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Abstract. We introduce and characterize a new 3D cross-correlation algorithm, which relies on gradient-based iterative 
volume deformation. The algorithm, FOLKI3D, is the extension to 3D PIV of the approach introduced by Champagnat 
et al. 2011. It has a highly parallel structure and is implemented on GPU. Additionally to the gradient approach for 
displacement estimation, we implemented a high-order interpolation scheme (with cubic B-Splines) in the volume 
deformation step, at a reasonable computational cost. Performance tests on synthetic volumic distributions first allow to 
characterize the spatial transfer function of the algorithm, and to confirm the efficiency of this interpolator, comparable 
to that of standard image deformation methods in planar PIV. A second series of synthetic tests then investigates the 
response of FOLKI3D to sources of noise specific to the tomographic PIV context, i.e. ghost particles. Depending on 
the tests, the algorithm is found as efficient or more robust than the state-of-the-art. The gain brought by the high-order 
interpolation is also confirmed in a situation with a large number of ghosts, and different reconstructed particle shapes. 
 
 
1. Introduction 
 
Tomographic PIV offers a tremendous potential for the characterization of complex flows, as it enables the 
instantaneous measurement of three-dimensional velocity fields. This gain in capacity comes however with 
new questions and challenges. In terms of accuracy, much effort has been devoted to characterizing the 
specific noise introduced by the reconstruction step, which is specific to the 3D context and may have a 
significant impact on the final result. Many researchers have also directed their work towards reducing the 
problem complexity (see, e.g., Scarano 2013, for a review on both these points). Indeed, handling 3D 
volumes represents a huge amount of data, and thus potentially prohibitive processing times. This may also 
constrain algorithmic choices, as approaches, which were proven successful and accurate in 2D PIV, may be 
prohibitive in 3D with the current computational capacities. 
 
In this paper, we propose a new approach for 3D cross-correlation, consisting in a gradient-based iterative 
volume deformation method, in the Lucas-Kanade framework. It is the extension to 3D of the approach 
proposed in Champagnat et al. 2011 and, due to its highly parallel structure, is also implemented on GPU. 
Volume deformation may be performed with a simple, linear interpolation as in most algorithms, or, thanks 
to an efficient implementation, with a higher-order, cubic B-Spline scheme, while maintaining reasonable 
processing times. Our purpose in this paper will be to characterize this algorithm, with a particular emphasis 
on its response to specific 3D noise sources. Focus will also be placed on the possible gains arising from 
high-order interpolation in this context.  
 
The paper is structured as follows. First, we recall the principle of the method, with an emphasis on the 
useful parameters and their influence. We then use synthetic tests to characterize the algorithm in terms of 
spatial resolution and to assess the impact of the interpolation scheme on bias and rms errors in the subvoxel 
displacement estimation. Finally, we assess the algorithm’s robustness to noise, especially tomographic PIV 
noise, ie ghost particles, by using synthetic simulations of 3D tomographic PIV experiments. 
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2. General principle 
 
The present implementation is the extension to 3D of the algorithm FOLKI-PIV, described in Champagnat et 
al. (2011). We thus present here the main characteristics only and refer the reader to this paper for more 
detail. 
 
 2.1. Iterative scheme 
 
Considering a discretized physical volume, let k denote the index of a voxel in the grid. As in traditional 
correlation-based PIV, our objective is to determine the displacement u(k) of a particle pattern contained in 
the interrogation volume (IV), V(k) centered around voxel k. The mathematical objective however differs 
and belongs to the Lucas-Kanade paradigm (see Baker and Mathews, 2004, for a review), as it amounts to 
minimize the sum of squared differences (SSD). 
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Here E1 and E2 respectively denote the volume intensity distributions reconstructed at the illumination 
instants t and t+dt, and function v is the support of interrogation volume V(k). Note that this criterion is 
symmetrical, i.e. it leads to a second order estimate of u(k) in time, at t+dt/2. In practice, we use either a top-
hat cubic IV, parameterized by its radius R, or a Gaussian cubic IV, defined by two parameters: the radius R 
and its standard deviation σ. 
 
