS), aims to efficiently schedule Parameterized and Interfaced

Synchronous DataFlow (PiSDF) graphs on multicore architectures. This

method exploits features of PiSDF to find locally static regions that

exhibit predictable communications. This paper uses a multicore signal

processing benchmark to demonstrate that the JIT-MS scheduler can

exploit more parallelism than a conventional multicore task scheduler

based on task creation and dispatch. Experimental results of the JIT-MS

on an 8-core Texas Instruments Keystone Digital Signal Processor (DSP)

are compared with those obtained from the OpenMP implementation

provided by Texas Instruments. Results shows latency improvements of

up to 26% for multicore signal processing systems.

I. INTRODUCTION

An important evolution in embedded processing is the integration

of increasingly more Processing Elements (PEs) in the Multiprocessor

Systems-on-Chip (MPSoC) devices [1], [2], [3], [4]. This trend is

mainly due to limitations in the processing power of individual PEs

as a result of power consumption considerations.

Concurrently, signal processing applications are becoming increas-

ingly dynamic in terms of hardware resource requirements. This

tendency is due to the growing complexity of algorithms allowing

higher levels of performance in aspects such as data compression,

transmission efficiency, and precision of data analysis. For example,

the Scalable High Efficiency Video Coding (SVC) video codec

provides a mechanism to temporarily reduce the resolution of a

transmitted video in order to match the instantaneous bandwidth of

a network [5].

One of the main challenges of the design of multicore signal

processing systems, is to distribute computational tasks efficiently

onto the available PEs while taking into account dynamic changes.

The process of assigning, ordering and timing actors on PEs in

this context is referred to as multicore scheduling. Inefficient use

of the PEs affects latency and energy consumption making multicore

scheduling a very important problem to solve [6].

This paper describes a novel method called JIT-MS to address this

challenge. JIT-MS is a flexible scheduling method that determines

scheduling decisions at run-time to optimize the mapping of an

application onto multicore processing resources. In relation to the

scheduling taxonomy defined by Lee and Ha [7], JIT-MS is a fully

dynamic scheduling strategy.

Singh presents a survey on multi/manycore mapping methodolo-

gies in [19]. In the context of the taxonomy used in Singh’s survey,

our methodology can be classified as “On-the-fly” mapping, targeting
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heterogeneous platforms with a centralized resource management

strategy.

Applications managed by the JIT-MS scheduler are described

using the PiSDF dataflow Model of Computation (MoC), which is

related to the general Dataflow Process Network (DPN) MoC. DPN

MoCs are widely used in design of signal processing systems [8]. A

distinguishing feature of PiSDF is the integration of a parameter tree

to asynchronously transmit control values between actors [9].

The JIT-MS scheduling method is embedded in the Syn-

chronous Parameterized and Interfaced Dataflow Embedded Runtime

(SPIDER) [10]

This paper is organized as follows: Section II and Section III

present related research, providing the context of current work,

Section IV details our proposed new JIT-MS scheduling method, and

Section V presents our experimental results with JIT-MS scheduling.

II. RELATED WORKS

Various frameworks based on OpenMP [11] and OpenCL [12]

language extensions are currently proposed to address the multicore

scheduling challenge. However, these extensions are based on impera-

tive languages (e.g., C, C++, Fortran) that do not provide mechanisms

to model specific signal flow graph topologies. On the contrary, signal

processing oriented dataflow MoCs are widely used for specification

of data-driven signal flow graphs in a wide range of application areas,

including video decoding [13], telecommunication [14], [15], and

computer vision [16]. The popularity of dataflow MoCs in design

and implementation of signal processing systems is due largely to

their analyzability and their natural expressivity of the concurrency

in signal processing algorithms, which makes them suitable for

exploiting the parallelism offered by MPSoCs.

Synchronous DataFlow (SDF) [17] is the most commonly used

DPN MoC for signal processing systems. Production and con-

sumption rates of actors (pieces of computation) are set by firing

rules. These rates are fixed scalars in an SDF graph. Data values,

encapsulated by tokens, are passed along the edges (First In, First

Out data queues (FIFOs)) of a dataflow graph as it executes. Initial

tokens, called delays can be set on FIFOs.

The PiSDF dataflow MoC [9] results from the addition of the

Parameterized and Interfaced Meta Model (PiMM) to the SDF

MoC. PiMM extends the semantics of a targeted dataflow MoC by

introducing specific notions of hierarchy, interfaces, and parameters.

Parameters in PiMM can influence, both statically and dynamically,

different properties of a DPN, such as the firing rules of actors. The

meta model introduces configuration actors, i.e. specific actors that

can modify parameter values.



