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ADAPTIVE ESTIMATION IN THE FUNCTIONAL NONPARAMETRIC
REGRESSION MODEL

GAËLLE CHAGNY(A) AND ANGELINA ROCHE(B)

Abstract. In this paper, we consider nonparametric regression estimation when the
predictor is a functional random variable (typically a curve) and the response is scalar.
Starting from a classical collection of kernel estimates, the bias-variance decomposition
of a pointwise risk is investigated to understand what can be expected at best from
adaptive estimation. We propose a fully data-driven local bandwidth selection rule in the
spirit of the Goldenshluger and Lepski method. The main result is a nonasymptotic risk
bound which shows the optimality of our tuned estimator from the oracle point of view.
Convergence rates are also derived for regression functions belonging to Hölder spaces
and under various assumptions on the rate of decay of the small ball probability of the
explanatory variable. A simulation study also illustrates the good practical performances
of our estimator.
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1. Introduction

1.1. Statistical model. Nowadays, more and more advanced technologies make possible
the recording of observations in such a way that the collected data may be considered as
curves (or surfaces). This explains why developing methods for Functional Data Analysis
(F.D.A.) is a great challenge for the statisticians, which has become more and more popu-
lar in the past decades, as it is highlighted by the monographies of Ramsay and Silverman
(2005), Dabo-Niang and Ferraty (2008) and Ferraty and Romain (2011). Regression with
functional covariate is one of the most studied problem. The functional linear model has
�rst been widely investigated (see, among all, Ramsay and Dalzell 1991; Cai and Hall
2006; Crambes et al. 2009) with its generalisations (Cardot and Sarda 2005; Müller and
Stadtmüller 2005). However, studies of the nonparametric regression model, in which we
are interested, are more recent. Consider

(1) Y = m(X) + ε,

where Y is a real random variable, X a random variable which takes values in a separable
in�nite-dimensional Hilbert space (H, 〈·, ·〉, ‖ · ‖) (it can be L2(I), the set of squared-
integrable functions on a subset I of R, or a Sobolev space), and m : H → R the target
function to recover. The random variable ε stands for a noise term. We suppose that ε
and X are independent and that ε is centred with E[ε2]1/2 = σ <∞. The speci�city thus
stands in the dimension which is in�nite in two aspects: �rst, the framework is a functional
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2 G. CHAGNY AND A. ROCHE

one (the covariate X is a stochastic process which lives in an in�nite-dimensional space),
and then, no assumption is made on the form of the function m to estimate.
The aim of this paper is to provide an adaptive optimal strategy to estimate the re-

gression function m from a data sample {(Xi, Yi), i = 1, ..., n} distributed like the couple
(X, Y ), that is Yi = m(Xi) + εi, with εi's independent identically distributed (i.i.d. in
the sequel) like ε, and independent from the Xi's. We explore the pointwise risk of a
collection of kernel estimates, and propose to select the bandwidth in a data-driven way
at a �xed curve so as to obtain a theoretical non-asymptotic risk bound, which proves the
optimality of our estimator in the collection.

1.2. State of the art and motivation. The starting point of our work is the following
collection of estimators. Let K : R → R be a kernel function (that is

∫
RK(u)du = 1),

Kh : u 7→ K(u/h)/h, for h > 0, and

(2) m̂h(x) :=
n∑
i=1

W
(i)
h (x)Yi where W

(i)
h (x) :=

Kh(‖Xi − x‖)∑n
j=1Kh(‖Xj − x‖)

,

for any (x, y) ∈ H× R. Inspired by the classical kernel methods of Nadaraya (1964) and
Watson (1964), these estimators have �rst been introduced in the functional context by
Ferraty and Vieu (2000) and have then aroused considerable interest and attention. A
�rst order of magnitude for the risk is given by Ferraty and Vieu (2002), almost com-
plete convergence is proved by Ferraty and Vieu (2004), Ferraty et al. (2007) deals with
asymptotic normality and Ferraty et al. (2010) examine asymptotic expansions for the
mean integrated squared error. Finally, a clear account about convergence rates (upper
and lower bounds for the pointwise risk of (2) under concentration assumptions for the
process X, as well as minimax rates) is provided by Mas (2012). Moreover, this kind of
estimates gives rise to other kernel-based strategies to recover m in the same functional
context. Local linear methods in the spirit of local polynomial estimators have been ex-
plored by Baíllo and Grané (2009), Barrientos-Marin et al. (2010), Boj et al. (2010) and
Berlinet et al. (2011), k−nearest neighbor kernels are examined by Burba et al. (2009),
a recursive kernel approach is suggested by Amiri et al. (2014) and Reproducing Kernel
Hilbert Space-based methods are reported by Avery et al. (2014). Kernel methods have
also been successfully extended to estimate the regression function m from dependent
data (see, e.g. Masry 2005, Delsol 2009 and references therein) or to consider the case of
a functional response variable Y (in the model (1)), see Ferraty et al. (2012).

All these methods have one point in common: they heavily depend on the choice of
the smoothing parameter h (see (2)), the so-called bandwidth. Heuristically, a large value
for h leads to an estimator with large bias (but small variance), while a too small value
leads to high variability. It raises the question of de�ning a bandwidth selection criterion
which is proved to automatically balance the bias-variance trade-o�. However, not many
investigations are concerned with this theoretical (the criterion should be theoretically
justi�ed) and practical (the bandwidth has to be chosen for application purpose) problem
for F.D.A. The most commonly used method to select the bandwidth of a functional
regression kernel estimate is the leave-one-out cross validation. The �rst algorithm is
proposed by Ferraty and Vieu (2002), used for dependent data by Ferraty et al. (2002)
and Ferraty and Vieu (2006) and shown to be asymptotically optimal by Rachdi and Vieu
(2007). It is a global method that do not depend on the point (curve) of estimation. A
local version, also optimal in an asymptotic way, is proposed by Benhenni et al. (2007).
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More recently, bayesian strategies have been studied (Shang, 2013, 2014), but only for
simulation purposes.

1.3. Contribution and overview. Few systematic studies have been undertaken to
build a data-driven bandwidth selection method so as to obtain adaptive estimators and
nonasymptotic risk bounds for functional regression estimation, while the same question
is the subject of a wide litterature in classical nonparametric estimation. Only two papers,
to our knowledge, focus on this problem. A method based on empirical prediction-risk
minimisation is explored by Antoniadis et al. (2009): oracle inequalities are proved, but
the criterion is speci�c to functional time series prediction. Inspired both by the advances
about the Lepski methods (Goldenshluger and Lepski, 2011) and model selection, Chagny
and Roche (2014) investigate a global bandwidth selection method to estimate a cumu-
lative distribution function conditionally to a functional covariate, shown to be optimal
both in the oracle and minimax sense, for an integrated error.
Motivated by this work and by the observation that a local bandwidth choice can

improve signi�cantly the precision of estimation in a functional context (see the results of
Benhenni et al. 2007), the goal of the present paper is to de�ne a local bandwidth selection
criterion for the estimators (2) in functional regression in such a way that the resulting
estimator is optimal in a nonasymptotic point of view. An upper-bound for a pointwise
risk is �rst derived in Section 2. For x0 a �xed point in H, the risk of an estimator m̂(x0)
computed at the curve x0, is, in the sequel,

E
[
(m̂(x0)−m(x0))2] .