Minimization of (1) is performed using Gauss-Newton (GN) iterations. Supposing that a predictor u0(k) is 
available, one then replaces u(k) by u(k) - u0(m) + u0(m), so that 
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Here, one has introduced the deformed (or warped) intensity distributions 
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The following step then consists in linearizing (2), assuming that the displacement increment to be found is 
weak, i.e. u(k) - u0(m) ≈ 0, so that 
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Finally, after some algebra, deriving the SSD in (3) leads to finding u(k) as the solution of a 3x3 linear 
system  
 

H k( )u k( ) = c k( )  (5) 
 
where matrix H and left-hand-side c involve the predictor u0, the deformed volumes, and their gradients. 
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 2.2. Processing flow-chart and control parameters 
 
Similarly to the plane approach of FOLKI-PIV, the guess-value is obtained by implementing a multi-
resolution Gaussian pyramid of intensity volumes. A pyramid contains J levels, including the raw intensity 
volume (level 0). Level j+1 is formed by applying a low-pass filter on level j, and then retaining one pixel 
out of a cube of 2x2x2 voxels. Thus, volumes at level j+1 are eight times smaller than at level j, and 
displacements are divided by two in each direction. The number of levels J has then to be chosen according 
to the maximum displacement expected. Indeed, a condition for the GN iterations (4) to converge is that the 
predictor be close to the exact displacement. Considering enough levels will thus allow this convergence 
when choosing a zero displacement field as the predictor for level J-1. GN iterations are then run at this level 
until convergence. The final estimate is interpolated at level J-2 and serves as the first predictor for the GN 
iterations at this level. The process is then repeated until convergence is reached at level 0. 
 
To ensure robustness with respect to variations in intensity in the volumes, a mean and standard deviation 
normalization is applied at each pyramid level prior to the GN iterations (see Champagnat et al. 2011 for 
more details). Also, similarly to FOLKI-PIV, FOLKI3D produces a dense output (one displacement per 
voxel) with no computational overload, while its resolution remains tied to the IV size (see the tests below). 
To sum up, FOLKI3D is tuned by three main parameters: 
 

• The number J of pyramid levels, which depends on the maximum displacement expected in the 
volumes 

• The number N of GN iterations performed at each level. Usually, 3 to 10 iterations are enough to 
reach convergence, the exact number usually depending on the signal-to-noise ratio of the volumes 

• The size of the interrogation volume, which controls the spatial resolution of the result, as in 
traditional cross-correlation PIV, and will be shown below. 

 
 2.3. Comments 
 
One of the PIV algorithms currently acknowledged as a state-of-the art in the literature is an iterative image 
or volume deformation method (IDM), whether the estimation is done on planar or volumic data (see, for 
instance, Scarano, 2002 and Scarano, 2013). In a 3D framework, supposing that a predictor displacement 
field is available, the 3D intensity fields are first deformed with this displacement value, requiring a subvoxel 
interpolation scheme. Then the subvoxel increment allowing to maximize the cross-correlation from these 
deformed volumes is determined, by using a three-point Gaussian fit. This results in a new estimate of the 
displacement. As pointed out by several authors in the literature, it is necessary to smooth this displacement 
field in order to prevent a divergence of the iterative scheme; choosing an adapted filter kernel may also 
enable to improve the algorithm transfer function, as studied in detail by Schrijer & Scarano (2008). Once 
this filtering is done, the data may be used again for deformation, and so forth. 
 
Though FOLKI3D belongs to a Lucas-Kanade paradigm, it also belongs to the IDM family, with similarities 
to the above described flow-chart. Firstly, the global objective, formulated as the minimization of a Sum of 
Squared Differences (1), becomes identical to maximizing a Cross-Correlation score as soon as the mean and 
standard deviation pre-processing is performed. When transposed in an iterative context, FOLKI3D also uses 
volume deformation at the subvoxel level before each iteration, as shown by equations (2) and (3). The 
following steps however differ from traditional IDM algorithms: indeed, instead of computing the whole 
cross-correlation map on a given domain by FFT or direct correlation, and then refining the maximum by a 
Gaussian fit, FOLKI3D determines the minimum of the SSD iteratively using a gradient method, directly at a 
subvoxel level. Also, as described in Leclaire et al. (2011), the displacement increment is defined in a 
slightly different way as in traditional IDM algorithms, which guarantees stability with the number of 
iterations and makes the intermediate filtering step of the displacement before deformation unnecessary.  
 