Neuendorffer, et al. define quiescent points as points where param-

eters influencing an execution are allowed to change [18]. Between

two quiescent points, the application can be considered static. In

this paper, decisions are taken Just-In-Time, immediately after the

quiescent points are reached, unveiling new application parallelism.

JIT-MS is an evolution of the work in [14] presenting an adaptive

scheduler of parameterized dataflow MoC. However, this work did

not consider application hierarchy and was focused only on 3rd

Generation Partnership Project (3GPP) Long Term Evolution (LTE)

base stations. Our work on JIT-MS goes beyond the methods of [14]

to take application hierarchy into account and address a broad class

of signal processing applications through generalized scheduling

techniques.

III. CONTEXT

A. Runtime Architecture

The method developed in this paper is applicable to heterogeneous

platforms. In such platform, optimized local decision to start an actor

computation (e.g., based on earliest availability of input data) can

be inefficient in a global sense. In order to take effective decisions

globally, a Master/Slave execution scheme is chosen for the system.

The JIT-MS method requires multiple (software or hardware) com-

ponents (Figure 1). Processing Elements (PEs) are slave components

that process actors. They can be of multiple types, such as General-

Purpose Processors (GPPs), DSPs, or accelerators. The master of the

JIT-MS system is called Scheduling Element (SE). This is the only

component that has access to the overall algorithm topology.

Jobs are used to communicate between the SE and PEs. Each PE

has a job queue from which it pops jobs out prior to their execution.

Parameters influence dataflow graph topology or execution timing of

actors. When a parameter value is set by a configuration actor, its

value is sent to the SE via a parameter queue. Finally, Data FIFOs

are used by the PEs to exchange data tokens. A data FIFO can be

implemented for instance over a shared memory or a network-on-

chip.

B. Benchmark

We illustrate the JIT-MS scheduling algorithm by the scheduling

of a benchmark application. This benchmark is an extension of the

MP-sched benchmark [20].

The MP-sched benchmark can be viewed as a two-dimensional grid

involving N channels, where each branch consists of M cascaded

Finite Impulse Response (FIR) filters of NbS samples. Here, we

extend the MP-sched benchmark by allowing the M parameter to

vary across different branches. We refer to this extended version of

the MP-sched benchmark as heterogeneous-chain-length MP-sched

(HCLM-sched).
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Fig. 1: Runtime execution scheme.
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Fig. 2: A PiSDF model of the HCLM-sched benchmark.

A PiSDF representation of the HCLM-sched benchmark is shown

in Figure 2. To represent the channels in the HCLM-sched bench-

mark, a hierarchical actor called FIR Chan is introduced. The top

level is designed to repeat N times this actor. In the subgraph

describing the behavior of the FIR Chan actor, M pipelined FIR

filter repetitions in the branches are handled by a feedback loop and

specific control actors (Init , Switch and Broadcast).

C. Notations

To describe JIT-MS, the following notation is used. CA represents

the set of configuration actors of the given PiSDF graph. Thus,

CA represents all actors in the given PiSDF graph that are not

configuration actors.

IV. JUST-IN-TIME MULTICORE SCHEDULING (JIT-MS)

A. Multicore Scheduling of Static Subgraphs

JIT-MS involves decomposing the scheduling of a given PiSDF

graph into the scheduling of a sequence X1, X2, . . . of SDF graphs.

Different executions (with different sets of input data) can result in

different sequences of SDF graphs for the same PiSDF graph. For

a given execution, we refer to each Xi as a step of the JIT-MS

scheduling process for that execution.

On each step, resolved parameters enable the transformation of

the PiSDF graph into an SDF graph, which can be scheduled by any

of the numerous existing SDF scheduling heuristics that are relevant

for multicore architectures [21]. For example, see [22] for a set of

techniques that can be applied upon transforming the resulting SDF

graph into an single rate SDF (srSDF) graph. An srSDF graph is an

SDF graph in which the production rate on each edge is equal to

the consumption rate on that edge. A consistent SDF graph can be

transformed into an equivalent srSDF graph by applying techniques

that were introduced by Lee and Messerschmitt [23].

The Just-In-Time Multicore Scheduling (JIT-MS) method is based

on the static multicore scheduling method which is composed of the

following sequence of phases:

1) Computing the Basis Repetition Vector (BRV) of the current

graph (the graph that is presently being scheduled). The BRV,

also known as the SDF repetition vector, is a positive-integer

vector and represents the number of firings of each actor in

a minimal periodic scheduling iteration for the graph. We

note however, that certain technical details of PiSDF require

adaptations to the conventional repetitions vector computation

process from [17].

2) Converting the SDF graph into an equivalent srSDF graph,

where each actor is instantiated a number of times equal to

its corresponding BRV component.