We obtain an exact bias-variance decomposition (Proposition 1) which permits to un-
derstand what we can expect at best from adaptive estimation, which is the subject of
Section 3. The bandwidth selection, at a �xed curve, is automatically performed in the
spirit of Goldenshluger and Lepski (2011). The resulting estimator achieves the same per-
formance as the one which would have been selected if the regularity index of the target
function had been known, up to a constant and to a logarithm factor, as it is proved in our
main result, Theorem 1. The result holds whatever the sample size. Convergence rates
are also deduced in Section 3.4 for functions m belonging to Hölder spaces, and under
various concentration assumptions on the process X. These assumptions are on the rate
of decay of the small ball probability

ϕx0 : h > 0 7→ P(‖X − x0‖ ≤ h), x0 ∈ H,

which in�uences the rate, as usual. The faster the small ball probability decreases, the
smaller the rate of convergence of the estimator is. The rates (Proposition 2) are quite
slow when X really lives in an in�nite-dimensional space. They nevertheless match with
the lower bounds of Mas (2012). This is the so-called "curse of dimensionality". Practical
issues are discussed in Section 4 and the performances of our bandwidth selection criterion
are compared with cross-validated criteria. Finally, the proofs are gathered in Section 5.
Notice that we do not discuss in this work the choice of the norm ‖.‖ in the kernel
estimators (2): we have shown in Chagny and Roche (2014) that the alternative choice of
projection semi-norm does not improve the convergence rates, at least under our regularity
assumption (Hm de�ned below). Alternative regularity assumptions with data-driven
semi-norms in the kernel could improve in practice the performances of kernel estimators.
This is, to our opinion, an interesting perspective but this is far beyond the scope of this
paper.



4 G. CHAGNY AND A. ROCHE

2. Risk of an estimator with fixed bandwidth

We provide in this section upper-bounds for the pointwise risk of any estimator (2)
with �xed bandwidth h.

2.1. Assumptions. The result will be obtained under the following assumptions.

(HK) The kernel K is of type I (Ferraty and Vieu, 2006) i.e. its support is in [0, 1] and
there exist two constants cK , CK > 0 such that

cK1[0,1] ≤ K ≤ CK1[0,1].

(Hm) There exists β ∈]0, 1], and a constant Cm > 0 such that, for all x, x′ ∈ H,
|m(x)−m(x′)| ≤ Cm‖x− x′‖β.

Assumption (HK) is quite classical in kernel methods for functional data (see Ferraty
et al. 2006; Burba et al. 2009; Ferraty et al. 2010). We are aware that this is a strong
constraint on the choice of the kernel but alleviate it in a functional data context re-
quires a lot of technical di�culties and it is still, to our knowledge, an open problem.
However, since the kernel is chosen by the statistician in practice, this is not a real prob-
lem. Assumption (Hm) is an Hölder-type regularity condition on the target function m
to estimate, it is required to control the bias term of the risk.

2.2. Upper bound for the risk. The following theorem provides a bias-variance de-
composition, in a non-asymptotic point of view.

Proposition 1. If Assumption (Hm) is ful�lled, there exists a constant C > 0 which only
depends on cK and CK such that, for all h > 0:

(3) E
[
(m̂h(x0)−m(x0))2] ≤ C

(
h2β +

σ2

nϕx0(h)

)
.

The �rst term of Inequality (3) is a bias term: it depends on the regularity of the
function to estimatem and decreases when h decreases. The second term of Inequality (3)
is a variance term which depends on the regularity of the process X through its small
ball probability ϕx0 . This term increases when h decreases. This result is coherent with
Ferraty et al. (2010, Theorem 2).

3. Adaptive estimation

We de�ne in this section a data-driven bandwidth selection method, which leads to an
adaptive estimator.

3.1. Bandwidth selection. We have at our disposal the estimators m̂h de�ned by (2)
for any h > 0. Let Hn be a �nite collection of bandwidths, with cardinality depending
on n and properties precised below. Denote hmax = maxHn, hmin = minHn. Our aim is

to select a bandwidth ĥ in the collection, only from the data, so as to obtain a resulting
estimator which has a minimal risk, up to some constants or negligible terms, among the
collection (m̂h)h∈Hn .

If one has access to the smoothness index β of m (see Assumption (Hm)) and to the
knowledge of the small ball probability ϕx0(h), the best choice of bandwidth among the
collection for a given curve x0 ∈ H would be

(4) h∗(x0) = arg min
h∈Hn

{
h2β +

σ2

nϕx0(h)

}
,
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thanks to the decomposition (3) in Proposition 1. This ideal choice, which realizes the
best trade-o� between the bias and variance terms is called the "oracle". It cannot be
used in practice since it depends both on β and ϕx0(h) which are generally unavailable
for the statistician. The method we de�ne below is fully data-driven, and is in the spirit
of the so-called Lepski methods: the most recent one, developed by Goldenshluger and
Lepski (2011), permits to derive the nonasymptotic results we want to obtain. The main
idea is the following. Since the oracle h∗ depends on unknown quantities, let us "mimic"
its choice by selecting

(5) ĥ(x0) = argminh∈Hn

{
Â(h, x0) + V̂ (h, x0)

}
,

where V̂ (h, x0) is an empirical counterpart for the variance term, and Â(h, x0) is an
approximation of the bias term. To de�ne them, let us �rst introduce an empirical version
for the shifted small ball probability ϕx0(h) = P(‖X − x0‖ ≤ h) as follows

(6) ϕ̂x0(h) =
1

n

n∑
i=1

1{‖Xi−x0‖≤h}.

It permits to set

(7) V̂ (h, x0) =

κσ2 ln(n)

nϕ̂x0(h)
if ϕ̂x0(h) 6= 0

+∞ otherwise,

where κ is a constant speci�ed in the proofs which depends neither on h, nor on n, nor onm
which is, in practice, �xed once and for all (see Section 4.1.1). The idea of Goldenshluger

and Lepski (2011) is to de�ne Â(h, x0) by comparing two by two the estimators with �xed
bandwidth. In our functional context, the comparison can be done as follows:

(8) Â(h, x0) = max
h′∈Hn

(
(m̂h′(x0)− m̂h∨h′(x0))2 − V̂ (h′, x0)

)
+
.

This quantity is proved to be an approximation of the bias term (see Lemma 4). This

motivates the following choice of the bandwidth ĥ(x0), and the study of the selected

estimator, at the point x0 is ̂̂m(x0) := m̂ĥ(x0)(x0): the theoretical results below establish
that it really mimics the oracle. Notice that similar selection criteria, which are based
on the used of auxiliary estimators with the bandwidth h ∨ h′ have been recently used
by Chagny and Roche (2014) in a functional setting but for global selection purpose (the
selected bandwidth does not depend on the curve x0), or by Rebelles (2014) for a pointwise
slection in multivariate density estimation.

3.2. Assumptions. We consider the following assumptions, in addition to the ones in-
troduced in Section 2.1.

(HHn) The collection Hn of bandwidths is such that:
(HHn,1) its cardinality is bounded by n,
(HHn,2) for any h ∈ Hn, ϕ

x0(h) ≥ C0 ln(n)/n, where C0 > 0 is a purely numerical
constant (speci�ed in the proofs).

(Hε) For any integer l ≥ 2, E[|ε1|l] ≤ C l
εσ

ll!/2, for Cε > 1 a constant.