The next section will present the response of FOLKI3D to traditional tests used in the literature, which will 
enable to further situate it among the IDM framework. 
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3. Spatial resolution and interpolation schemes 
 
In this section, we introduce a first series of synthetic tests to assess the performances of FOLKI3D. This is 
done on ideal 3D blob-like particle distributions (i.e. supposing ideal tomographic reconstructions), in order 
to determine the spatial resolution of the algorithm, and the influence of the interpolator choice on the bias 
and random errors.  
 
 3.1. Spatial wavelength response 
 
Following Scarano and Riethmuller (2000) the frequency response of a PIV algorithm can be evaluated 
using a sinusoidal shear displacement test : 
 

U,V,W( ) = Asin(2π Y
λ
), 0, 0
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where X,Y and Z are the 3D coordinates and U,V,W the associated displacement components. For this test, 
3D ideal particles randomly distributed in the correlation volume, are generated by locally expanding a 
physical point particle to a 3D Gaussian blob with σ = 0.6 voxel (thus a diameter of 2.4 voxel), in order to 
have a volumetric distribution well adapted to the correlation algorithm. The particle density is high 
compared to real tomo PIV experiments densities, in order to have at least 20 to 30 particles per IV for the 
smaller IV size. We then use this displacement field (6) with amplitude A set to 2 voxels and the wavelength 
λ varied from 20 to 400 voxels. FOLKI3D interrogation volume (IV) size is varied from 11 to 63 voxels. As 
the displacement is rather close to zero, we use J=1 level and N=3 iterations. B-Spline interpolation scheme 
was used for the volume deformation step. For each volume corresponding to a given (λ,R) couple, we 
compute the ratio between the estimated amplitude of the sinusoid AFOLKI-3D and the ground truth value A=2 
voxels. The evolution of this ratio as a function of the normalized IV size 2R/λ is plotted in Fig 1. In Fig. 1 
(left) we used a cubic top-hat interrogation volume, and in Fig. 1 (right) we used Gaussian IVs with a given 
σ/R ratio. In Fig. 1 (left), all values of AFOLKI-3D/A nearly collapse on a cardinal sine curve, which is the 
frequency response to a [-R,R] sliding average, as usually in correlation based methods (Scarano and 
Riethmuller, 2000). In particular, this means that the spatial resolution of FOLKI3D is, as well, directly 
linked to the size of the IV. The fact that a dense output (one vector per voxel) is obtained is an algorithmic 
specificity, and retaining all voxels in the final results would correspond to over-sampling.  
 
 

  
Fig. 1 Amplitude ratio AFOLKI-3D/A as a function of the normalized volume interrogation size for (left) top hat IVs and 

(right) Gaussian IVs. The dashed line is the response of a [-R,R] sliding average (cardinal sine function) 
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3.2. Interpolation schemes and Peak-locking 
 
It is known from several studies on planar PIV that the choice of the interpolation scheme used to deform the 
images may have an important effect on the displacement precision at a subpixel level. This has been studied 
in detail by Astarita & Cardone (2005), in particular. In their work, an important number of schemes is 
introduced, and the accuracy is logically found to be inversely linked to the computational cost of the 
interpolator, i.e. the cheaper the interpolator (e.g., linear), the less precise the result. As the performance of 
the algorithms and hardware has evolved rapidly, some of the advanced interpolation methods (such as with 
cubic B-Splines, or even more precise using a cardinal sine basis) are now commonly used in planar PIV. In 
the 3D context however, domain sizes are much larger so that the question of using more advanced 
interpolation schemes than the linear one may come with a dramatic increase of the computational cost. 
Thus, as mentioned by Scarano (2013), linear interpolation remains the standard.  
 
