The 2-adic CM method for genus 2 curves with application to cryptography

Pierrick Gaudry 1 Thomas Houtmann 2 David Kohel 3 Christophe Ritzenthaler 4 Annegret Weng 2
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : The complex multiplication (CM) method for genus 2 is currently the most efficient way of generating genus 2 hyperelliptic curves defined over large prime fields and suitable for cryptography. Since low class number might be seen as a potential threat, it is of interest to push the method as far as possible. We have thus designed a new algorithm for the construction of CM invariants of genus 2 curves, using 2-adic lifting of an input curve over a small finite field. This provides a numerically stable alternative to the complex analytic method in the first phase of the CM method for genus 2. As an example we compute an irreducible factor of the Igusa class polynomial system for the quartic CM field Q(i sqrt(75 + 12 sqrt(17))), whose class number is 50. We also introduce a new representation to describe the CM curves: a set of polynomials in (j1, j2, j3) which vanish on the precise set of triples which are the Igusa invariants of curves whose Jacobians have CM by a prescribed field. The new representation provides a speedup in the second phase, which uses Mestre's algorithm to construct a genus 2 Jacobian of prime order over a large prime field for use in cryptography.
Type de document :
Communication dans un congrès
X. Lay and K. Chen. Asiacrypt 2006, Dec 2006, Shangai, China. Springer-Verlag, 4284, pp.114-129, 2006, Lecture notes in computer science
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00103435
Contributeur : Pierrick Gaudry <>
Soumis le : mercredi 4 octobre 2006 - 13:44:40
Dernière modification le : jeudi 9 février 2017 - 15:07:34
Document(s) archivé(s) le : mardi 6 avril 2010 - 18:07:41

Fichier

Identifiants

  • HAL Id : inria-00103435, version 1

Collections

Citation

Pierrick Gaudry, Thomas Houtmann, David Kohel, Christophe Ritzenthaler, Annegret Weng. The 2-adic CM method for genus 2 curves with application to cryptography. X. Lay and K. Chen. Asiacrypt 2006, Dec 2006, Shangai, China. Springer-Verlag, 4284, pp.114-129, 2006, Lecture notes in computer science. 〈inria-00103435〉

Partager

Métriques

Consultations de
la notice

396

Téléchargements du document

226