Assumption (HHn) means that the bandwidth collection should not be too large. As-
sumption (Hε) is an integrability condition on the error. Bounded noise or Gaussian
noise satisfy such kind of assumption.
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3.3. Theoretical results.

Theorem 1. Assume (HK), (Hm), (HHn) ((HHn,1) and (HHn,2)) and (Hε). There exist
two constants c, C > 0 depending on cK, CK, C0, Cm, Cε, hmax, κ such that

(9) E
[( ̂̂m(x0)−m(x0)

)2
]
≤ c min

h∈Hn

{
h2β + σ2 ln(n)

nϕx0(h)

}
+
C

n
.

This result proves that our selection rule (5) which permits to de�ne ̂̂m(x0) really
mimics the oracle one (4). The selected estimator performs as well as the pseudo-estimator
m̂h∗(x0). The right-hand-side of (9) actually corresponds to the best compromise between
the bias and the variance terms of the risk, since the term C/n is negligible with respect
to the �rst term of the right-hand-side of (9). Our procedure is thus adaptive, the selected
estimator automatically adapts itself to the unknown smoothness of the target function
m. We just have a logarithmic loss in the rate, by comparing the right-hand-side of (9)
with (3). The loss is due to adaptation, and is known to be nevertheless adaptive optimal
in many estimation problem studied with a pointwise risk. Notice also that the same
phenomenon also occured to estimate the conditional cumulative distribution function
in the same functional context, but with an integrated criterion, see Chagny and Roche
(2014). We see below that it does not a�ect the convergence rates in most of the cases.

Remark 1. The estimated variance term V̂ (h, x0) (see (7)) of the selection criterion
cannot be used in practice, since it depends on the unknown noise variance σ2 = E[ε2

1]. A
solution consists in replacing it by an estimator, and to prove that the estimator selected
with the new criterion still satis�es the adaptation property. The plug-in does not lead to
speci�c di�culties, and an upper-bound for the risk similar to (9) can be easily proved.
We do not give all the theoretical details, since similar results and proofs can be found
in Brunel and Comte (2005, Theorem 3.4) (for classical model selection method) and
Chagny and Lacour (2014, Theorem 3) (for selection criterion in the spirit of Lepski's
methodology). However, all the practical explanations can be found in Section 4.1.2.

3.4. Rates of convergence. Using the results of Theorem 1, we compute the rate of
decrease of the risk of the selected estimator. Since the the variance term in the upper-
bound on the risk (Inequality (9)) depends on the small ball probability ϕx0(h), the
resulting rate will be related to its rate of decay when h→ 0.
We proceed as in Chagny and Roche (2014). Let us de�ne three classes of processes

(we denote by c1, C1 and c2 some nonnegative constants):

HX,L There exist some constants γ1, γ2 ∈ R, and α > 0 such that
c1h

γ1 exp(−c2h
−α) ≤ ϕx0(h) ≤ C1h

γ2 exp(−c2h
−α);

HX,M There exist some constants γ1, γ2 ∈ R, and α > 1, such that
c1h

γ1 exp(−c2 lnα(1/h)) ≤ ϕx0(h) ≤ C1h
γ2 exp(−c2 lnα(1/h));

HX,F There exists a constant γ > 0, such that c1h
γ ≤ ϕx0(h) ≤ C1h

γ.

The class HX,F is typically the class of �nite-dimensional processes. We can see this
with the Karhunen-Loève decomposition of X,

(10) X =
∑
j≥1

√
λjξjψj,

which is simply the decomposition of X in the basis (ψj)j≥1 of the eigenfunctions of the

covariance operator Γ : f 7→ E [〈f,X〉X]. Here, (ξj)j≥1 is a sequence of uncorrelated cen-
tred standard random variables (the standardised principal component scores) and (λj)j≥1

is the sequence of eigenvalues associated to the eigenfunctions (ψj)j≥1. The series (10)
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converges in terms of the norm ‖ · ‖ of H. Typically, if there is only a �nite number of
eigenvalues (λj)j≥1 which are non null, under mild assumptions on the law of X, we can
prove that HX,F is veri�ed and, in that case, X lies a.s. in the �nite-dimensional space
span{ψj, λj > 0} (Chagny and Roche, 2014) (note that, since Γ is a positive operator,
λj ≥ 0 for all j ≥ 1). Conversely, Mas (2012, Corollary 1, p. 10) proved that, under
general conditions satis�ed e.g. by Gaussian processes, the variable X can not veri�es
Assumption HX,F if the set {j, λj > 0} is in�nite.
A process X belongs to the class HX,M typically when the eigenvalues (λj)j≥1 decrease

at an exponential rate. For instance, in the case of a Gaussian process with c exp(−2j)/j ≤
λj ≤ C exp(−2j)/j, we have c2 = 1/2 and α = 2 in HX,M (Ho�mann-Jørgensen et al.
1979, Theorem 4.4 and example 4.7, pp. 333 and 336).
Finally, the class HX,L contains the processes such that the eigenvalues (λj)j≥1 decrease

at a polynomial rate (Ho�mann-Jørgensen et al., 1979, Theorem 4.4 and example 4.5, pp.
333 and 334). This is the case for instance for the Brownian motion (Ash and Gardner,
1975, pp. 41 and 42) or the Brownian bridge (MacNeill, 1978).

Proposition 2. Suppose that all the assumptions of Theorem 1 are veri�ed. De�ne, for
β ∈]0, 1] and C > 0, FCβ be the following functional classes:

FCβ =
{
m : H→ R, |m(x)−m(x′)| ≤ C‖x− x′‖β

}
.

• If Assumption HX,L is veri�ed, then

sup
m∈FCβ

E
[( ̂̂m(x0)−m(x0)

)2
]
≤ C1 (lnn)−β/α .

• If Assumption HX,M is veri�ed, then

sup
m∈FCβ

E
[( ̂̂m(x0)−m(x0)

)2
]
≤ C2 exp

(
− 2β

c
1/α
2

ln1/α(n)

)
.

• If Assumption HX,F is veri�ed, then

sup
m∈FCβ

E
[( ̂̂m(x0)−m(x0)

)2
]
≤ C3

(
lnn

n

)2β/(2β+γ)

.

Here, C1, C2 and C3 are positive real numbers independent of n.

Since the bias-variance decomposition is very similar for the regression function estima-
tion (Inequality (9)) and for the conditional cumulative distribution function estimation,
we can easily adapt the proof of Chagny and Roche (2014, Section A.1.1) to prove Propo-
sition 2.
The rates of decay of the risk are quite slow. Mas (2012, Theorem 3 and Corollary 2)

has obtained very similar minimax convergence rates with di�erent assumptions. More-
over, although slow, these rates are proved to be the optimal for conditional cumulative
distribution function estimation in Chagny and Roche (2014) under the same assumptions
on the small ball probability.

4. Numerical results

Our aim in this section is to illustrate the behaviour of our bandwidth selection device
studied above and to compare its practical performances with cross-validation methods,
to select a kernel estimator of the regression function. We �rst explain how to implement
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our procedure, and detail speci�cally how to tune the constant appearing in the term
V̂ (h, x0) (which can be compared to a penalty constant).

4.1. Implementation of the estimator. For the simulation study, we choose the uni-
form kernel

K(t) = 1[0,1[,

and the following bandwidth collection

Hn := {hmax/k, k = 1, . . . , kmax} .