Building on optimizations begun during works on planar PIV (Champagnat et al. 2011), Champagnat & Le 
Sant (2013) recently proposed an implementation for cubic B-Spline interpolation which is particularly 
optimized for GPU, and may be used in FOLKI3D. In practice, this optimization guarantees that the increase 
in computational time compared to linear interpolation remains reasonable, with a significative increase in 
accuracy. As in section 3.1, we consider perfect volumic blob-like synthetic distributions. In Fig. 2, we 
monitor the bias and rms error for increasing values of a unidimensional displacement (U,0,0), with U 
ranging from 0 to 2 voxels, and the standard deviation of the Gaussian blob set to σ = 0.625 (2.5 voxel wide 
blob). As shown in Astarita and Cardone (2005), for symmetric IDM algorithms such as FOLKI3D, this 
range is sufficient to explore, as the response is periodic. Note that we chose the seeding density so as to 
have the same number of tracers in an IV as the number of particles in the IWs chosen by Astarita and 
Cardone (ie of the order of 20). 
 

  
Fig. 2 Bias (left) and rms error (right) for both linear and cubic B-Spline interpolators, for increasing values of the uni-

directional displacement (U,0,0).  
  
 
When using a cubic B-Spline interpolation, the maximum bias error for this particle size is roughly equal to 
0.017 voxel, compared to 0.064 for the linear scheme (gain of a factor larger than three). This gain is similar 
in terms of maximum rms error, with respectively 0.018 and 0.064 voxel. These curves and their maxima are 
in excellent agreement with the results of Astarita and Cardone (2005), confirming the similarity of 
FOLKI3D with standard IDM algorithms. The slight differences observed may stem from the fact that we 
consider a monodisperse seeding, whereas Astarita and Cardone allowed a variation of the particle diameter 
in their images, and also from the difference in the final subvoxel/pixel estimation (i.e. minimization vs. 
Gaussian fit, see section 2.3) 
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Fig. 3 Bias (left) and rms error (right) for both linear and cubic B-Spline interpolators as a function of the 3D particle 

diameter dτ, for a displacement (U,V,W) = (1.5,0,0) voxel. 
 
 

As the shape and size of the particles produced by the tomographic reconstruction depend from the size of 
their image on the camera sensors, but also of the geometrical arrangement, it is even more important than in 
plane PIV to assess the accuracy of the algorithm to different particle sizes. This is done in Fig. 3 , where the 
plots represent the bias and rms errors corresponding to a uniform displacement (U,V,W) = (1.5,0,0) (for 
which the rms error is maximum, see Fig. 2), for varying values of the particle diameter dτ = 4σ. Here again, 
results are in very good agreement with those of Astarita and Cardone, with a systematic reduction in bias, 
and a quasi-systematic reduction in rms error, for the B-Spline scheme. The gain in rms error increases with 
increasing particle diameter. Note that, compared to Astarita and Cardone, the B-Spline scheme of 
FOLKI3D is slightly less efficient for very small particles compared to the linear scheme. However, the 
minimum level of rms error reached with the B-Spline scheme is smaller. As the synthetic conditions should 
be close to identical between our study and that of Astarita and Cardone for this second test, these 
differences are most likely ascribed to the subpixel estimation approach. 
 
 
4. Robustness versus Tomographic 3D noise 
 
We now turn to more realistic conditions, using the complete 3D PIV setup, and tomographic 
reconstructions. Our objective in this section is to assess the robustness of the algorithm to specific noise 
sources encountered in the 3D framework, i.e. to the influence of various effects linked to the presence of 
ghost particles. 
 
Similar to traditional sources of noise in planar PIV, the ghost particles play a key role in the accuracy of the 
result, and in the choice of the experimental parameters (see, for instance, Elsinga et al. 2006). Indeed, the 
number of ghosts is known to increase with seeding density, whereas the accuracy of motion estimation 
increases with seeding density. Thus, additionally as increasing the rms error, they also play a key role in the 
spatial resolution of the result, as the choice of the IV size has to result from a trade-off between spatial 
resolution (small IV, requiring a high seeding) and noise (which decreases when the IV size increases). 
Besides, as shown by Elsinga et al. (2011), depending on the setup and displacement field, a proportion of 
ghosts may be coherent between the two laser pulses, thereby adding a bias to the result.  
 