3) Scheduling actors and communications from a derived acyclic

srSDF graph onto the targeted heterogeneous platform. Any

scheduling heuristic that is applicable to acyclic srSDFs graphs

can be chosen here — e.g., the applied schedule can be a list

scheduler, fast scheduler, flow-shop or genetic scheduler [19],

[24], [22]. Upon completing the scheduling process described,

the resulting schedule S is executed.

A complete JIT-MS schedule of a PiSDF hierarchical graph con-

sists of several of these phases, repeated as many times as needed

(see Section IV-B).

In a PiSDF graph, some data FIFOs behave as Round Buffers

(RBs) [9] — i.e., such FIFOs produce multiple copies of individual

tokens as necessary to satisfy consumption demand. In particular,

FIFOs at the interface of a hierarchical actor have RBs behavior

to help ensure composability in hierarchical specifications. FIFOs

connecting configuration actors to other actors also behave as RBs

to ensure that configuration actors fire only once per subgraph.

Application designers using the PiSDF model of computation need to

take such RB behavior into account during the development process.

Configuration Actors and such RBs are excluded from the BRV

computation as they are forced to fire only once.

B. Multicore Scheduling of Full Graphs

The JIT-MS method is based on the PiSDF runtime operational

semantic. As shown in [9], the JIT-MS scheduler has to proceed in

multiple steps, each one unveiling a new portion of srSDF graph for

scheduling. In one step, configuration actors have to be fired first,

they produce parameters needed to resolve the rest of the subgraph.

When all parameters are solved at one hierarchy level, scheduling of

other actors of this hierarchy level is made possible.

In a multicore system, the SE has to extract the parallelism of the

application to send jobs to multiple PEs. Contrary to static applica-

tions, the difficulty of this process is to schedule actors efficiently

without knowing the complete graphs. The complete srSDF graph is

only known when all configuration actors have been executed.

Once an srSDF graph has been generated, it can be analyzed to

exploit the parallelism of the application (Section IV-A). The JIT-MS

runtime schedules the actors and communications and fires their

execution on the platform. Newly instantiated hierarchical actors are

added to a global srSDF graph, called execution graph, and the same

process can be used until the whole graph has been processed.

To keep track of actor’s execution, each actor of the execution

graph is tagged with a flag representing its execution state. An actor

can be Run (R), Not Executable (N) or Executable (E). An actor is

Executable only when all its parameters are resolved and when all

its predecessors are Executable or Run.

The procedure of JIT-MS scheduling is shown in Algorithm 1.

After initialization, the algorithm enters in a main while loop which

computes scheduling steps until there is no more hierarchical actor

in the execution graph. A single scheduling step is made of the 3

stages: graph configuration, actor execution and graph resolution.

The first stage (line 3 to 13) replaces each executable hierarchical

actor of the execution graph by its configuration actors. As they are

only fired once, there is no need to compute the BRV and the graph

transformation to srSDF becomes trivial. If there is no configuration

actor in this hierarchical actor, all the subgraph parameters can be

resolved (using the 2 first phases presented in Section IV-A) and the

subgraph can replace the hierarchical actor in the execution graph.

In this stage, it is also important to add RBs at the interfaces of

the hierarchical actors and between CA and CA to respect PiSDF

semantics.

Algorithm 1: Multi-Step Algorithm procedure to schedule a

PiSDF graph.

1 Procedure MultiStep()

2 while {∃ Hierarchical actor in execGraph } do

3 while {∃ Hierarchical actor in execGraph |
actor.flag = E } do

4 currentPiSDF ← actor.pisdf ;

5 if CA 6= {∅} then

6 Replace actor with RBs in execGraph;

7 Put CA in execGraph;

8 Add RBs between CA and CA ;

9 push currentPiSDF → graphFifo;

10 else

11 computeBRV(currentPiSDF) ;

12 Add single rate CA graph in execGraph;

13 Update flags in execGraph;

14 Schedule Executable actors ∈ execGraph;

15 Fire Actors and Wait parameter values ;

16 while graphFifo is not empty do

17 pop graphFifo → currentPiSDF;

18 computeBRV(currentPiSDF) ;

19 Add single rate CA graph in execGraph;

20 Update flags in execGraph;

21 Schedule Executable actors ∈ execGraph;

22 Fire Actors ;

The second stage (line 14 to 15) assigns, orders and fires executable

actors. It corresponds to phase 3 of Section IV-A.

The third stage (line 16 to 20) corresponds to the graph resolution.

At this stage, the parameters resolved by configuration actors of the

previous stages are used to solve the graph of each hierarchical step.