The norm ‖ · ‖ is the usual norm of L2([0, 1]): ‖f‖2 :=
∫ 1

0
f(t)2dt, for all f ∈ L2([0, 1]).

With the de�nition of the kernel K, we see that, if h > max {‖Xi − x0‖, i = 1, . . . , n},
Kh (‖Xi − x0‖) = 1. Hence, there is no need to consider bandwidths which are larger than
max {‖Xi − x0‖, i = 1, . . . , n}: we thus set hmax = max {‖Xi − x0‖, i = 1, . . . , n}. Note
that a bandwidth collection depending on max {‖Xi − x0‖, i = 1, . . . , n} is also considered
in Amiri et al. (2014). Similarly, if h is taken too small, there are too few observations
Xi in the ball {x ∈ H, ‖x− x0‖ < h} and the variance of the estimator m̂h(x0) is large.
To prevent this, we �x kmax such that ϕ̂x0(hmax/kmax) ≥ lnn/n or, worded in a di�erent
way, kmax is the largest integer such that hmax/kmax is greater than the empirical quantile
of {‖Xi − x0‖}i=1,...,n associated to the probability lnn/n.

4.1.1. Calibration of the constant appearing in the term V̂ (h, x0). The constant κ appear-

ing in the term V̂ (h, x0) is a universal constant in the sense that it does not depend on
the model parameters or on the estimation parameters. Hence, we must �x it once and
for all.
The method we propose is to evaluate the performances of our estimator on a grid of

di�erent values of κ, for di�erent sets of parameters, and to keep the value of κ for which
our estimator seems to have a reasonable mean squared error1

MSE := E
[( ̂̂m(x0)−m(x0)

)2
]
.

This calibration method is quite classical (see for instance Bertin et al. 2014; Comte and
Johannes 2012).
The functional covariate is simulated in the following way:

X(t) := ξ0 +
J∑
j=1

ξj
√
λjψj(t),

where, for all j ≥ 1, ψj(t) :=
√

2 sin(π(j − 0.5)t), (λj)j≥1 is a sequence of positive real
numbers such that

∑
j≥1 λj < +∞ and (ξj)j≥0 is an i.i.d. sequence of standard random

variables and J is a positive integer. In the sequel, we consider three di�erent settings:

(a) J = 150 and λj = j−2 for all j ≥ 1. Here, J is su�ciently large to consider that

J∑
j=1

ξj
√
λjψj(t) ≈

∑
j≥1

ξj
√
λjψj(t).

Moreover, the choice of the sequence (λj)j≥1, ensures that
∑

j≥1 ξj
√
λjψj(t) veri�es

HX,L.

1Note that the optimal value of κ may vary in practice from one set of parameters to another. Then the
idea is to realise a compromise between all the models and to take a �reasonable� value of the constant.
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Figure 1. Plots of the empirical mean of the squared error calculated over 50 inde-
pendent samples of size n = 500. Dotted lines: 95% con�dence interval on the mean
squared error. Blue curves: process (a), green curves: process (b) and red curves :

process (c).

(b) J = 150 and λj = e−j/j for all j ≥ 1 which corresponds to a process verifying
HX,M .

(c) J = 2 and λj = j−2 for all j ≥ 1 which corresponds to a process verifying HX,F .

We consider also three regression models:

Model 1 : Y =
(∫ 1

0
sin(4πt)X(t)dt

)2

dt+ ε (Chagny and Roche, 2014).

Model 2: Y =
∫ 1

0
|X(t)| ln(|X(t)|)dt+ ε (Ferraty and Vieu, 2002).

Model 3: Y =
∫ 1

0
X(t)2dt+ ε (Amiri et al., 2014).

For the three models, we set ε ∼ N (0, σ2) with σ2 = 0.01.
Figure 1 represents the empirical mean of the error as a function of κ. We choose the

value κ = 0.1 for which the mean squared error of the estimator seems to be reasonable
for all the chosen sets of parameters.

4.1.2. Estimation of the noise variance σ2. Recall that our bandwidth selection crite-
rion (5) depends on the noise variance σ2, see details in Remark 1. In the simulation
study, we �rst consider that the noise variance is known. However, in practice, we rarely
know its value. Hence, we propose a plug-in estimator

σ̂2 :=
1

n

n∑
i=1

(Yi − m̂hmin
(Xi))

2 .

The idea beyond this proposition is the following: we want to propose an estimator which
is as close as possible of the quantity

∑n
i=1 ε

2
i /n (we recall that the εi's are not observed).

We have
1

n

n∑
i=1

ε2
i =

1

n

n∑
i=1

(Yi −m(Xi))
2 ,

and we replace m(Xi) by an estimator m̂h(Xi) with a bandwidth h ∈ Hn. A numer-
ical study then allows us to establish that the more h is small, the more the quantity∑n

i=1 ε
2
i /n =

∑n
i=1 (Yi −mh(Xi))

2 /n is close to σ2.
The estimator m̂ĥ(x0)(x0) with the bandwidth selected by the criterion (5) with σ2

replaced by σ̂2 is denoted ̂̂m(ev)
(x0). Note that, in the simulation study, the replacement
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Figure 2. Plot of the predicted values Ŷ (j) versus the observed values Y (j). Figure

(a): Ŷ (j) = ̂̂m(X
(j)
i ). Figure (b): Ŷ (j) = ̂̂m(ve)

(X
(j)
i ). Figures (c) and (d): predictions

made with the estimator selected by leave-one-out cross-validation and 10-fold cross-
validation. Model 3 with X a standard Brownian motion, n = 500.

of σ2 by the plug-in estimator σ̂2 does not in�uence signi�cantly the performances of the
estimator (see Table 1 and Figures 2 (a) and 2 (b)).

4.2. Simulation results. We study here the behaviour of our estimator in two settings
with Model 3, presented in Subsection 4.1.1:

First setting: The covariate X is simulated with the framework (b) (see Subsec-
tion 4.1.1) and the noise variance is �xed to σ2 = 0.2.

Second setting: X is a standard Brownian motion and σ2 = 0.01.

We made a Monte-Carlo study over 50 replications of the sample (Xi, Yi)1≤i≤n and the

curve x0 = Xn+1. We compare the performances of our selected kernel estimators ̂̂m(x0)

and ̂̂m(ev)
(x0) (bandwidth selected with the method introduced above in the spirit of Gold-

enshluger and Lepski 2011), with the same kernel estimator with bandwidth selected by
leave-one-out and 10-fold cross-validations (CV). Both cross-validated methods consist in
splitting the sample in two sub-samples (a learning sample and a test sample), evaluating
the estimator at the points x0 = Xi for all Xi in the test sample using only the data

of the learning sample and comparing the predicted values Ŷ
(−ts)
i of the Yi's of the test

sample with their real values. This procedure is repeated n times for the leave-one-out
CV (the test sample contains only one observation) and 10 times for the 10-fold CV (the
test sample contains about n/10 observations), in such a way that each observation is in
the test sample only one time during the procedure. Finally, the selected bandwidth is

the one which minimizes the mean squared prediction error :
∑n

i=1

(
Yi − Ŷ (−ts)

i

)2

/n.