In the following, we will assess the response of FOLKI3D to these sources of noise and bias, and, for some 
of them, compare it to the state-of-the-art, using LaVision Davis 8.2 software. Additionally to the bias due to 
coherent ghosts, we will also consider the influence of viewing conditions, and, in that respect, assess the 
differences obtained for the two interpolation schemes of FOLKI3D. These conditions may play a significant 
role; firstly, Cheminet et al. (2013) and Cornic et al. (2013) recently showed that the ratio between the 
intersection and the union of the camera fields of view directly influences the proportion of ghosts, whereas 
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it is also known that different directions result in different shapes of the reconstructed particles, as for 
instance summed up in Scarano (2013). 
 
 4.1. Tomographic synthetic setup 
 
3D particle distributions reconstructed from PIV images are generated from a classical 3D Tomographic PIV 
setup. Our simulations involve four cameras, which are positioned on a single side of a laser volume. Their 
positions depend on the tests and will be addressed further down in this paper. A pinhole model is assumed 
for the cameras, without Scheimpflug adapter for simplicity, and calibration is supposed to be perfectly 
known and to obey a pinhole model. The focal length is 100 mm, thus the magnification factor M is equal to 
0.1, and the pixel size is 10 µm with a fill factor of 100%.  
 
The laser sheet is modeled as a 20 mm thick parallelepiped. Its intensity profile is assumed to be uniform. 
The reconstructed volume, also 20 mm thick, is taken as the smallest parallelepiped including the illuminated 
volume seen by all the cameras. Thus it depends on the field of view and is given for each experiment. The 
voxel-to-pixel ratio is in this paper always set to one. We use 512x512 pixels cameras, which lead to typical 
reconstruction sizes of the order of 600x600x200 voxels. Unless otherwise specified, the cameras are 
positioned on a single side of the laser sheet at the vertices (±!

!
, ±!
!
, !
!
) of a square of 1 meter side. They are 

positioned at 1 meter from the centre of the reconstructed volume located at (0,0,0) and point at it. 
 
Tracers particles are uniformly distributed in the light sheet volume. The density is controlled by the particle 
per voxel count (ppv) and is set such that the particle density image (Nppp) is equal to 0.056. Horizontal and 
vertical extension of the laser sheet are larger than the field of view covered by all the cameras. Thus all 
illuminated particles cannot be seen by all cameras, a fact that always occurs in real datasets and is however 
often overlooked in synthetic experiments (Cheminet et al., Cornic et al. 2013). Unless otherwise specified, 
the illuminated particles lie in the union of the laser sheet and the cameras fields on view (Union) and the 
reconstruction process is done on the intersection of those volumes (Intersection). For simplicity the 
scattered light is taken as uniform and we will consider a monodisperse seeding. 
 
Considering P particles with intensity Ep located at point Xp in 3D-space, the intensity distribution in the 
image is given by : 
 

𝐼 𝒙 = 𝐸!. ℎ(𝒙 − 𝐹(𝑿𝒑))!
!!!    (7) 

 
where x=(x,y) denotes any location in the image plane, F is the geometric projection function in the image, 
and h the so-called Point Spread Function (PSF), which models the aperture limited diffraction and pixel 
integration. For the tests presented in this paper, we assume a Gaussian PSF with standard deviation σpsf set 
to 0.6, with a 100% fill factor. We assume an image dynamic range of 8 bit, and a Gaussian noise with 
mean=0 and standard deviation 2 is added to the images. Its amplitude is set at about 10% relative to the 
maximum particle intensity.  
 
Tomographic reconstruction is then performed using an MLOS-SMART algorithm similar to that of 
Atkinson and Soria (2009), with 25 iterations and the relaxation parameter µ set to 1. 
 