The 2 first phases of Section IV-A can then be applied to fully replace

the hierarchical actor in the execution graph with the corresponding

child actors.

At the end of the algorithm (line 21 to 22), when no more

hierarchical actor is present in the execution graph, a last phase of

assignment, ordering and firing of executable actors has to be done

to execute all non executed actors.

C. Applying JIT-MS to the Benchmark

The execution graph shape at each step of the HCLM-sched

benchmark can be seen in Figure 3. In this figure, blue actors are

not executable, green ones are executable and black ones are already

run. Red dashed actors are hierarchical.

Figure 3.a corresponds to the execution graph state at the end of

the first phase of the first iteration of the while loop (loop I.a). At

this point, N is set to 2. Then Figure 3.b corresponds to execution

graph state after the third phase of the first iteration (loop I.b). The

hierarchical FIR Chan actors are instanciated. Then, Figures 3.c

and 3.d correspond to the execution, first of the internal configuration

actors of FIR Chan (SM ), then of their actors with parameter M =

{1, 2}.

V. EXPERIMENTAL RESULTS

This paper describes a method called JIT-MS used to parallelize

applications at runtime. In this context, experimental results will focus

on the comparison between the JIT-MS approach and the OpenMP
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Fig. 3: single rate SDFs (srSDFs) graphs generated from the HCLM-sched benchmark.

framework. Results have been acquired by studying the latency of

single and multiple iterations of the HCLM-sched benchmark on the

Texas Instruments c6678 multicore DSP [1].

OpenMP is a framework designed for shared memory multipro-

cessing. It provides mechanisms for launching parallel teams of

threads to execute efficiently an algorithm on a multicore architecture.

OpenMP applications are designed with a succession of sequential

code, executed by a master thread, and parallel code, distributed in

a team of threads dispatched onto multiple cores [11].

The platform used for the current experiments is the Texas Instru-

ments Keystone I architecture (EVM TMS320C6678). This multicore

DSP platform is composed of 8 c66x DSP cores interconnected by

a Network on Chip (NoC) called TeraNet with access to an internal

shared memory. To perform synchronization between cores, hardware

queues provided by the Multicore Navigator [25] have been used.

The OpenMP framework cannot implement the HCLM-sched as a

double nested loop since FIRs are cascaded on each channels. So,

OpenMP is used to parallelize channels by using a “parallel for”.

For the first experiment, we fix the M value to 8 for all stages,

FIR of 4000 samples and we measure latency of one graph iteration.

Results on execution time are displayed in Figure 4.a.
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As can be seen on Figure 4.a, the OpenMP implementation

latency curve displays a step shape when increasing N . This is

due to channels distribution on the platform. Since each stage is

implemented as a monolithic block with OpenMP, as soon as 9

channels are reached, 2 channels have to be completed on one PE

making the overall latency double.

With the JIT-MS implementation, the graph transformation and

scheduling phases introduce a visible overhead but the execution

efficiency over varying parameters is smoother. The overhead can

be observed on the figure when N equals to 7 or 8 as the resulting

scheduling is the same as OpenMP. The transformation to srSDF

extracts more parallelism than OpenMP from the subdivision of

channels into multiple FIRs. These choices make JIT-MS suitable

for unbalanced applications. In the HCLM-sched benchmark with 9

channels, the overall latency is reduced of up to 26%.

The second experiment is based on multiple iterations of the

HCLM-sched benchmark. For this experiment, we fixed the number

of channels to 8 and M values are linear between 1 to 8. Then,

multiple iterations of the application are launched with a fixed period.

As we can see in Figure 4.b, if the latency of the OpenMP

implementation is superior to the period, the latency is growing at

each new iterations. This is due to the global synchronization at the

end of each OpenMP parallelization blocks.

For the JIT-MS implementation, the latency remains constant over

iterations. By having prior knowledge on how the application will

behave, the Scheduling Element can start an execution on processing

elements which have already finished the previous execution. It can

then start the following iteration as soon as the next period tick

occurs. With a better knowledge of the application execution, the

JIT-MS can pipeline graph iterations.

VI. CONCLUSION

This paper presents a novel multicore scheduling method referred

to as Just-In-Time Multicore Scheduling (JIT-MS). JIT-MS splits the

scheduling of a PiSDF dataflow graph into steps to identify locally

static regions. It enables efficient assignment and ordering of actors

into PEs with a better knowledge of actor interactions. Experiments

conducted on an 8-core Texas Instruments DSP demonstrate on a

benchmark that the JIT-MS scheduler provides more parallelism to

the execution than the job posting system based on pragmas, task

creation and task dispatch of OpenMP. Results have shown that

JIT-MS can reduce the execution latency up to 26% and can allow

handling multiple executions.
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