4.2.1. Predicted values. Figure 2 presents the plot of the predicted values versus the ob-
served values. For the four bandwidth selection devices, the prediction for a new value x0

is quite accurate for most of the 50 evaluations of the estimators. Some values m(x0) are
badly predicted: these are isolated values, which means that only a very small number of
curves Xi's in the sample are close to x0. This kind of isolated values is hard to estimate
with kernel methods (which are local). Few di�erences are visible between the di�erent
bandwidth selection devices.
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First setting Second setting

Model 3, simulation (b) Model 3, X brownian motion
n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

signal-to-noise ratio (snr) 0.055 0.016

Known noise variance ( ̂̂m(x0)) 0.669 0.387 0.082 0.155 0.115 0.032

Est. noise variance ( ̂̂m(ev)
(x0)) 0.669 0.392 0.084 0.155 0.115 0.032

Leave-one-out CV 0.656 0.370 0.080 0.156 0.115 0.032
10-fold CV 0.660 0.369 0.083 0.155 0.114 0.032

Table 1. Monte-Carlo study of the MSE over 50 replications.

First setting Second setting

Model 3, simulation (b) Model 3, X brownian motion
n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

Known noise variance ( ̂̂m(x0)) 0.04 0.11 0.35 0.03 0.06 0.17

Est. noise variance ( ̂̂m(ev)
(x0)) 0.39 1.50 9.45 0.33 1.24 7.95

Leave-one-out CV 3.35 17.55 147.61 1.82 8.77 71.20
10-fold CV 3.05 16.06 129.72 1.64 7.96 63.32

Table 2. Mean CPU time in seconds (calculated over 50 runs) necessary for the
calculation of the estimator (including bandwidth selection).

4.2.2. Mean Squared Error (MSE). Table 1 presents the results of the Monte-Carlo study
of the MSE of the fourth bandwidth selection devices presented here. We also give an
estimation of the signal-to-noise ratio snr := σ2/Var(m(X)).
We �rst note that, as expected, the mean squared prediction error decreases when the

sample size increases. Then, remark that the performances, in terms of mean squared
error, of our bandwidth selection devices (with known or estimated noise variance), are
very similar to the performances of cross-validated methods. This con�rms the �rst
�ndings we made in view of Figure 2.

4.2.3. Computational time. Table 2 presents the mean time necessary to calculate the
estimator and to select the bandwidth. We give here the total CPU time (system time
and user time) necessary to compute an estimate of the value of m at a point x0. We
performed these computations on a personal computer equipped with a processor Intel
Core i5-4200, CPU: 1.60GHz (maximum speed: 2.30GHz), HD: 921Go, Memory: 7.88Go.
We observe that our bandwidth selection device outperforms cross-validation in terms of

computation time: even with the estimation of the noise variance, which is time consum-
ing, the computational time of the leave-one-out cross-validation is ranging from about 60
to 420 times that of our bandwidth selection device (50 to 370 times for the 10-fold cross-
validation). These di�erences are due to the fact that cross-validated methods require the
calculation of the estimator for each bandwidth and each curve Xi of the sample (n×|Hn|
calls to the estimation function, where |Hn| is the cardinality of the bandwidth collection
Hn) while our method necessitates only one evaluation of the estimator per bandwidth
(plus n evaluation of the estimate but for only one bandwidth for the calculation of the
noise variance, giving a total of n+ |Hn| calls to the estimation function).
Note that the data-driven collection of bandwidths is larger (most of the time) for the

simulation setting (b) than it is when X is a standard brownian motion (the small ball
probability decreases faster to 0 when h goes to 0). This explains the observed di�erences
of computational time between the two settings.
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5. Proof

5.1. Preliminary results.

5.1.1. The Bernstein Inequalities. Let us recall concentration results for empirical process,
on which our proofs are based. We shall �rst state the following useful lemma, which
immediatly follows from (Birgé and Massart, 1998, p.366).

Lemma 1. (Bernstein Inequality) Let T1, T2, . . . , Tn be independent random variables and
Sn(T ) =

∑n
i=1(Ti − E[Ti]). Assume that

Var(T1) ≤ v2 and ∀l ≥ 2,
1

n

n∑
i=1

E
[
|Ti|l

]
≤ l!

2
v2bl−2

0 .

Then, for η > 0,

P
(

1

n
|Sn(T )| ≥ η

)
≤ 2 exp

(
− nη2/2

v2 + b0η

)
,

≤ 2 max

{
exp

(
−nη

2

4v2

)
, exp

(
− nη

4b0

)}
.(11)

We deduce from (11) the following result, the proof of which is based on integration
and is omitted.

Lemma 2. With the same notations and under the same assumptions as the ones of
Lemma 1, for any V > 0,

E

[((
Sn(T )

n

)2

− V

)
+

]
≤ 2 max

{
exp

(
−n
√
V

4b0

)(
32b2

0

n2
+

8b0

√
V

n

)
,

exp

(
−nV
4v2

)
4v2

n

}
.

5.1.2. The empirical process. We apply in this section the previous concentration inequal-
ities to bound the main empirical process involved in our context.
We �rst remark that Assumption (HK) implies that, for all integer l > 0,

(12) clKϕ
x0(h) ≤ E

[
(Kh (‖X − x0‖))l

]
≤ C l

Kϕ
x0(h).

One of the keys of the results is the control, in probability and expectation, of the quantity
Rx0
h de�ned by:

(13) Rx0
h :=

1

n

n∑
i=1

Kh (‖Xi − x0‖)
E [Kh (‖Xi − x0‖)]

.

The following lemma states the bounds.

Lemma 3. Supposed that (HK) is ful�lled. Then, the following inequality holds,

(14) P
(
|Rx0

h − 1| > 1

2

)
≤ 2 exp

− nϕx0(h)

8
(
C2
K

c2K
+ CK

2cK

)
 .

Moreover if (HHn,2) is also satis�ed, for all α > 0,

(15) E
[(

(Rx0
h − 1)2 − VRx0 (h)

)
+

]
≤ C

nα
,
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with VRx0 (h) := κR ln(n)/(nϕx0(h)), κR > max

{(
4CKα
cK
√
C0

)2

, 4
C2
K

c2K
α

}
and C > 0 depending

only on CK, cK, C0 and κR.

Inequality (14) follows from Lemma 1, with Ti = Kh(‖Xi − x0‖)/E[Kh(‖Xi − x0‖)]
(E[Ti] = 1), which leads to Sn(T )/n = Rx0

h − 1. The assumptions are ful�lled, with the
parameters (computed mainly thanks to (12)),

v2 =
C2
K

c2
k

1

nϕx0(h)
and b0 =

CK
ck

1

nϕx0(h)
.

Lemma 2 applied with the same process permits then to obtain Inequality (15).

5.2. Proof of Theorem 1. A cornerstone decomposition for our main proofs is the
following, for h ∈ Hn,

(m̂h(x0)−m(x0))2 =

(
n∑
i=1

W
(i)
h (x0)Yi −m(x0)

)2

=

(
n∑
i=1

W
(i)
h (x0)m(Xi) +

n∑
i=1

W
(i)
h (x0)εi −m(x0)

)2

= Bh(x0) + Th(x0)(16)

with

(17)

Bh(x0) =

(
n∑
i=1

W
(i)
h (x0) (m(Xi)−m(x0))

)2

,

Th(x0) =

(
n∑
i=1

W
(i)
h (x0)εi

)2

.