 4.2. Robustness versus coherent ghost particles 
 
  4.2.1. Displacement field 
 
Elsinga et al. (2011) showed that under certain conditions displacement errors arise due to the coherent 
motion of ghost particles. This occurs when a given ghost particle is formed from the same set of actual 
particles is found in both reconstructed volumes used in the 3D correlation analysis. Indeed, when the 
displacement normal to the viewing direction between two exposures is nearly equal for a given set of 
particle to approximately the particle image diameter, ghost particles are formed in both exposures and have 
a coherent. Their displacement is about the average velocity of the particle set responsible for the ghost 
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particle. This results in an underestimation of the displacement gradients. This phenomenon has a strong 
impact on the displacement field when the difference between particles along the volume depth is close to 
the particle image diameter. To illustrate this, Elsinga et al (2011) used a shear layer type displacement field 
in a 2D synthetic simulation,  

𝑈,𝑉 = (5 + 𝛼z,0)   (8) 
 

where α is a linear displacement gradient. They showed that for a small α gradient, the coherent motion of 
ghost particles strongly impacted the displacement field and that this phenomenon tends to disappear when α 
increases. 
 
To determine FOLKI-3D behavior with respect to the coherent motion of ghost particles we performed 3D 
synthetic simulations, reconstructing particle distribution from 2D PIV images using a similar displacement 
field,  

𝑈,𝑉,𝑊 = (𝛼z, 0, 0)   (9) 
 

for α=0.01 and α=0.05 voxel/voxel. Estimated displacement fields can be assessed using the averaged norm 
of the error between estimated and ground truth displacement, defined as  
 

VEgt =
1
K

v(Xk )−vGT (Xk )
k=1

K

∑   (10) 

 
Here, v and vGT respectively denote the estimated and ground truth displacements, and the index k identifies 
the grid points. It is also possible to base our quality measurement on the velocity vIdeal estimated by using 
ideal reconstructions, as considered in section 3. In this case, the average Velocity Error is denoted VEIdeal. 
The velocity overlap is chosen to be 75%, and the averaged velocity error is computed at points 𝑋! which are 
included in a parallelepiped contained within the intersection volume of both the laser sheet and the cameras 
fields of view (Intersection) In order to achieve statistical convergence of this quantity, we performed the 
tests on typially three to five different initial particle distributions depending on the tests, each leading to 
different reconstructed volumes and velocity fields. In this section only top hat weighted interrogation 
volumes are considered. The interpolation scheme used is the cubic B-Spline, unless otherwise specified. 
The number of levels is J=3 and we used N=7 iterations. 
 
 
  4.2.2. Results 
 
Fig. 4 shows displacement profiles along Z, averaged in the X and Y directions, for α=0.01 and α=0.05. 
Results are plotted for both an ideal particle distribution, and for reconstructed volumes from 2D images. We 
also compute the velocity of ghost particles by removing the real particles from the SMART reconstruction. 
The results show a clear underestimation of the displacement gradient for small α, similar to Elsinga et al. 
(2011), and this effect decreases as α increases. For α=0.05 both ideal and reconstructed mean displacement 
curves overlap. Elsinga et al. showed that this underestimation for small gradients is due to the coherent 
motion of ghost particles which appear in the reconstruction process, as a result of small displacement 
gradients orthogonal to the line of sight of the cameras. 
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Fig. 4 Profiles along Z of the velocity averaged over X and Y for shear displacements with α=0.01 (left) and α=0.05 

(right). Results showed here obtained with an IV side of 41 voxels (radius of 20 voxels). 
   
Following Elsinga et al. 2006, Cheminet et al. (2013) and Cornic et al. 2013 further quantified the impact of 
'added particles', i.e. particles that lie in the Union, as a source of noise on the reconstruction quality. To 
further understand the impact of this effect on the velocity measurement, we computed PIV images with 
particles only in the Intersection on the one hand, and particles in the Union on the other hand, and 
determined the displacements in the case of the α=0.01 shear displacement. Fig. 5 shows the impact on the 
average velocity errors of particles which lie in the Union, but not in the Intersection, leading to a strong 
increase in the rms measurement errors (left figure). Indeed, those particles are responsible for an increase in 
the number of ghost particles in the reconstructed volume: the reconstruction quality Q (Elsinga 2006) for 
the Intersection case is 0.94 and drops to 0.79 for the Union case. Fig. 5 (right) compares the average 
velocity profiles of the reconstruction and of the ghost particles in both cases. It is interesting to see that the 
ghost particles average velocity in the Union case is of opposite sign to the reconstruction velocity, thus 
impacting strongly the overall velocity estimation through a clear underestimation of the velocity gradient. 
These ghost particles lead to an increase in the rms errors as well as an increase in bias errors. To minimize 
their impact, experiments should thus be designed so as to maximize the ratio RI/U between Intersection and 
Union, as long as this does not increase other noise sources. 
 