We recall that
∑n

i=1W
(i)
h (x0) = 1 and that the independence of the εi's with the Xi's

implies

E

[
n∑

i,j=1

W
(i)
h (x0)W

(j)
h (x0) (m(Xi)−m(x0)) εj

]
= 0,

which proves (16).
We �rst bound the term Bh(x0). By Assumption (Hm):

Bh(x0) ≤

(
n∑
i=1

W
(i)
h (x0) |m(Xi)−m(x0)|

)2

≤

(
n∑
i=1

W
(i)
h (x0)Cm‖Xi − x0‖β

)2

.(18)

Now we can remark that, by de�nition of W
(i)
h (x0) and the fact that K is supported by

[0, 1] (Assumption (HK)), we haveW
(i)
h (x0) = 0 if ‖Xi−x0‖ > h. This and Inequality (18)

implies that

(19) Bh(x0) ≤ C2
mh

2β

(
n∑
i=1

W
(i)
h (x0)

)2

= C2
mh

2β.
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We turn now to the term Th(x0):

E [Th(x0)] = E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h <1/2}


+E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h ≥1/2}

 .(20)

For the �rst term of Equation (20), remark that, by independence of εi with εj (for i 6= j)
and X1, . . . , Xn, and since ε is centered,

E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h <1/2}

 =
n∑

i,j=1

E
[
W

(i)
h (x0)W

(j)
h (x0)εiεj1{Rx0h <1/2}

]

= σ2

n∑
i=1

E
[(
W

(i)
h (x0)

)2

1{Rx0h <1/2}

]
.

Now we have, since the quantities (Kh (‖Xi − x0‖))1≤i≤n are non-negative (Assump-
tion (HK)),

n∑
i=1

(
W

(i)
h (x0)

)2

=

∑n
i=1K

2
h (‖Xi − x0‖)

(
∑n

i=1Kh (‖Xi − x0‖))2 ≤ 1 a.s.

This implies that

E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h <1/2}

 ≤ σ2P (Rx0
h < 1/2) ≤ σ2P (|Rx0

h − 1| > 1/2) .

Hence, by Lemma 3, we obtain

(21) E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h <1/2}

 ≤ 2σ2 exp

− nϕx0(h)

8
(
C2
K

c2K
+ CK

cK

)
 ≤ Cσ2

nϕx0(h)
,

where C = 16e−1
(
C2
K

c2K
+ CK

cK

)
by the fact that xe−x ≤ e−1 for all x > 0.

We turn now to the second term of Equation (20). By de�nition of W
(i)
h (x0) and Rx0

h

E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h ≥1/2}


= E

( n∑
i=1

Kh (‖Xi − x0‖)
nE [Kh (‖X − x0‖)]

1

Rx0
h

εi

)2

1{Rx0h ≥1/2}

 ,
≤ 4E

( n∑
i=1

Kh (‖Xi − x0‖)
nE [Kh (‖X − x0‖)]

εi

)2
 .
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With the same arguments as the ones used for the �rst term of (20),

E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h ≥1/2}


≤ 4

n2 (E [Kh (‖X − x0‖)])2E

[
n∑
i=1

K2
h (‖Xi − x0‖) ε2

i

]
,

=
4

n
E

[(
Kh (‖X − x0‖)

E [Kh (‖X − x0‖)]
ε

)2
]
.

We conclude with Equation (12):

E

( n∑
i=1

W
(i)
h (x0)εi

)2

1{Rx0h ≥1/2}

 ≤ 4C2
K

c2
K

σ2

nϕx0(h)
.(22)

Now Equation (16) and equations (19), (21) and (22) lead us to the expected result.

5.3. Proof of Theorem 1. We consider the set

Λx0 =
⋂
h∈Hn

{∣∣∣∣ ϕ̂x0(h)

ϕx0(h)
− 1

∣∣∣∣ < 1

2

}
.

To prove Theorem 1, we study the loss function ( ̂̂m(x0)−m(x0))2 on the set Λx0 , and on
its complementary (Λx0)c.

• Step 1. Upper bound for ( ̂̂m(x0)−m(x0))21Λx0 .
Let h ∈ Hn be a �xed bandwidth. We �rst split( ̂̂m(x0)−m(x0)

)2

≤ 3
(
m̂ĥ(x0)(x0)− m̂ĥ(x0)∨h(x0)

)2

+ 3
(
m̂ĥ(x0)∨h(x0)− m̂h(x0)

)2

+3 (m̂h(x0)−m(x0))2 .

We deduce from the de�nitions of Â(h, x0), Â(ĥ(x0), x0) and ĥ(x0) that

3
(
m̂ĥ(x0)(x0)− m̂ĥ(x0)∨h(x0)

)2

+ 3
(
m̂ĥ(x0)∨h(x0)− m̂h(x0)

)2

≤ 3
(
Â(h, x0) + V̂

(
ĥ(x0), x0

))
+ 3

(
Â
(
ĥ(x0), x0

)
+ V (h, x0)

)
,

≤ 6
(
Â (h, x0) + V̂ (h, x0)

)
.

Thus,( ̂̂m(x0)−m(x0)
)2

1Λx0 ≤
{

6Â(h, x0) + 6V̂ (h, x0) + 3 (m̂h(x0)−m(x0))2
}
1Λx0 .

The idea is now to come down to the case of known small ball probability. To that aim,
we de�ne

(23) V (h, x0) =
2

3
κσ2 ln(n)

nϕx0(h)
, A(h, x0) = max

h′∈Hn

(
(m̂h′(x0)− m̂h∨h′(x0))2 − V (h′, x0)

)
+
.
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Compared to the data-driven counterparts (7) and (8), the variance term V (h, x0) is
deterministic here. We then split

Â(h, x0) = max
h′∈Hn, V̂ (h′,x0)<∞

{
(m̂h∨h′(x0)− m̂h′(x0))2 − V̂ (h′, x0)

}
+
,

≤ max
h′∈Hn, V̂ (h′,x0)<∞

{
(m̂h∨h′(x0)− m̂h′(x0))2 − V (h′, x0)

}
+

+ max
h′∈Hn, V̂ (h′,x0)<∞

(
V (h′, x0)− V̂ (h′, x0)

)
+
,

≤ A(h, x0) + max
h′∈Hn

(
V (h′, x0)− V̂ (h′, x0)

)
+
,

which gives( ̂̂m(x0)−m(x0)
)2

1Λx0 ≤
{

6A(h, x0) + 6V (h, x0) + 3 (m̂h(x0)−m(x0))2

+6 max
h′∈Hn

(
V (h′, x0)− V̂ (h′, x0)

)
+

+ 6
(
V̂ (h, x0)− V (h, x0)

)}
1Λx0 .(24)

But we have, on the set Λx0 , for any h′ ∈ Hn, |ϕ̂x0(h′) − ϕx0(h′)| < ϕx0(h′)/2. In
particular, we thus have ϕ̂x0(h′)−ϕx0(h′) < ϕx0(h′)/2, that is ϕ̂x0(h′) < (3/2)ϕx0(h′). This

proves that V (h′, x0) − V̂ (h′, x0) < 0, and hence maxh′∈Hn

(
V (h′, x0)− V̂ (h′, x0)

)
+

= 0.

Moreover, on Λx0 ,

V̂ (h, x0)− V (h, x0) =
2

3
κσ2 ln(n)

n

(
3

2

1

ϕ̂x0(h)
− 1

ϕx0(h)

)
,

≤ 2

3
κσ2 ln(n)

n
2

1

ϕx0(h)
= 2V (h, x0).

Gathering the two bounds in (24), and using that the expectation of the loss of the
estimator m̂h in the right-hand-side of (24) has already been bounded (see Proposition 1)
lead to

E
[( ̂̂m(x0)−m(x0)

)2

1Λx0

]
≤ 6E [A (h, x0)] + 18V (h, x0) + 3C

(
h2β +

σ2

nϕx0(h)

)
,

where C is the constant involved in Equation (3).
The proof comes now down to establish an upper-bound for E[A(h, x0)]: we apply the

following lemma (which proof is postponed to the following section).

Lemma 4. Under the assumptions of Theorem 3, for any h ∈ Hn, there exists C > 0
such that

E [A (h, x0)] ≤ 2C2
mh

2β +
C

n
.

The constant C depends on σ2, cK , CK , C0 and Cε.

We thus obtain

(25) E
[( ̂̂m(x0)−m(x0)

)2

1Λx0

]
≤ c

(
h2β + σ2 ln(n)

nϕx0(h)

)
+
C

n
,

with c and C two constants, c depending on Cm, σ
2, cK and CK , and C depending on

σ2, cK , CK , C0 and Cε.
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• Step 2. Upper bound for ( ̂̂m(x0)−m(x0))21(Λx0 )c. We introduce the terms Bh(x0)
and Th(x0) de�ned by (17):( ̂̂m(x0)−m(x0)

)2

1(Λx0 )c ≤
(

2Bĥ(x0)(x0) + 2Tĥ(x0)(x0)
)
1(Λx0 )c .

Next, thanks to (19), Bĥ(x0)(x0) ≤ maxh′∈Hn Bh′(x0) ≤ maxh′∈Hn 2C2
m(h′)2β. We deduce

that

E
[
Bĥ(x0)(x0)1(Λx0 )c

]
≤ 2C2

mh
2β
maxP ((Λx0)c) .

Moreover,

E
[
Tĥ(x0)(x0)1(Λx0 )c

]
≤ E

[
max
h′∈Hn

Th′(x0)1(Λx0 )c

]
≤
∑
h′∈Hn

E
[
Th′(x0)1(Λx0 )c

]
,

=
∑
h′∈Hn

E

[(∑n
i=1 εiKh′(‖Xi − x0‖)∑n
i=1Kh′(‖Xi − x0‖)

)2

1(Λx0 )c

]
,

=
∑
h′∈Hn

E

[ ∑n
i=1 ε

2
iK

2
h′(‖Xi − x0‖)

(
∑n

i=1Kh′(‖Xi − x0‖))21(Λx0 )c

]
,

= σ2
∑
h′∈Hn

E

[ ∑n
i=1 K

2
h′(‖Xi − x0‖)

(
∑n

i=1 Kh′(‖Xi − x0‖))21(Λx0 )c

]
,

≤ σ2
∑
h′∈Hn

P ((Λx0)c) ≤ σ2nP ((Λx0)c) ,

where we have used the properties of εi, Xi and Assumption (HK) in the same way as
above, but also Assumption (HHn,1). Therefore,

(26) E
[( ̂̂m(x0)−m(x0)

)2

1(Λx0 )c

]
≤
(
2C2

mh
2β
max + σ2n

)
P ((Λx0)c) .

We are reduced to bound P((Λx0)c):

P((Λx0)c) ≤
∑
h∈Hn

P

(∣∣∣∣∣ 1n
n∑
i=1

1{‖Xi−x0‖≤h} − E
[
1{‖Xi−x0‖≤h}

]∣∣∣∣∣ ≥ ϕx0(h)

2

)
.

We apply Bernstein's Inequality (Lemma 1), with Ti = 1{‖Xi−x0‖≤h} and η = ϕx0(h)/2.
Since 0 ≤ Ti ≤ 1, we set b0 = 1, and v2 = Var(T1) = ϕx0(h)(1− ϕx0(h)). Thus,

P((Λx0)c) ≤ 2
∑
h∈Hn

exp

(
− n(ϕx0(h))2/8

ϕx0(h)(1− ϕx0(h)) + ϕ(h)/2

)
= 2

∑
h∈Hn

exp

(
− nϕx0(h)

8(1− ϕx0(h)) + 4

)
≤ 2

∑
h∈Hn

exp

(
−nϕ

x0(h)

12

)
.

This leads to P((Λx0)c) ≤ 2n1−C0/12 thanks to Assumptions (HHn,1) and (HHn,2). In (26),
we obtain

E
[( ̂̂m(x0)−m(x0)

)2

1(Λx0 )c

]
≤ 2

(
2C2

mh
2β
max + σ2

)
n2−C0/12,(27)

≤ 2
(
2C2

mh
2β
max + σ2

)
n−1,(28)

as soon as C0 > 36.
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It remains to sum (25) and (27) to obtain Theorem 1.

5.4. Proof of Lemma 4. First remark that the de�nition (8) of A(h, x0) can be written
in the new way

A(h, x0) = max
h′∈Hn,h′≤h

(
(m̂h′(x0)− m̂h(x0))2 − V (h′, x0)

)
+
.

For �xed bandwidths h, h′ ∈ Hn h ≥ h′, let us introduce Ωx0
h,h′ = {Rx0

h′ ≥ 1/2} ∩ {Rx0
h ≥

1/2} with Rx0 de�ned by (13). We split, for h′ ≤ h,

(m̂h′(x0)− m̂h(x0))2 ≤ 2 (m̂h′(x0)−m(x0))2 + 2 (m̂h(x0)−m(x0))2

≤ 4
{
Bh′(x0) +Bh(x0) + Th′(x0)1Ω

x0
h,h′

+ Th(x0)1Ω
x0
h,h′

}
+4Th′(x0)1(Ω

x0
h,h′ )

c + 4Th(x0)1(Ω
x0
h,h′ )

c ,

with Bh(x0) and Th(x0) de�ned by (17) (the notations are valid with h or h′). We thus
have the following decomposition, for any bandwidth h,

A(h, x0) ≤ 4

(
max

h′∈Hn,h′≤h
Bh′(x0) +Bh(x0)

)
+ 4 max

h′∈Hn,h′≤h

{
Th′(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

+4 max
h′∈Hn,h′≤h

{
Th(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

+ 4 max
h′∈Hn,h′≤h

(Th′(x0) + Th(x0))1(Ω
x0
h,h′ )

c .

Since V (h′) ≥ V (h) as soon as h′ ≤ h,

max
h′∈Hn,h′≤h

{
Th(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

≤ max
h′∈Hn,h′≤h

{
Th(x0)1Ω

x0
h,h′
− V (h, x0)

8

}
+

,

≤ max
h′∈Hn,h′≤h

{
Th′(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

.

Thus the splitting becomes

A(h, x0) ≤ 4

(
max

h′∈Hn,h′≤h
Bh′(x0) +Bh(x0)

)
+ 8 max

h′∈Hn,h′≤h

{
Th′(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

+4 max
h′∈Hn,h′≤h

(Th′(x0) + Th(x0))1(Ω
x0
h,h′ )

c .(29)

It remains to bound each of the terms. Two of them have not been centred: the terms
involving Bh(x0) are bias terms, and the term involving 1(Ω

x0
h,h′ )

c will be shown to be

directly negligible. The last term, which depends on Th(x0), is the more di�cult term.
We will control it by using Lemma 2.