  
Fig. 5 Average velocity errors for α=0.01 (left) as a function of the IVs radius R. Velocity profiles along Z, averaged in 

the X and Y directions (right) for ideal reconstruction, SMART reconstruction and ghost particles. Cases where 
particles lie only in the Intersection, or in the Union. On the right subfigure, the IV side is set to 41 voxels (radius of 20 

voxels). 
 

In order to further situate FOLKI3D among other IDM algorithms, we performed a comparison with 
LaVision Davis 8.2, using the direct correlation setting, and with top hat interrogation volumes for both 
algorithms. Further parameters for Davis 8.2 include an intermediate rejection step using the universal outlier 
detection method (Westerweel et al. 2005), and smoothing between the iterations with a 3x3x3 Gaussian 
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filter. The test case chosen for this comparison is the α=0.01 shear displacement with illuminated particles 
lying in the Union volume, which was showed to be a particularly noisy case for the correlation. Firstly, we 
performed a tomographic reconstruction from the synthetic PIV images using our implementation of MLOS-
SMART. Then, the same resulting reconstructed volumes were processed both by FOLKI3D and Davis. This 
operation was repeated with 3 different particles sets to achieve statistical convergence of the average 
velocity error. Fig. 6 shows this quantity as well as the velocity profiles, for both algorithms. 

 

  
Fig. 6 Average velocity errors for α=0.01 (left) as a function of the IVs radius R, and velocity profiles along Z, 

averaged in the X and Y directions (with an IV side of 48 - radius of 24 voxel), obtained with FOLKI3D and Davis 8.2 
on the same tomographic reconstructions, and with FOLKI3D on ideal volumic distributions.  

 
In Fig. 6, FOLKI3D’s rms displacement error VEgt is compared to Davis’s for different IVs sizes, and 
averaged velocity profiles are also compared for an IV side of 48 voxels. FOLKI3D and Davis have a similar 
behavior, the rms error rising as the IV size decreases. It turns out that FOLKI3D performs equally or better 
than Davis whereas it does not involve any data post-processing between two successive iterations. This is 
especially true for small IV sizes. Champagnat et al. (2011) showed the same results on the 2D version of the 
algorithm. 
 
 
 
 4.3. Interpolators and shape of the reconstructed particles 
 
As studied by Elsinga et al. (2006) and Scarano (2013) among others, the reconstruction quality is strongly 
dependent on the global aperture angle of the cameras. Indeed, small values of the aperture will lead to 
reconstructed particles with an elongated shape in the Z direction, whereas larger apertures will allow to 
obtain more isotropic blobs. In this section, we further consider the impact of this parameter on the 
corresponding velocity fields, and also investigate the influence on the result of the interpolation scheme 
used during deformation. We choose a camera arrangement in the form of a cross (or '+' sign), parameterized 
by its aperture angle β, similar to that considered in Scarano (2013), and vary β between 20 and 100°. For 
each angle value, as in the previous sections, we generate two sets of synthetic images, corresponding to 
particles lying either in the Intersection only, or in the Union. Note that, since the voxel-to-pixel ratio is 
chosen equal to 1 in all situations, choosing the same ppv for all angles results in images with the same ppp. 
Thus, varying the angle β will amount to varying the Intersection to Union ratio RI/U, thereby varying the 
proportion of ghosts, as well as the shape of the reconstructed particles.  
  

5 10 15 20 25 30

10ï1

100

R

V
E gt

 

 

Ideal
FOLKI3D
Davis 8

60 70 80 90 100 110 120 130 140

ï0.5
ï0.4
ï0.3
ï0.2
ï0.1

0
0.1
0.2
0.3
0.4
0.5

z voxels
V

el
oc

ity
 

 

Real displacement
FOLKI3D, IV size 48
Davis 8, IV size 48



17th International Symposium on Applications of Laser Techniques to Fluid Mechanics 
Lisbon, Portugal, 07-10 July, 2014 

- 11 - 

 
Fig. 7 Reconstruction quality as a function of the camera aperture angle β, for synthetic images generated with particles 

contained only in the Intersection, or in the Union. The value of the Intersection to Union ratio RI/U is also indicated.  
 
 
Fig. 7 shows the evolution of the reconstruction quality as a function of β in the Intersection and Union 
cases. Similarly to Scarano (2013), one logically observes an important drop in Q for decreasing β, due to 
the elongation of the reconstructed particles in the Z direction. In the realistic Union case, the quality does 
not increase strictly with β contrary to the Intersection case, but reaches a plateau from β ≈ 60°, close to a 
0.75-0.8 level. This is due to the fact that as β increases, the RI/U ratio increases. Therefore, even if the shape 
of the reconstructed particles is closer to ideal, the corresponding gain in quality is cancelled by an increase 
in the number of ghosts due to added particles. 
 
In Fig. 8, the corresponding displacement rms errors are represented separately for each component, for 
fields obtained using either the linear or the cubic B-Spline interpolators in FOLKI3D. In all cases, the IV 
size has been set to 41 voxels. The ground truth displacement considered here is made up of the 
superposition of shearing motions along both U and W, with the same strength α = 0.01. More precisely: 
 

U,V,W( ) = αZ, 0,αX( )    (11) 
 

The resulting velocity field is thus a hyperbolic point in the XZ plane. Starting with the Intersection case (left 
subfigure), one observes that, logically, the rms error on W explodes for the smaller value of β and becomes 
comparable to that on U and V for values equal or larger to 40°. Another important result is that fields with 
the B-Spline interpolator have quasi-systematically lower rms errors than with the linear interpolator for all 
components. The exception is precisely the rms error on W for the smaller values of β. However, these 
angles correspond to small apertures, which are rarely considered in practice, as they have a large rms error 
also with the linear interpolator. Therefore, it can be concluded that in a more complex situation than the 
ideal distribution considered in section 3.2 (that is, actual reconstructions with noise in the images), the use 
of a B-Spline interpolator for deformation allows a significant increase in the accuracy. Going one step 
further in complexity, when particles lie in the Union field (right subfigure), one observes that this gain is 
robust, with overall comparable results for both interpolators. A slight difference is observed, in the form of 
higher rms values for all components and interpolators for the largest values of β (80 and 100°). This can be 
probably be ascribed to the large number of ghost particles due to the low value of the RI/U ratio.  
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Fig. 8 Componentwise RMS error for linear and cubic B-Spline interpolators as a function of the camera aperture angle 
β, for synthetic images generated with particles contained only in the Intersection (left), or in the Union (right). The 

displacement field is a shearing motion with α=0.01, as in section 4. The IV size in FOLKI3D is of 41 voxels (radius of 
20) 

 
Conclusion  
 
An extension to 3D of the algorithm FOLKI-PIV (Champagnat et al. 2011) has been introduced. As in the 
planar context, the displacement is searched as the minimizer of a sum of squared differences, which is 
solved iteratively by using volume deformation. The latter may be performed using a simple, linear scheme 
or a higher-order, cubic B-Spline scheme. Tests performed on synthetic 3D particle distributions have 
confirmed that the spatial frequency response is similar to that of standard iterative deformation algorithms, 
for both top-hat and Gaussian weightings, while similar gains as reported in the literature are obtained by 
choosing the cubic B-Spline interpolation rather than the linear one. Tests on volumes reconstructed from 
projected images have then allowed to characterize the robustness of the algorithm to specific tomographic 
noise (i.e., ghost particles), as well as the gain brought by the higher-order interpolation in a more realistic 
configuration. FOLKI3D has been found in particular more robust to coherent ghosts, while the gain in 
accuracy of the high-order deformation has been confirmed for various quantities of ghosts in the 
reconstructions, and various shapes of the reconstructed particles. 
 
In future works, we will pursue these tests by considering more complex displacement fields, as well as 
experimental data on a cylindrical jet, in order to evaluate the potential of FOLKI3D to the study of 3D 
turbulent flows. The algorithmic optimization will also be continued, firstly in order to reach the most 
efficient computational times within the present algorithm, and then in order to include more advanced 
methods, such as time-resolved, for instance. 
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