• Upper-bound for the terms depending on Bh(x0). The term Bh(x0) is the
�rst term of the right-hand-side of (16) and has thus already been bounded (see (19)):
Bh(x0) ≤ C2

mh
2β, for any bandwidth h. Thus,

max
h′∈Hn,h′≤h

Bh′(x0) +Bh(x0) ≤ max
h′∈Hn,h′≤h

C2
mh
′2β + C2

mh
2β ≤ 2C2

mh
2β.(30)

• Upper-bound for the term depending on 1(Ω
x0
h,h′ )

c.

We roughly bound

max
h′∈Hn,h′≤h

(Th′(x0) + Th(x0))1(Ω
x0
h,h′ )

c ≤
∑
h′∈Hn

{
Th′(x0)1(Ω

x0
h,h′ )

c + Th(x0)1(Ω
x0
h,h′ )

c

}
.
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Moreover, by using the independence of Xi and εi and E[εi] = 0, we have

E
[
Th(x0)1(Ω

x0
h,h′ )

c

]
= E

[
(
∑n

i=1 εiKh(‖Xi − x0‖))2

(
∑n

i=1Kh(‖Xi − x0‖))2 1(Ω
x0
h,h′ )

c

]
,

= E

[∑n
i=1 ε

2
iK

2
h(‖Xi − x0‖)

(
∑n

i=1 Kh(‖Xi − x0‖))21(Ω
x0
h,h′ )

c

]
,

since the εi's are independent. Therefore, since the kernel is non-negative (Assump-
tion (HK)),

E
[
Th(x0)1(Ω

x0
h,h′ )

c

]
≤ σ2P

(
(Ωx0

h,h′)
c
)
.

The inequality remains evidently valid with Th(x0) replaced by Th′(x0), which leads to

max
h′∈Hn,h′≤h

(Th′(x0) + Th(x0))1(Ω
x0
h,h′ )

c ≤ σ2
∑
h′∈Hn

P
(
(Ωx0

h,h′)
c
)
.

Then, by applying twice Inequality (14) of Lemma 3,

P
(
(Ωx0

h,h′)
c
)
≤ P

(
|Rx0

h′ − 1| > 1

2

)
+ P

(
|Rx0

h∨h′ − 1| > 1

2

)
,

≤ 2

exp

− nϕx0(h′)

8
(
C2
K

c2K
+ CK

2cK

)
+ exp

− nϕx0(h ∨ h′)

8
(
C2
K

c2K
+ CK

2cK

)
 ,

≤ 4n
− C0

8(C2
K
/c2
K

+CK/2cK) ,

since ϕx0(h) ≥ C0 ln(n)/n for any h ∈ Hn (Assumption (HHn,2)). Then, as the cardinality
of Hn is bounded by n (Assumption (HHn,1)), we deduce

E
[

max
h′∈Hn,h′≤h

(Th′(x0) + Th(x0))1(Ω
x0
h,h′ )

c

]
≤ 4σ2n

1− C0

8(C2
K
/c2
K

+CK/2cK) ≤ 4σ2

n
,(31)

if C0 ≥ 16(C2
K/c

2
K + CK/2cK).

• Upper-bound for the terms depending on Th′(x0). First notice that

Th′(x0)1Ω
x0
h,h′

=

(
n∑
i=1

Kh′(‖Xi − x0‖)
nE[Kh′(‖Xi − x0‖)

1

Rx0
h′
εi

)2

1Ω
x0
h,h′
,

≤ 4

(
n∑
i=1

Kh′(‖Xi − x0‖)
nE[Kh′(‖Xi − x0‖)

εi

)2

.

This implies that

E
[

max
h′∈Hn,h′≤h

{
Th′(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

]

≤
∑
h′∈Hn

E


(

1

n

n∑
i=1

Ti,h′(x0)− E [Ti,h′(x0)]

)2

− V (h′, x0)

8


+

 ,
with Ti,h′(x0) = (Kh′(‖Xi−x0‖)/E[Kh′(‖Xi−x0‖))εi (we have used that E[Ti,h′(x0)] = 0,
since εi is centred, independent fromXi). Our aim is now to apply the Bernstein Inequality
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of Lemma 2. The random variables Ti,h′(x0), i = 1, . . . , n are i.i.d., and we compute the
following parameters (see the assumptions of Lemma 1 for their de�nitions)

v2 =
C2
εC

2
K

c2
K

1

ϕx0(h′)
and b0 =

CεCK
cK

1

ϕx0(h′)
.

Their values are obtained by using (12) and Assumption (Hε). Let

V (h′, x0) = κ
ln(n)

nϕx0(h′)
, κ > 0.(32)

Lemma 2 shows that∑
h′∈Hn

E


(

1

n

n∑
i=1

Ti,h′(x0)− E [Ti,h′(x0)]

)2

− V (h′, x0)


+

 ≤ A1(x0)+A2(x0)+A3(x0),

with

A1(x0) = 2
∑
h′∈Hn

32b2
0

n2
exp

−n
√
V (h′, x0)

4b0

 ,

A2(x0) = 2
∑
h′∈Hn

8b0

√
V (h′, x0)

n
exp

(
−n
√
V (h′, x0)4b0

)
,

A3(x0) = 2
∑
h′∈Hn

4v2

n
exp

(
−n
√
V (h′, x0)4v2

)
.

The strategy is now similar for each of these three terms: we use the de�nition of V and
Assumption (HHn) (cardinality ofHn bounded by n, and lower bound ϕ(h′) ≥ C0 ln(n)/n,
for any h′) to prove that the three terms have the order of magnitude O(1/n). More
precisely, we prove that

A1(x0) ≤ 64
C2
KC

2
εσ

2

c2
kC

2
0

1

ln2(n)
n

1− cK
√
κC0

4CKCεσ ,

A2(x0) ≤ 16
CKCεσ

√
κ

ckC
3/2
0

1

ln3/2(n)
n

1− cK
√
κC0

4CKCεσ ,

A3(x0) ≤ 8
C2
KC

2
εσ

2

C0c2
k

1

ln(n)
n

1− c2Kκ

4C2
K
C2
εσ

2
.

By choosing κ ≥ max(64C2
KC

2
εσ

2/(C0c
2
K), 8C2

KC
2
εσ

2/c2
K), we �nally obtain

∑
h′∈Hn

E


(

1

n

n∑
i=1

Ti,h′(x0)− E [Ti,h′(x0)]

)2

− V (h′, x0)


+


≤

(
64
C2
KC

2
ε

c2
kC

2
0

+ 6
CKCε

√
κ

ckC
3/2
0

+ 8
C2
KC

2
ε

C0c2
k

)
1

n
.

If 2κ/3 in the de�nition of V (h, x0) (see (7)) is larger than 8κ, that is if

κ ≥ 12× 8C2
ε

(
C2
K/c

2
K

)
max(8/C0, 1),

we also have V (h, x0)/8 ≥ V (h, x0) and consequently, we have proved

E
[

max
h′∈Hn,h′≤h

{
Th′(x0)1Ω

x0
h,h′
− V (h′, x0)

8

}
+

]
≤ C

n
,(33)
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with C depending on cK , CK , C0, and Cε.

The proof of Lemma 4 is ended by gathering the inequalities (29), (30), (31), and (33).
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